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Abstract

We theoretically show spin and charge transport on the disordered surface of a three‐
dimensional topological insulator with a magnetic insulator when localized spin of the
magnetic insulator depends on time and space. To ascertain the transports, we use a
low‐energy effective Hamiltonian on the surface of a topological insulator using the
exchange  interaction  and  calculate  analytically  using  Green's  function  techniques
within the linear response to the exchange interaction. As a result, the time‐depend‐
ent localized spin induces the charge and spin current. These currents are detected from
change in the half‐width value of the ferromagnetic resonance of the localized spin when
the  magnetic  resonance  of  the  localized  spin  is  realized  in  the  attached magnetic
insulator. We also show spin and charge current generation in a three‐dimensional
Weyl–Dirac semimetal, which has massless Dirac fermions with helicity degrees of
freedoms. The time‐dependent localized spin drives the charge and spin current in the
system. The charge current as well as the spin current in the Weyl–Dirac system are
slightly different from those on the surface of the topological insulator.

Keywords: Spin pumping, Spin–momentum locking, Surface of topological insulator,
Weyl–Dirac semimetal, Massless Dirac fermions

1. Introduction

A crucial issue in spintronics is the generation and manipulation of a charge and spin current
by magnetism, since these mechanisms can be applicable to magnetic devices. One way to
generate charge and spin flow is called “spin pumping,” which pumps from the angular
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Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



momentum of a magnetization's localized spin into that of electrons through the dynamics of
magnetization as well as spin-orbit interactions [1, 2]. No other way of doing this has so far been
discussed in the field of metallic spintronics.

Ever since the discovery of a topological insulator (TI) [3–6], spintronics using topology has
been studied. A TI has a gapless surface, its bulk is insulating, but its surface is metallic as a
result of two‐dimensional massless Dirac fermions on the surface [4–6]. Because of spin–orbit
interactions on the surface the spin and momentum of Dirac fermions are perfectly linked to
each other. The relation between a TI's spin and momentum is dubbed “spin–momentum
locking,” and the direction in which they travel is perpendicular to each other. Because of spin–
momentum locking, unconventional spin‐related phenomena—such as magnetoresistance [7–
15], the magnetoelectric effect [16–21], diffusive charge–spin transport [22–25], and the spin
pumping effect [26–31]—have so far been the only phenomena theoretically and experimen‐
tally studied.

Of the unconventional phenomena on the surface of a TI, spin pumping is one of the most
interesting when it comes to spintronics. Here spin pumping on the surface is different from
that in metals. As a result of spin–momentum locking on the surface the localized spin plays
the role of a vector potential, whereas time‐differential localized spin effectively plays the role
of an electric field acting on electrons on the surface of the TI [16–19]. As a result, even in the
absence of an applied electric field, the charge current is generated by time‐dependent
localized spin as shown in Figure 1. The induced charge current flows along z×∂tS [28–31].
Actually, this spin pumping effect on the surface has been experimentally demonstrated in the
junction of the TI by attaching magnetic materials [29–31] by changing the half‐width value
when ferromagnetic resonance is realized in the attached magnetic material [32, 33].

Recently, it has been reported that localized spin on the surface of a TI subject to magnetism
depends on space and its spin texture seems to be a magnetic domain wall [34]. It is predicted
that in the presence of a spatial‐dependent spin structure the charge current, which reflects
the spin structure, is induced [28]. Moreover, the spin current as well as the charge density are
induced when an inhomogeneous spin structure exists on the surface. Detailed results are
shown in Section 2. This study may help the study of spin pumping on the surface of a TI with
inhomogeneous spin textures [35, 36].

Recently, the next generation of spintronics has been theoretically and experimentally studied
in Weyl–Dirac semimetals. A Weyl–Dirac semimetal possessing three‐dimensional massless
Dirac fermions has attracted much attention in condensed matter physics [37–39]. Such a
semimetal has been experimentally demonstrated [40–45]. In addition, Weyl–Dirac semimetals
have been theoretically predicted in a superlattice heterostructure based on the TI. Such a
heterostructure has been realized in the GeTe/Sb2Te3 superlattice [46].

Spin‐momentum locking occurs in a Weyl–Dirac semimetal, but the locking is slightly different
from that on the surface of the TI. As a result of spin–momentum locking, the spin polarization
(charge density) and the charge current (spin current) are linked to each other. Moreover, Dirac
fermions have helicity degrees of freedom, which are decomposed into left‐ and right‐handed
fermions. Note that the total charge flow of Dirac fermions of left‐ and right‐handed Weyl

Magnetic Materials72



fermions is preserved. In a Weyl–Dirac semimetal the anomaly‐related effect, which is
discussed in the field of relativistic high‐energy physics, has also been discussed in condensed
matter physics. Studies up to the moment have asserted that the charge current is generated
by magnetic properties with helicity degrees of freedoms [47–54]. Our goal is to introduce the
helicity‐dependent spin pumping effect, one of the characteristic properties of Dirac fermions
(as shown in Section 3).

Figure 1. Schematic of spin pumping on the surface of a topological insulator with localized spins of the attached mag‐
netic insulator. Here, the localized spin depends on positions on the surface. The dynamics of the localized spin (dash‐
ed line) drives the charge current (orange arrow) on the surface. Then, the charge current is also polarized because of
spin–momentum locking on the surface.

2. Spin and charge transport due to spin pumping on the surface of a
topological insulator

2.1. Model

We will calculate the charge and spin current due to spin pumping on the surface of a TI with
an attached magnetic insulator (MI) (as illustrated in Figure 1). To do so, we consider the
following low‐energy effective Hamiltonian, which describes the surface of the TI with
localized spin of the MI [4]:

,= + +TI-surface ex impH H H H (1)

where HTI‐surface, Hex, and Himp are the low‐energy effective Hamiltonian on the surface of the
TI, the spin–exchange interaction between the localized spin of the attached MI and the spin
of conduction electrons, and the nonmagnetic impurity scattering on the surface of the TI,
respectively. HTI‐surface is given by
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(2)

where vF,B, EF, k, and σ are the velocity of bare electrons, the Fermi energy, momentum on the
surface of the TI, and the Pauli matrix in the spin space, respectively; and Ψk = t(Ψ↑, Ψ↓) and Ψ†

are the annihilation and creation operators of the electrons with up‐spin and down‐spin index
(↑, ↓). Hex is represented by

(3)

where Jex is the coefficient of the exchange interaction; and S is the localized spin of the MI on
the surface. Here, we take into account the space‐ and time‐dependence of S. Himp is given by

2 †y y= òimp impH dx u (4)

Nonmagnetic impurity scattering is taken into account for a delta function type [19, 21–24] and
is considered within the Born approximation. Because of impurity scattering the Fermi velocity
of bare Dirac fermions in Eq. (2) is modified by vF,B → vF [23, 24, 28]. We use vF in what follows.

2.2. Charge and spin current due to localized spin dynamics

We will calculate the charge and spin current as well as the charge and spin density due to
magnetization dynamics on the surface of the TI. They are given using the Keldysh–Green
function and the lesser component of Green's function [48] as
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(5)

As a result of spin–momentum locking the charge current <ji> and spin current <ji
s,α> are

proportional to the spin density <si> and charge density <ρ>, respectively, where < > = denotes
the expectation value in H and e(<0) is the charge of Dirac fermions. These relations are derived
from the Heisenberg equation. The superscript and subscripts in <ji

s,α> show the direction of
flow and spin of the spin current, respectively. In what follows the charge and spin current
are considered within the linear response to Hex. This assumption can be a good approximation
because the energy scale of the exchange interaction is smaller than that of the bandwidth of
the low‐energy effective Hamiltonian on the surface of the TI [28, 31]. We also assume the TI
has a metallic surface of and that a finite Fermi surface exists on the surface; that is, h/(EFτ)
≪ 1 where h is the Planck constant and τ is the relaxation time of nonmagnetic impurity
scatterings on the surface.
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The charge and spin current are represented by
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where q and Ω are the momentum and frequency of the localized spin Sj
q,Ω, respectively; L2 is

the area of the surface; and Πj is the response function. These currents are obtained from Πj:
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where fω, gω,k
R = ([gω,k

A]†) = [hw/(2π) + EF – hvF/(2π)(k × σ)z + ih/(4πτ)]‐1, and Λj are the Fermi

distribution function, the retarded (advanced) Green function, and the vertex correction of the

ladder diagram, respectively. The above functions are estimated in the regime Ωτ ≪ 1 and

qvFτ ≪ 1, which are satisfied when the dynamics of the localized spin is lower than the terahertz

regime and the spatial gradient of the localized spin is slow compared with the electron mean

free path. Then, by expanding Ω and q within Ωτ ≪ 1 and qvFτ ≪ 1, the vertex function Λj is

represented by Λj = [Γ + Γ2 + Γ3 + …]jnσn = [ (1 – Γ)‐1]jnσn with
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where Γjn (||Γjn|| < 1) is the 3 × 3 matrix (j, n = 0, x, y). As a result, Πj is given by
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where σ0 is the identity matrix; and l is the mean free path on the surface. From Eqs. (5–9) the

spin and charge current are given by
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where νTI
e is the density of state on the surface of the TI; <S||>D is the convolution between S||

and the diffusion propagator D on the surface; and S|| is the in‐plane localized spin S||= S –
Szz as
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Eq. (10) shows that time‐dependent localized spin induces the charge and spin current and
that they can be decomposed into local and nonlocal contributions. The first term in Eq. (10)
is the charge current due to spin dynamics at that position on the surface; its direction is along
the z × ∂tS|| direction [28–31]. On the other hand, the second term in Eq. (10) is the charge
current due to both time‐ and spatial‐dependent localized spin; its direction is along the [z ×
(z × ∂)] [∂ × ∂t<S||>D]z direction, where <S||<D indicates the nonlocal contribution from the
localized spin. Moreover, this term is zero when the spin texture is spatially uniform. There‐
fore, this charge current is caused by diffusion with the dynamics of the spatial inhomogeneous
spin texture. It is noted that this second term is also described by the spatial gradient of the
charge density.

Because of spin–momentum locking on the surface of the TI, spin polarization is given by <j>
= 2evF(z × <s>). Thus, the properties of spin polarization are similar to those of the charge
current.

Eq. (11) shows that the spin current is induced by the time‐ and spatial‐dependent S||. Then,
the charge density is also generated because of spin–momentum locking. In addition, the
second term of the charge current <j>nonlocal = 2evFνTI

eJexτl2[z × (z × ∂)] [∂ × (∂t<S||>D) ]z is given
by the spatial gradient of the charge density, whereas <j>nonlocal is proportional to the spatial
gradient of the spin current [28] as

s,nonlocal
.a

ae= - Ñli z n i nj e j (12)

This result shows that the relation between the charge and spin current is different from that
in the metallic spintronics system [2]. The spin current is proportional to the charge current
and spin current flow is perpendicular to the charge flow and its spin polarization.

Note that no out‐of‐plane localized spin Szz contributes in a dominant way to charge and spin
current generation. The reason is σz does not couple with momentum p in Eq. (2). Therefore,
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we believe a warping effect [1–4] on the surface of the TI is likely. Spin polarization along the
z‐direction is also generated by spin dynamics.

2.3. Spin torque

Based on these results, we look at localized spin dynamics after generation of the charge current
and spin polarization on the surface [24]. We assume there is an external static and AC magnetic
field on the surface—as shown in Figure 2(a). The static magnetic field arranges the localized
spin texture and the AC magnetic field triggers its spin dynamics. The propagation direction
of the microwave is parallel to the static magnetic field, which is along the y‐axis. The texture
is called the “longitudinal conical spin order” [56].

After applying the microwave the dynamics of the localized spin of the MI is induced by the
in‐plane AC magnetic field of the microwave. The dynamics of the spin induces the charge
and spin current. Then, from <j> = 2evF(z × <s>), Eq. (10), and spin–momentum locking, spin
polarization is also generated. Note that spin polarization induced in this way acts on the
localized spin as an effective exchange field for localized spin. This contribution is given from
the Landau–Lifshitz–Gilbert (LLG) equation of motion [32, 33] on the surface of the TI:

( ) ( )agm¶ º - ´ + ´¶ +
r r r r r r

G
t t eM M H M M T

M
(13)

Figure 2. (a) Schematic of the setup used to detect spin and charge current generation. The texture of the magnetization
M depends on space. Such magnetization is along the applied static magnetic field H0, and the magnetization dynam‐
ics is induced by the applied magnetic field of the microwave. (b) Schematic of the spin torque acting on M.

where M = -M(S/S) is magnetization of the MI; γ is the gyromagnetic ratio; μ is permeability;
αG is a Gilbert damping constant; H = H0 + HAC are the applied magnetic fields on the surface;
and H0 and Hac denote the static and AC magnetic fields, respectively. The first term of Eq. (13)
denotes the field‐like torque that drives the dynamics of M. The second term is the damping
torque that prevents its dynamics—these terms are schematically illustrated in Figure 2(b).
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The third term Te is the spin torque due to spin polarization of Dirac fermions on the surface
of the TI (<s>). It is given by Te =2Jexa2 (M × <s>), where a is the lattice constant on the surface.

Since Te is proportional to <s>, this torque is decomposed into local (Te
L) and nonlocal spin

torque (Te
D) terms as
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z
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T M M
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where M|| = -M(S||/S) is in‐plane magnetization; and κ is the dimensionless coefficient.

As a result of spin–momentum locking the torque is Te ∼ M × <j>. This relation is useful as a
way of detecting nonzero <j> [29–31]. Moreover, nonlocal spin torque can be described by T<e

D

∼ M × <j>nonlocal . Eq. (12) shows this torque may well be affected by spin current contribution,
whereas the relation between spin torque and spin current can be used as a way to detecting
<ji

s,α> on the surface:

2
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h
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D z iJ aT M z j (15)

We now consider magnetization when it is given by M = ( Mx, My, Mz) = [m cos(q.x – Ωt), My,
m sin(q.x – Ωt)] with q = (qx, qy), m2 ≪ My, My ∼ M, and ∂tMy ∼ 0. Such a time‐dependent
magnetic structure is assumed to be realized when the magnitude of the static magnetic field
is larger than that of the AC magnetic field HAC=(hx, 0, hz); that is, hx, hz ≪ H0. Then, substituting
this M into Eqs. (13) and (14), the LLG equation becomes a linear approximation:
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where ωH = γμH and ωM = γμM are the angular frequencies of H0 and M, respectively; and
κqy

2l2∂t<M||,x>D indicates the contribution from Te
D. Substituting <M||,x>D into Eq. (13), we obtain

magnetic permeability around the surface:
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æ öæ ö æ ö
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where χxx and χzx denote the longitudinal and transverse magnetic permeability as
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The coefficients κ'q,Ω and ζq,Ω are given by
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Hence, κ'q,Ω and ζq,Ω depend on q and Ω. If q = 0, κ'q,Ω and ζq,Ω go to κ'q,Ω → κ and ζq,Ω → 1,
respectively. Then, the magnetic permeability is isotropic. In q = 0, χxx and χzz go to the same
value and χxz = –χxx is satisfied. On the other hand, in nonzero q the magnetic permeability is
anisotropic: χxx ≠ χzz.

Figure 3(a) shows the dependence of Ω on the imaginary part of the longitudinal magnetic
permeability for several q. The resonance frequency Ωr and the half‐width value ΔΩ are slightly
changed by the nonzero q. Figure 3(b) shows change in the resonance frequency for several fH

in greater detail—fH is the frequency described by the static magnetic field H0. The resonance
frequency decreases with increasing ql from ql = 0 into ql = q0l, where q0 satisfies q0

2l2 ∼ Ωτ. In

Figure 3. (a) Frequency dependence of the imaginary part on the longitudinal magnetic permeability of several ql. The
half‐width value and resonance frequency change according to ql. (b) Dependence of ql on the resonance frequency for
several frequencies of the applied static magnetic field. (c) Dependence of ql on the half‐width of several frequencies of
the static magnetic field [49].
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addition, when ql takes a large value the resonance frequency returns to that frequency at ql=0.
Figure 3(c) shows the momentum dependence of the half‐width value on renormalization by
the angular frequency of the applied magnetic field for several ωH =2πfH frequencies when
realistic parameters on the surface of the TI are taken into account [31]. Change in the nor‐
malized half‐width value ΔΩ/ωH(ql) decreases from ΔΩ/ωH(ql = 0) = 0.038 to ΔΩ/ωH(ql ∼ 0.1) =
0.030 with increasing ql.

Any change in the half‐width value ΔΩ indicates an induced charge current on the surface of
the TI because Te

L + Te
D is proportional to the induced charge current [29–31]. In addition, the

half‐width value ΔΩ of Te
D represents a contribution from the spatial gradient of the spin

current. These relations can be useful for the detection of spin current. For example, let us
suppose that in a finite ql, ΔΩ includes the contribution from the whole of the spin torque Te

and the contribution from the nonlocal term Te
D is reduced by the large magnetic field. In a

higher magnetic field the inhomogeneous spin texture would be expected to be aligned along
the magnetic field direction and the spin texture to be spatially uniform; hence, the value of ql
decreases and reaches zero. Then, the half‐width value ΔΩ(Te

D = 0) has no contribution from
Te

D. The difference ΔΩ(Te
D ≠ 0) – ΔΩ(Te

D = 0) includes a pure contribution from Te
D.

Any contribution from the applied magnetic field is of course a concern. Note that an in‐plane
static magnetic field contributes no finite charge current generation or spin polarization [49],
whereas the contribution from the applied magnetic field is negligible.

3. Spin pumping in a Weyl–Dirac semimetal

3.1. Model

We now consider spin pumping in a Weyl–Dirac semimetal subjected to magnetism. To do
this, a Weyl–Dirac semimetal subjected to spin and momentum locking, such as a supperlattice
hetrod structure constructed from a TI/normal insulator/TI [39, 46 – 48], is considered. The
low‐energy effective Hamiltonian describing the Weyl–Dirac semimetals that have a spin–
exchange interaction is given by [50–52]

.= + +Weyl ex mpiH H H H (20)

The first term takes the form

(21)

where Ψk = t(Ψ↑, +Ψ↓, +Ψ↑, –Ψ↓,–) is the annihilation operator of an electron with spin (↑, ↓) and
helicity τ(+, –) degrees of freedom; τα=0,x,y,z and σα=0,x,y,z are Pauli matrices of the helicity and spin,
respectively; vF is the Fermi velocity; μ is the chemical potential of the Weyl–Dirac semimetal;
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and b and μ5 denote the difference in position between each Weyl cone in momentum and
energy space, respectively. In Dirac semimetals, we set b = 0 and μ5= 0.

The second term of Eq. (20) indicates the spin–exchange interaction:

(22)

where Jex is the coefficient of the exchange interaction; and S is the localized spin that depends
on space and time in the Weyl semimetal. This exchange interaction is independent of the
helicity index. Himp shows the nonmagnetic impurity scattering in the Weyl–Dirac semimetal:

† 0 0[ ] .y t s y= ò Äimp impH dx u (23)

This Hamiltonian is similar to that on the surface of the TI—see Eq. (4). In the following
calculations, Hex and Himp are treated as perturbations within the same formalism as laid out
in Section 2.2. This treatment is allowed when the energy scale of the exchange interaction is
smaller than the bandwidth of Eq. (21). Then, the low‐energy effective Hamiltonian in Eq. (21)
gives a good approximation.

3.2. Response function within the linear response to the exchange interaction

To calculate the charge and spin current within the linear response to Hex, we use Green's
functions. From Eq. (20) the charge current <ji> (i = x, y, z) can be defined by

†( , ) ( , )( ) ( , ) .y t s yá ñ = á Ä ñF
i z ij x t ev x t x t (24)

where < > denotes the expectation value in Eq. (20). Such a charge current can be decomposed
as <j> = <j+> + <j–>, where <j±> = ±evF<Ψ†

±σΨ±> and Ψ±=t(Ψ↑, ±Ψ↓,±) is the annihilation operator
around each helicity τ = ±1. Since there is no mixing between Ψ†

↓,+ and Ψ↑,– in the Hamiltonian
in Eq. (20) the charge current around each helicity can be calculated separately. Because of
spin–momentum locking in the Weyl–Dirac semimetal the charge current links to the spin
polarization. The charge current of each helicity is proportional to the spin polarization of each
helicity as

( , ) ( , ) .
2± ±á ñ = ± á ñFi ievj x t s x t (25)

The spin current in the Weyl‐Dirac semimetal can be defined from the Heisenberg equation
for the spin operator:
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, , ,a a a¶ + ¶ =t i s r
is j T (26)

where js,αi is the spin current operator; and Tr,α is the spin relaxation term. Spin current density
can also be decomposed into the spin current density of each helicity and can be calculated
separately:

(27)

The superscript and subscripts of js,αi denote the direction of flow and spin of the spin current
of each helicity, respectively. The direction of spin is perfectly parallel to that of the flow, and
the spin current density is proportional to the charge density of each helicity.

The relaxation term can also be decomposed by <Tr>= <Tr,+> + <Tr,–> and can be given by <Tr,+>:

(28)

The charge and spin current can be obtained by calculating the response function (Figure 4):

Figure 4. Diagrammatic representation of the charge current of each helicity within the linear response to the exchange
interaction. The bold line is Green's function; vi is the velocity operator; and Sj is the localized spin (wavy lines). (a) A
bubble diagram without taking impurity scattering from the exchange interactions into account. (b1) and (b2) Bubble
diagrams that take impurity scattering within the ladder approximation into account.
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where q and Ω are the momentum and frequency of the localized spin, respectively; L3 is the
volume of the system; and Πj

± is the response function within the helicity index:

/ 2, / 2, / 2
2

, / 2,
,

.w w
w

s s± ±-W - ± -W - ±
º =G Gå r rr r

rc k q k q
k

i
j j jnR A ngn gu (30)
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where fω, gω,k,±
R= ([gω,k,±

A]†) = [hw/(2π) + μ± – hvFk.σ/(2π) + ih/(4πτ±)]–1, and Λj
± are the Fermi

distribution function, the retarded (advanced) Green's function, and the vertex correction of
the ladder diagram at each helicity ±, respectively; and τ± is the relaxation time of nonmagnetic
impurities in the material, which depends on the helicity, because it depends on the chemical
potential μ±. When Ωτe,+ ≪ 1 and qvFτe,+ ≪ 1 are satisfied the vertex function Λj

± is given by Λj

±= [Γ± + Γ±
2 + Γ±

3 + …]jnσn = [(1 – Γ±)–1]jnσn with

2

/2, / 2, / 2, / 2,, w ww
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where Γjn
± (||Γjn

±|| < 1) is a 4 × 4 matrix (j, n = 0, x, y, z). As a result, Πj
± can be represented by
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where the above matrix component (m, m'= x, y, z) is
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As a result, the charge current and spin current can be obtained by

, 21 ,
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where νWS
± and <ρ±> are the charge density of state and the induced charge density of each

helicity, respectively:
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where <S>D,± is the convolution between the localized spin and diffusive propagation of each
helicity. <S>D,± can be defined by
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Note that the above results are obtained when b = 0. These results are easily generalized when
b = 0. Because b behaves like a static Zeeman field acting on the whole of the band of HWeyl, it
can shift as a result of Pauli paramagnetism. However, b cannot drive a net current because b
is static [49]. On the other hand, the dynamics of the localized spin are only effective near the
Fermi surface, the structure of which does not depend on b. Therefore, we obtain the same
charge and spin current in Eqs. (33)–(35) even when b ≠ 0.

3.3. Charge and spin current due to spin pumping effects

From the above results the total charge current can be given by

( )
3

2 2
, , , , , ,( ) .

2 12
n t n t n t n t+ + - - + + + - - -

é ùá ñ = - ¶ + Ñ Ñ ×¶ á ñ - á ñë û
r rr

F ex F ex
e e e D e D

i WS WS i i WS WS
t t

ev J ev Jj S S S (38)

The charge current is triggered by the dynamics of localized spin. The first term indicates the
local term of the dynamics of localized spin. Its direction is parallel to ∂tS. The second term
shows the nonlocal term, which is generated by the convolution between localized spin and
the diffusion propagator. A nonzero nonlocal term is given when the spin texture of localized
spin depends on space. Thus, the driving force needed to induce the charge current is the same
as localized spin dynamics, which plays the role of driving the charge current on the surface
of the TI. Note that the charge current in a Weyl–Dirac semimetal depends strongly on the
valley index. When the difference between τ+ and τ– as well as between νWS

+ and νWS
– is realized,

there is a population imbalance between two of the bands of each helicity. Then, nonzero <j>
is induced when νWS

+τe,+ ≠ νWS
–τe,– or μ5 = 0.

Note that the property of the charge current at each helicity links to that of spin polarization
because of spin–momentum locking. However, after summation of the indices of helicity the
relation between total charge current and total spin polarization is changed. As a result, even
in the absence of population imbalance, nonzero spin polarization can be given by Eq. (25) as
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Local spin polarization is along ∂tS and nonlocal spin polarization is along the spatial gradient
of ∂t(∂iSi).

Total spin current can be represented from Eqs. (35) and (36) as

2

, , , , , .
4a ad n t n t+ + + - - -
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r rrh F ex

s t e D e D
i i WS WSv Jj S S (40)

Total spin current can be generated by spatial divergence of localized spin dynamics, where
localized spin is the convolution with diffusion. As a result, the spin current can be regarded
as a nonlocal spin current. Note that a nonzero spin current is generated when localized spin
depends on space. Such a spin current becomes nonzero even in the absence of population
imbalance.

The nonlocal spin current in this case is obtained from the diffusive motion of spin density,
which is driven by the dynamics of localized spin, where localized spin depends on space. The
spin diffusive motion of each helicity can be given from Eqs. (25), (34), (37) as
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As a result, the diffusive motion of total spin becomes:
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Time‐dependent and spatial‐dependent localized spin, ∂[∂t(∂iSi)], triggers the diffusive motion
of total spin density. When there is no population imbalance between each helicity, diffusive
motion can accompany total spin density without any charge flow. Hence, a pure spin current
can be generated.

4. Conclusion

Our results on the charge and spin current due to spin pumping on the surface of a three‐
dimensional TI (Section 2) [28] and in the bulk of a three‐dimensional Weyl–Dirac semimetal
(Section 3) [51] are summarized in this chapter.
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Section 2 summarizes our results on spin pumping on the surface of a TI attached to an MI.
The results are calculated using the standard Keldysh–Green function method within the linear
response to the exchange interaction between the conduction spin and localized spin of an MI.
The purpose of this work is to derive charge and spin current generation due to localized spin
dynamics on the disordered surface of a TI; in particular, when the localized spin depends on
space on the surface. The main results on the surface of a TI are summarized in Table 1. Time‐
dependent localized spin on the surface is a prerequisite to obtaining nonzero charge and spin
current generation. Moreover, Table 1 shows that when the spin texture is spatially inhomo‐
geneous, not only the local charge but also the nonlocal charge and spin current are generated
by time‐dependent localized spin. The flow and spin polarization of the spin current are
perfectly perpendicular to each other because of spin–momentum locking. The magnitude of
the spin current is proportional to the charge density, which is induced by divergence between
time‐dependent localized spin and the diffusive propagator on the surface—see Eqs. (10) and
(11). Such pumping effects are caused by time‐dependent localized spin, which plays a role in
driving the charge current and can be regarded as an effective electric field Es

TI.

〈j〉 js ,α
i 〈s〉 〈p〉 Ref.

Local z × ∂tS׀׀ ∂tS׀׀ [29‐31]

Nonlocal ∇[∇ × ∂tS׀׀
D]z ∈zαi[∇ × ∂tS׀׀

D]z ∇[∇ × ∂tS׀׀
D]z [∇ × ∂tS׀׀

D]z This work [28]

Driving force

εs
TI≡ −

J ex

evF
∂t s||

z ×εs
TI

∇ ∇ × εs
TI

D z

∇ ×εs
TID z z ×εs

TI

∇ ∇ × εs
TI

D Z

∇ ×εs
TID z

This work [28]

Table 1. Brief summary of the charge current, spin current, spin, and charge density induced by localized spin
dynamics on the disordered surface of a TI. The charge current and spin density have both a local and nonlocal
contribution. The spin current and charge density are described by the nonlocal contribution.

Recently, it has been reported that the localized spin texture at the junction of the TI/MI is
spatially inhomogeneous [34]. We suppose that the spin current we have obtained at the
junction is generated when the spin texture moves temporally.

On the basis of these results, in Section 2.3 we discussed a way of detecting the charge current
and spin current induced on the surface of a TI attached to an MI by using ferromagnetic
resonance. We assume that the dynamics of localized spin is triggered by the applied static
and AC magnetic field of the microwave. The dynamics of the localized spin induced both the
charge current and the spin current. Such induced currents are related to spin density, and
spin polarization acts on the localized spin in much the same way as spin torque—see
Eq. (14). Hence, the half‐width of ferromagnetic resonance changes as shown in Figure 3.
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Spin pumping in a Weyl–Dirac semimetal hosting massless Weyl–Dirac fermions is summar‐
ized in section 3. The results are obtained within the same formalism as laid out in Sections 2.1
and 2.2. The charge and spin current as well as the charge and spin density are given in
Table 2. Semimetals are subject to spin–momentum locking. The spin direction of Weyl–Dirac
fermions brought about by spin–momentum locking is perfectly parallel/antiparallel to its
momentum and its locking is determined by the helicity degrees of freedom of Weyl–Dirac
fermions. As a result, the charge current and spin polarization induced depend on the helicity
indices. Eqs. (38) and (39) show that localized spin dynamics induces the charge current and
spin polarization, respectively; hence, localized spin plays the role of an effective electric field
Es,±

WDS acting on electrons [51]. Moreover, Es,±
WDS depends on the helicity index, whereas total

charge current is proportional to μ5. As a result, a nonzero charge current is generated when
there is population imbalance between each helicity. On the other hand, localized spin
dynamics also drives the spin current when localized spin depends on time and position in a
Weyl–Dirac semimetal. The spin current is finite even in the absence of population imbalance.
Then, the spin current does not accompany charge flow. These results may be of use to next‐
generation spintronics devices based on Weyl–Dirac semimetals.

〈j±〉α±〈S ±〉 js ,α,±
i α ± δi ,α ρ ± Ref.

Local ∓ ∂t S [51]

Nonlocal ∓∇ ∇ · ∂t S
D,±

δi,α ∇·∂t〈s〉D,± [51]

Driving force

εs ,±
WDS≡ ∓

J ex

evp
∂t s

εs ,±
WDS and∇ ∇ · (εs

WDS)D,± ∇ · ( εs
WDS)D,±

This work [51]

Total 〈j〉local α μ5 ∂t S

〈j〉nonlocal α ∂t ∇[∇·(〈s〉D,+ ‐ 〈S〉D,‐)]

js ,α
i

nonlocal α δi ,α ∂t∇ ·

( s D,+
+ s D,−

)

This work

Table 2. Brief summary on charge and spin current generation by spin pumping in a Weyl–Dirac semimetal with the
dynamics of localized spin, where ± denotes the helicity index. Because of spin–momentum locking the charge (spin)
current is proportional to the spin (charge) density with each helicity. Time‐dependent localized spin drives the local
and nonlocal charge and spin current. The nonzero population imbalance between each helicity μ5 is a prerequisite to
obtaining the nonzero charge current. The nonzero spin current (charge density) is triggered by time‐dependent and
spatial‐dependent localized spin dynamics even when μ5 = 0.

Acknowledgements

This work was supported by a Grant‐in‐Aid for JSPS Fellows (Grant No. 13J03141), by a Grant‐
in‐Aid for Challenging Exploratory Research (Grant No. 15K13498), and by the Core Research
for Evolutional Science and Technology (CREST) of Japan Science.

Magnetization Dynamics–Induced Charge and Spin Transport on the Surface of a Topological Insulator Subjected to
Magnetism

http://dx.doi.org/10.5772/62531

87



Author details

Katsuhisa Taguchi

Address all correspondence to: taguchi@rover.nuap.nagoya-u.ac.jp

Department of Applied Physics, Nagoya University, Nagoya, Japan

References

[1] Tserkovnyak Y, Brataas A, Bauer GEW. Enhanced gilbert damping in thin ferromag‐
netic films. Phys Rev Lett. 2002;88(11):117601. DOI: 10.1103/PhysRevLett.88.117601

[2] Saitoh E, Ueda M, Miyajima H, Tatara G. Conversion of spin current into charge current
at room temperature: Inverse spin‐Hall effect. Appl Phys Lett. 2006;88(18):13–6.DOI:
10.1063/1.2199473

[3] Hasan MZ, Kane CL. Colloquium: Topological insulators. Rev Mod Phys. 2010;82(4):
3045–67. DOI:10.1103/RevModPhys.82.3045

[4] Qi XL, Zhang SC. Topological insulators and superconductors. Rev Mod Phys.
2011;83(4). DOI: 10.1103/RevModPhys.83.1057

[5] Ando Y. Topological insulator materials. J Phys Soc Japan. 2013;82(10):1–32. DOI:
10.7566/JPSJ.82.102001

[6] Hsieh D, Xia Y, Qian D, Wray L, Dil JH, Meier F, et al. A tunable topological insulator
in the spin helical Dirac transport regime. Nature. 2009;460(7259):1101–5. DOI: 10.1038/
nature08234

[7] Yokoyama T, Tanaka Y, Nagaosa N. Anomalous magnetoresistance of a two‐dimen‐
sional ferromagnet/ferromagnet junction on the surface of a topological insulator. Phys
Rev B. 2010;81(12):3–6. DOI: 10.1103/PhysRevB.81.121401

[8] Schwab P, Raimondi R, Gorini C. Spin‐charge locking and tunneling into a helical metal.
Europhysics Lett. 2011;93(6):67004. DOI: 10.1209/0295‐5075/93/67004

[9] Mondal S, Sen D, Sengupta K, Shankar R. Magnetotransport of Dirac fermions on the
surface of a topological insulator. Phys Rev B. 2010;82(4):1–11. DOI: 10.1103/PhysRevB.
82.045120

[10] Ma MJ, Jalil MBA, Tan SG, Li Y, Siu ZB. Spin current generator based on topological
insulator coupled to ferromagnetic insulators. AIP Adv. 2012;2(3). DOI:
10.1063/1.4751255

Magnetic Materials88



[11] Kong BD, Semenov YG, Krowne CM, Kim KW. Unusual magnetoresistance in a
topological insulator with a single ferromagnetic barrier. Appl Phys Lett. 2011;98(24):
96–9. DOI: 10.1103/PhysRevB.89.201405

[12] Kandala A, Richardella A, Rench DW, Zhang DM, Flanagan TC, Samarth N. Growth
and characterization of hybrid insulating ferromagnet–topological insulator hetero‐
structure devices. Appl Phys Lett. 2013;103(20):2011–5. DOI: 10.1063/1.4831987

[13] Taguchi K, Yokoyama T, Tanaka Y. Giant magnetoresistance in the junction of two
ferromagnets on the surface of diffusive topological insulators. Phys Rev B. 2014;89(8):
1–5. DOI: 10.1103/PhysRevB.89.085407

[14] Fischer MH, Vaezi A, Manchon A, Kim E‐A. Spin–Torque generation in topological–
insulator‐based Heterostructures. Phys Rev B. 2016;93(12):1-4. DOI: 10.1103/PhysRevB.
93.12530

[15] Jamali M, Lee JS, Lv Y, Zhao Z, Samarth N, Wang JP. Room Temperature Spin Pumping
in Topological Insulator Bi2Se3. [Internet.] 2014. Available from: http://arxiv.org/abs/
1407.7940

[16] Qi XL, Hughes TL, Zhang SC. Topological field theory of time‐reversal invariant
insulators. Phys Rev B. 2008;78(19):1–43. DOI: 10.1103/PhysRevB.78.195424

[17] Garate I, Franz M. Inverse spin‐galvanic effect in the interface between a topological
insulator and a ferromagnet. Phys Rev Lett. 2010;104(14):1–4. DOI: 10.1103/PhysRev‐
Lett.104.146802

[18] Nomura K, Nagaosa N. Electric charging of magnetic textures on the surface of a
topological insulator. Phys Rev B. 2010;82(16):3–6. DOI: 10.1103/PhysRevB.82.161401

[19] Ueda HT, Takeuchi A, Tatara G, Yokoyama T. Topological charge pumping effect by
the magnetization dynamics on the surface of three‐dimensional topological insulators.
Phys Rev B. 2012;85(11):1–6. DOI: 10.1103/PhysRevB.85.115110

[20] Linder J. Improved domain‐wall dynamics and magnonic torques using topological
insulators. Phys Rev B. 2014;90(4):1–5. DOI: 10.1103/PhysRevB.90.041412

[21] Taguchi K, Shintani K, Tanaka Y. Electromagnetic effect on disordered surface of
topological insulators. J Magn Magn Mater. 2015;400:188–10. DOI: 10.1103/PhysRevB.
92.035425

[22] Burkov AA, Hawthorn DG. Spin and charge transport on the surface of a topological
insulator. Phys Rev Lett. 2010;105(6):6–9. DOI: 10.1103/PhysRevLett.105.066802

[23] Fujimoto J, Sakai A, Kohno H. Ultraviolet divergence and Ward–Takahashi identity in
a two‐dimensional Dirac electron system with short‐range impurities. Phys Rev B.
2013;87(8):1–5. DOI: 10.1103/PhysRevB.87.085437

[24] Sakai A, Kohno H. Spin torques and charge transport on the surface of topological
insulator. Phys Rev B. 2014;89(16). DOI: 10.1103/PhysRevB.89.165307

Magnetization Dynamics–Induced Charge and Spin Transport on the Surface of a Topological Insulator Subjected to
Magnetism

http://dx.doi.org/10.5772/62531

89



[25] Liu X, Sinova J. Reading charge transport from the spin dynamics on the surface of a
topological insulator. Phys Rev Lett. 2013;111(16):1–5. DOI: 10.1103/PhysRevLett.
111.166801

[26] Tserkovnyak Y, Loss D. Thin‐film magnetization dynamics on the surface of a topo‐
logical insulator. Phys Rev Lett. 2012;108(18):1–5. DOI: 10.1103/PhysRevLett.
108.187201

[27] Tserkovnyak Y, Pesin DA, Loss D. Spin and orbital magnetic response on the surface
of a topological insulator. Phys Rev B. 2015;91(4):041121. DOI: 10.1103/PhysRevB.
91.041121

[28] Taguchi K, Shintani K, Tanaka Y. Spin‐charge transport driven by magnetization
dynamics on disordered surface of doped topological insulators. Phys Rev B.
2015;035425:1–34.DOI: 10.1103/PhysRevB.92.035425 [Figure 4(b) in reference [28] is a
misprint: The values 0.38, 0.34, and 0.30 on the vertical axis in the figure should be 0.038,
0.034, and 0.030, respectively. Figure 3(c) in this chapter is revised.]

[29] Semenov YG, Duan X, Kim KW. Voltage‐driven magnetic bifurcations in nanomagnet–
topological insulator heterostructures. Phys Rev B. 2014;89(20):1–5. DOI: 10.1103/
PhysRevB.89.201405

[30] Deorani P, Son J, Banerjee K, Koirala N, Brahlek M, Oh S, et al. Observation of inverse
spin Hall effect in bismuth selenide. Phys Rev B. 2014;094403:1–19.DOI: 10.1103/
PhysRevB.90.094403

[31] Shiomi Y, Nomura K, Kajiwara Y, Eto K, Novak M, Segawa K, et al. Spin–electricity
conversion induced by spin injection into topological insulators. Phys Rev Lett.
2014;113(19):7–11. DOI: 10.1103/PhysRevLett.113.196601

[32] Mizukami S, Ando Y, Miyazaki T. Effect of spin diffusion on Gilbert damping for a very
thin permalloy layer in Cu/permalloy/Cu/Pt films. Phys Rev B. 2002;66(10):1–9. DOI:
10.1103/PhysRevB.66.104413

[33] Gilbert TL. Classics in magnetic: A phenomenological theory of damping in ferromag‐
netic materials. IEEE Trans Magn. 2004;40(6):3443–9. DOI: 10.1109/TMAG.2004.836740

[34] Wei P, Katmis F, Assaf BA, Steinberg H, Jarillo‐Herrero P, Heiman D, et al. Exchange‐
coupling‐induced symmetry breaking in topological insulators. Phys Rev Lett.
2013;110(18):1–5. DOI: 10.1103/PhysRevLett.110.186807

[35] Coop G, Przeworski M, Wall JD, Frisse LA, Hudson RR, Di Rienzo A, et al. Observation
of skyrmions in a multiferroic material. Science. 2012;336(April):198–201. DOI: 10.1126/
science.1214143

[36] White JS, Prša K, Huang P, Omrani AA, Živković I, Bartkowiak M, et al. Electric‐field‐
induced skyrmion distortion and giant lattice rotation in the magnetoelectric insulator
Cu2OSeO3. Phys Rev Lett. 2014;113(10):1–5. DOI: 10.1103/PhysRevLett.113.107203

Magnetic Materials90



[37] Murakami S. Phase transition between the quantum spin Hall and insulator phases in
3D: Emergence of a topological gapless phase. New J Phys. 2007;9. DOI: 10.1088/1367‐
2630/9/9/356

[38] Yang B, Nagaosa N. Classification of stable three‐dimensional Dirac semimetals with
nontrivial topology. Nat Commun. 2014;5:4898. DOI: 10.1038/ncomms5898

[39] Burkov AA, Balents L. Weyl semimetal in a topological insulator multilayer. Phys Rev
Lett. 2011;107(12):1–4. DOI: 10.1103/PhysRevLett.107.127205

[40] Brahlek M, Bansal N, Koirala N, Xu SY, Neupane M, Liu C, et al. Topological‐metal to
band‐insulator transition in (Bi 1‐x In x) 2 Se 3 thin films. Phys Rev Lett. 2012;109(18):
1–5. DOI: 10.1103/PhysRevLett.109.186403

[41] Wu L, Brahlek M, Valdés Aguilar R, Stier AV, Morris CM, Lubashevsky Y, et al. A
sudden collapse in the transport lifetime across the topological phase transition in (Bi(1-
x)In(x))2Se3. Nat Phys. 2013;9(7):410–4. DOI: 10.1038/nphys2647

[42] Liu ZK, Jiang J, Zhou B, Wang ZJ, Zhang Y, Weng HM, et al. A stable three‐dimensional
topological Dirac semimetal Cd3As2. Nat Mater. 2014;13(7):677–81. DOI: 10.1038/
nmat3990

[43] Neupane M, Xu S‐Y, Sankar R, Alidoust N, Bian G, Liu C, et al. Observation of a three‐
dimensional topological Dirac semimetal phase in high‐mobility Cd3As2. Nat Com‐
mun. 2014;05:3786‐ May 7;5. DOI: 10.1038/ncomms4786

[44] Novak M, Sasaki S, Segawa K, Ando Y. Large linear magnetoresistance in the Dirac
semimetal TlBiSSe. Phys Rev B. 2015;91(4):1–5.DOI: 10.1103/PhysRevB.91.041203

[45] Huang S‐M, Xu S‐Y, Belopolski I, Lee C‐C, Chang G, Wang B, et al. A Weyl Fermion
semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat
Commun. 2015;6:7373.DOI: 10.1038/ncomms8373

[46] Tominaga J, Kolobov AV, Fons P, Nakano T, Murakami S. Ferroelectric order control
of the Dirac–semimetal phase in GeTe‐Sb 2 Te 3 superlattices. Adv Mater Interfaces.
2013;1:1‐7.DOI: 10.1002/admi.201300027

[47] Zyuzin AA, Wu S, Burkov AA. Weyl semimetal with broken time reversal and
inversion symmetries. Phys Rev B. 2012;85(16):1–9. DOI: 10.1103/PhysRevB.85.165110

[48] Zyuzin AA, Burkov AA. Topological response in Weyl semimetals and the chiral
anomaly. Phys Rev B. 2012;86(11):1–8. DOI: 10.1103/PhysRevB.86.115133

[49] Vazifeh MM, Franz M. Electromagnetic response of Weyl semimetals. Phys Rev Lett.
2013;111(2):1–5. DOI: 10.1103/PhysRevLett.111.027201

[50] Taguchi K. Equilibrium axial current due to a static localized spin in Weyl semimetals.
J Phys Conf Ser. 2014;568(5):052032. DOI: 10.1088/1742‐6596/568/5/052032

Magnetization Dynamics–Induced Charge and Spin Transport on the Surface of a Topological Insulator Subjected to
Magnetism

http://dx.doi.org/10.5772/62531

91



[51] Taguchi K, Tanaka Y. Axial current driven by magnetization dynamics in Dirac
semimetals. Phys Rev B. 2015;91(5):1–5. DOI:10.1103/PhysRevB.91.054422

[52] Nomura K, Kurebayashi D. Charge‐induced spin torque in anomalous Hall ferromag‐
nets. Phys Rev Lett. 2015;115(12):1–5. DOI: 10.1103/PhysRevLett.115.127201

[53] Chan C‐K, Lee P A, Burch KS, Han JH, Ran Y. When chiral photons meet chiral fermions:
Photoinduced anomalous Hall effects in Weyl semimetals. Phys Rev Lett. 2015;1(7):1–
5. DOI: 10.1103/PhysRevLett.116.026805

[54] Taguchi K, Imaeda T, Sato M, Tanaka Y. Photovoltaic chiral magnetic effect in a Weyl
semimetal.Phys Rev B(R). 2016;93(20):1–5. DOI: 10.1103/PhysRevB.93.201202

[55] Haug H, Jauho A‐P. Quantum Kinetics in Transport and Optics of Semiconductors.
[Internet.] 2008. 362 pp. Available from: http://www.springer.com/physics/complexity/
book/978‐3‐540‐73561‐8

[56] Tokura Y, Kida, N. Dynamical magnetoelectric effects in multiferroic oxides. Phil.
Trans. R. Soc. A. 2011:369;3679–3694. DOI: 10.1098/rsta.2011.0150

Magnetic Materials92


