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Abstract

In intermediate steps on the way to full driving automation, the role of the driver will
remain essential, and driver’s behaviour when aided by Advanced Driver Assistance
Systems (ADAS) must be allowed for, in order to obtain the maximum benefit. In the
present study, a driving simulator experimentation was carried out. Sixty-nine volun‐
teers were enrolled to face a simulated hazard situation involving a pedestrian; some of
them were aided by ADAS, whereas others were not. The driving scenario was set up
based on a statistical accident analysis and the thorough reconstruction of actual road
accidents. By qualitative and quantitative analysis, some differences in drivers’ behaviour
were observed in relation to the presence of ADAS devices and their different modes of
acting. The positive effect of ADAS was naturally confirmed, but some of the drivers were
not fully able to benefit from it.

Keywords: driving simulation, avoidance strategy, road accident, driver model, auto‐
mated driving

1. Introduction

It is commonly acknowledged that in the near future most of the road vehicles will travel, on
almost the totality of the road network, in an automated way (autonomous driving). The reason
for such a forecast is easily understood: the influence of the driver on safety, energy efficiency
and traffic fluidity is very high [1]. In fact about 93% of road accidents are originated by some
kind of driving error, as recognition errors, decision errors and performance errors [1]. Under
such point of view, automated driving can bring dramatic improvements by eliminating the

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



influence of human factors, thus contributing to reduce serious and fatal road accidents, fuel
waste and traffic congestion. The total elimination of road accidents, however, is not predicta‐
ble at the moment, but their reduction to very little numbers is reasonably attainable. In the
vision of many researchers, a roadmap to full automated vehicles can be defined; for instance,
organisation like the Society of Automotive Engineers (SAE) has defined some steps (SAE Level
of progressive automation, Figure 1), ranging from Level 0 (no automation) to Level 5 (full
automation) [2].

Figure 1. SAE levels of progressive automation as defined in SAE International Standard J3016.

Levels 0–2 (partial automation) require that the human driver be responsible for monitoring
the driving environment, whereas in Levels 3–5 such task is performed by the automated
driving system. Unless having reached a condition of full automation (Level 5), the driver must
be involved in car driving, that is to say that the driver must be kept “in the loop.” In fact in
any intermediate level of automation, several driving modes will include the possibility or the
necessity that the control of the vehicle is shifted from the automated system to the driver, or
that the driver is willing to keep the control back. As explained in Refs. [3, 4], such operation
must be carefully designed. Such issue will be particularly important in the case of Level 3
(conditional automation) in which the driver, due to the increasing number of automated
driving modes, will be often called to take the control back. The driving task can be
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decomposed into three main activities: recognition, judgement and operation. In all of such
activities errors are possible, likely to bring to some risks or even to accidents. Within SAE
Level 0 (no automation), all of these tasks are performed by the driver, which can be defined
as “conventional driving.” If the implementation of Advanced Driver Assistance Systems
(ADAS) is carried out, the driver can be assisted, or even substituted, by some automated or
autonomous device or function, up to a level of full automation (SAE Level 5) in which
recognition, judgement and operation are performed by the system taking full control. In
intermediate levels of assistance (as, for instance, in SAE Levels 1 and 2) only recognition and/
or judgement are assisted so that the responsibility for operation remains with the driver. Far
from being infallible (at least at the present state of the art) such devices can be of great help
to decrease the probability of errors and, consequently, of accidents.

1.1. Present advanced driver assistance systems

As regards the present state of the art of driving assistance devices, their functions can be
divided into three main categories:

– Presentation of information about road environment and traffic conditions; the driver is
helped during his recognition activity. Under this category, devices, such as road sign
recognition (RSR), blind spot monitoring systems (BSM), and so on, can be included.

– Warning; the driver is helped as regards judgement. A timely and appropriate warning
signal is issued when a possibly critical situation is detected (as forward collision warning
(FCW)).

– Control (to help the driver in operation tasks); the system gets control over the vehicle.

Presently, two types of control can be considered:

– Control for normal driving conditions (as, for instance, lane keep assist (LKA), adaptive
cruise control (ACC), etc.), mainly aimed at improving travelling comfort by reducing the
workload on the driver.

– Control for pre-crash conditions (as autonomous emergency braking (AEB), often in
combination with FCW) in which the driver may be overridden due to the lack of an effective
response to some critical situation, aiming at avoiding or mitigating an imminent collision.
In such cases, the system acts on the brakes but leaves the choice of steering to the driver.

Even if the control is took by the system, the driving responsibility remains to the driver: in
the first case because the control is handed to the driver when conditions can become critical;
in the second case, the driver is overridden only at pre-crash conditions (but only as regards
braking) so that the accident consequences are mitigated.

In all of this assistance functions, it can be easily understood that a convenient interface
(Human-Machine Interface (HMI)) between the generic device and the driver must be
designed and implemented. HMI can be considered as the channel through which information
are conveyed to a vehicle’s occupant; HMI design is one of the main issues that must be

ADAS-Assisted Driver Behaviour in Near Missing Car-Pedestrian Accidents
http://dx.doi.org/10.5772/63705

83



properly allowed for [5], addressing, for instance, the definition of the correct stimulus (type:
visual, acoustic, haptic, etc.; sequence; timing; priority; etc.). In addition, since it is to be
expected a different communication efficiency as a function of age, experience, education, etc.,
the interface must be properly tailored and some adaptation is certainly needed. The necessity
of standardisation is to be expected, as well as the definition of human models capable to help
interpreting correctly the situation and act accordingly.

During the progression towards full automation (especially when high levels of automation,
such as SAE Levels 2, 3 and 4, will be implemented), several issues should be addressed in
order to obtain a fast and successful path to SAE Level 5; three main topics can be identified
as follows:

– Definition of suitable strategies for shifting control from the driver to the system and vice
versa. Design of proper HMI systems will be of fundamental importance, also aiming at
carrying out such operation in a seamless manner.

– Definition of procedures aimed at obtaining the functional assessment of the instrumental
part of the automated system.

– Obtaining a wide user acceptance rate in order to accelerate the penetration in the market
of automated systems.

The issues presented in the first two points are currently addressed by several standard
practice and regulations (as, for instance, in [6, 7]).

Presently, most of the vehicles can be categorised as belonging to Level 0 of automation, but
all the major car manufacturers (as well as tier one suppliers) offer, in their sales catalogues,
devices that can be defined as Driver Assistance Systems (typical of SAE Level 1) and some of
them show features that can be defined as partial automation.

In the Italian market, for instance, in the official sales catalogues of the end of 2015 as published
by car magazines (basically Quattroruote, Italy), several automated assistance systems can be
found, mainly belonging to the following categories:

– Adaptive cruise control (ACC),

– Blind spot monitoring systems (BSM),

– Lane departure warning systems (LDWS),

– Road sign recognition (RSR),

– Autonomous emergency braking/forward collision warning (AEB/FCW).

It can be easily recognised that such functions will certainly be part of a hypothetic future full
automated system: even if the methods used to obtain such functions are hardly imaginable,
the functions itself are necessary and the interaction with the driver must be allowed for. As
can be seen in Table 1, the above-mentioned devices are offered by a good number of manu‐
facturers on several models, both as standard equipment and as paid option; often they are
included in a package together with other safety or comfort devices.
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Device No. of
manufacturers

No. of
models

No. of models with device
as standard equipment

No. of models with
device in package

ACC 27 136 26 59

BSM 27 134 32 57

LDWS 30 142 44 66

RSR 19 78 24 25

AEB 24 99 43 44

Table 1. Number of manufacturers and vehicle models offering ADAS devices in the Italian market in September 2015.

Table 2 shows average price and standard deviation (SD) for the same devices as Table 1, for
the models offering such devices as paid option; as can be seen, when a device is included in
a package, its price can be much higher. Price is a matter that can influence user acceptance
and delay the diffusion of such safety devices.

Device Overall Single device In-package

Average price SD Average price SD Average price SD

ACC 1707 1096 1380 727 1989 1276

BSM 837 581 657 355 980 680

LDWS 929 714 540 93 1118 804

RSR 688 483 479 284 931 553

AEB 961 692 348 163 1128 688

Table 2. Average price (€) and standard deviation of some ADAS devices in the Italian market in September 2015.

1.2. User acceptance

Though many researchers are very optimistic on the large implementation of full automation
in the near future [8], many factors can slow down the process. A survey conducted by IEEE
among its members [8] revealed that in the vision of many experts in the field, six main
obstacles to the rapid diffusion of autonomous vehicles can be identified, i.e., technology, cost,
infrastructure, policy, liability and user acceptance. According to this source, the first three
points should represent a minor problem; technology is rapidly improving as regards both
efficiency and reliability, whereas cost is a problem that must be shared among private and
public stakeholders, also taking into consideration the potential benefit of accidents reduction,
as well as medical and social costs. The implementation of proper infrastructures is of the
greatest importance (it is difficult to imagine an effective implementation of driving automa‐
tion without, e. g., V2V and V2I communications) so that in relatively short terms it can be
predicted that the largest diffusion of such systems will take place first in advanced geograph‐
ical areas, such as North America, Europe and parts of Asia. The last three points, instead, will
play a decisive role; policymakers can boost or slow down the process since many matters
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require political decisions and a proper legislation will most probably be necessary, for
instance as regards the realisation of the needed infrastructures and the settlement of issues
related to legal liability. This last point can be particularly important: who will be responsible
when an accident happens, as certainly will? It can be imagined that the involvement of car
manufacturers and their suppliers will be greater, in a context that will also involve insurance
companies, governments and customers [9–11]. User acceptance will play a fundamental role;
in reference [12], for instance, a worldwide survey was carried out in order to understand how
autonomous vehicles will be accepted, comparing all levels of automation (from conventional
driving to full automation). In this study, the major concerns of future customers were
indicated, including legal issues, cost (22% declared themselves unwilling to pay any addi‐
tional sum for an automated vehicle), security (regarding especially software being subject to
hacking), privacy concerns (vehicles are subject to be constantly monitored) and driving
pleasantness, etc. Geographical differences were also pointed out. In reference [13], the
intention of French drivers to use a partially or fully automated vehicle was investigated. In
reference [14], the possible effect of motion sickness on user acceptance is investigated, and
the necessity of considering such issue during the design and development phase is emphas‐
ised. Thus, if a fast and successful introduction in the global market is desired, such systems
must be implemented in such a way as aiming at high performance and high user acceptance,
and such steps require the most complete understanding of driving behaviour: in other words,
a driver model (or better, driver models) must be set up.

1.3. The role of simulation

In the initial phase of the development of ADAS, it is a common practice to carry out testing
in controlled environment, namely, by staged driving sessions or using driving simulators.
Since their introduction, driving simulators have been widely used to study safety and human
factor-related issues. Since the first appearance of advanced driving simulators they were
extensively used to investigate over safety issues [15, 16] and also as an important tool in the
design and assessment of advanced driving assistance systems [17, 18].

The use of simulators presents numerous advantages:

– Situations that normally reveal to be dangerous can be faced without any risk for the driver
and for the researchers as well.

– A well-designed testing scenario allows a very good repeatability of the driving environ‐
ment and control of all variables (traffic, course, road and weather condition, etc.).

– The situations through which the driver goes can be adapted to the driver behaviour itself.

– All testing parameters can be easily recorded and stored for successive elaboration.

– Experimentation can be speeded up.

On the other hand, the driving scenario must be carefully designed in order to obtain a
sufficient representativeness of the results, and often a validation activity must be carried out,
for instance by carrying out staged tests in controlled environments or by monitoring real-life
driving. Moreover, not all the drivers are able to drive comfortably in a driving simulator.
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Although some of the testing activities regarding ADAS development can be carried out using
static simulators, the use of an advanced immersive driving simulator allows to have all the
needed functionalities together with a sufficiently realistic testing condition.

In the present chapter, a simulator experimental study is presented, aimed at understanding
drivers’ behaviour when a sudden hazardous situation with pedestrians is presented; for such
aim, 69 young drivers were submitted to different virtual driving scenarios. The experimen‐
tation, far to be definitive, will anyway provide useful information for setting up a driver model
as well as for determining HMI requirements.

2. Definition of a reference accident scenario

Among road users pedestrians represent one of the weaker categories, and the percentage of
accidents involving pedestrians is relatively high. According to WHO [19], in 2013, 22% of
about 1.25 million worldwide road traffic deaths were pedestrians. In the USA, during 2012,
4743 pedestrians were killed (total casualties 33,561) and 76,000 were injured (total 2,362,000)
[20]. It can be seen that the percentage of deaths with respect to injuries among pedestrians
(6.2%) is much higher than the general one (1.4%), thus confirming the high level of danger.
Pedestrian safety is expected to be highly boosted by the adoption of assistance systems as
pedestrian detection system (PDS) and V2I communications, and for this reason it was chosen
to study the drivers’ behaviour in a situation with a high risk of being involved in an accident
with a pedestrian.

Accident reconstruction is a powerful tool to explain the reasons of an accident and identify
the main contributing factors. Thus, 26 accidents involving pedestrians actually happened in
Austria were analysed using the CEDATU (Central Database for In-depth Accident Study)
database [21, 22], by also using multi-body simulations (PC-Crash, DSD, 2015).

Following the indications collected during the preceding phase, a reference accident scenario
was defined having, among others, the following features: low-density population urban
environment, late evening (heavy darkness) with scarce electric lighting, good weather and
road conditions, non-intersection, and pedestrian not using a crosswalk and walking without
running from left to right; moreover, a car is coming from the opposite direction obstructing
the visual.

3. Set-up of the simulation scenario

Sixty-nine young drivers were employed for the driving simulator testing, enrolled on a
voluntary basis mainly among the students of the School of Engineering of the University of
Florence. Each subject drove the test scenario once. Sixty-one tests were considered valid,
whereas the remaining were discarded because of excessive simulator sickness or weird
behaviour of drivers and simulator software; the main characteristics of the drivers of valid
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tests (18 female, 43 male) are shown in Table 3. Age varied between 19 and 36 years and also
driving experience was very different, ranging from few hundreds of kilometre per year to
50,000. Nineteen tests were actually used to tune the simulation scenario (set-up tests) and, in
particular, to synchronise the behaviour of the other road users at the emergency situation.
The remaining 42 drivers were used for the actual experimentation.

Gender Age km/year Use of lenses

F M Average SD Average SD Yes No

Total 18 43 26.4 2.9 11688 9593 18 43

Set-up 5 14 26.6 2.2 10684 7558 3 16

Tests 13 29 26.3 3.2 11688 10453 15 27

Table 3. Subjects’ characteristics.

For the experimentation, the driving simulator available at LaSIS (Laboratory for Road Safety
and Accident Reconstruction, University of Florence, Italy) was used. It consists of a full-scale
dynamic simulator (Figure 2) provided by AutoSIM (Norway, model AS 1200); the complete
vehicle cabin and the 200 degrees wide cylindrical screen allow an immersive driving experi‐
ence.

Figure 2. View of the simulator in use at LaSIS.

Autonomous Vehicle88



Following the indications obtained from the statistical analysis and the thorough reconstruc‐
tion of typical road accidents, a generic scenario was defined, adapting one of the terrains
available in the simulator database. In particular an environment with little population was
chosen, in which the emergency situation described above was inserted (Figure 3). The driver
reaches the point after having driven for about 5 minutes, encountering some vehicular traffic
and pedestrians. Since the terrain contains several intersections and roundabouts, to be sure
that the drivers reach the point of interest in a given time, indications by means of direction
arrows were projected on the screen. The entire test was driven in night time conditions.

Figure 3. Map of the emergency situation area.

Before driving the test scenario, the subjects faced a training scenario in which, during
about 10 minutes, they could get acquainted with the vehicle cabin and try the most com‐
mon manoeuvres; the subjects began the drive under daylight and ended with dark condi‐
tion in order to get gradually accustomed with night driving. In some of the tests, the
presence of an ADAS was simulated, consisting in a pedestrian detection system. Those
drivers who were going to drive in the scenario with the ADAS system also experienced it
in the training scenario. Before and after the test, each subject was submitted a question‐
naire in order to collect personal and driving information and record their impressions. Be‐
fore the test, the subjects were informed about the aim of the test and were instructed on the
basic functions of simulator and cabin; they were invited to drive in a normal way, respect‐
ing the normal traffic rules. No hints were given about the emergency situation they were
going to meet. The emergency situation was designed as follows (Figure 3): when the inter‐
active vehicle is at a given distance from the emergency area, a vehicle starts travelling in
the opposite direction, interfering with the visual. When the interactive vehicle is at a dis‐
tance that corresponds to a time to collision of about 4.5 s, a pedestrian starts walking from
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the opposite side of the road, heading along an oblique direction, with a constant speed of
1.67 m/s; in the first part of his path, the pedestrian is hidden by the distraction vehicle
(Figure 4a).

Figure 4. Scene of the emergency situation as seen by the subject driver: in scenarios A, B and C (a) and in scenario D
(b).

Four different scenarios were set, one without ADAS and three in which the drivers were
helped by a simulated PDS assistance system, characterised by different alert modes:

– Scenario A: no ADAS was simulated (12 drivers);

– Scenario B: a sound alarm (consisting of beeps with increasing frequency) is issued after 0.5
s the pedestrian start (10 drivers);

– Scenario C: as scenario B except that the sound is emitted after 1.5 s (10 drivers);

– Scenario D: as scenario C (10 drivers) with the addition of a visual warning, consisting in a
self-lighted rectangular frame around the pedestrian (Figure 4b). The aim was to provide
additional information to the driver about the position of the hazardous situation, simulat‐
ing the use of a head-up display.

4. Data analysis

To obtain the results, data from three sources were analysed:

– Disk recording of several parameter of the vehicle, at the rate of 20 S/s, including position,
speed, acceleration, pedals use, gear, steering wheel position, vehicle position in the lane,
etc.

– Visual recording of the entire simulation, as performed by the simulator software.

– Information filled in questionnaires by the subjects.

From such data, besides a qualitative description of the driver’s behaviour, the following
values were calculated:
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– Time, speed and position when a given event occurred (as reactions, actions, etc.).

– Time to collision (ttc) following a given event; time to collision is defined as the time needed
to reach a given position (for instance an obstacle) if the speed is maintained constant; such
value provides indications of the closeness of a danger situation, allowing for speed and
distance; ttc of the vehicle relative to the pedestrian was calculated allowing for its actual
position, since it can walk.

– Time between braking onset and maximum braking activation; it provides indications on
how fast maximum braking action is obtained.

– Actual degree of emergency (ADE) shown in Eq. (1), combining speed (V), time to collision
(ttc) and reaction time (tR); it represents the constant deceleration that should be applied to
stop just in front of the obstacle and is expressed as follows [15]:

2 ( )
=

× - R

VADE
ttc t (1)

In the present study, when ttc refers to the moment of braking onset, tR is put equal to zero.

5. Results

All of the subjects had some reaction when approaching the pedestrian, but only 29 drivers
out of 42 succeeded in carrying out a successful manoeuvre to avoid the collision. Usually, the
drivers reacted by releasing the accelerator pedal and pressing the brake pedal; only two out
of 29 successful drivers, after a short use of brakes, steered and avoided the obstacle (tests 31
and 34). None of the drivers chose to steer instead of braking. Thirteen drivers out of 42 hit the
pedestrian (see Table 4): 50% in scenario A (without ADAS) and 23% in all the scenarios with
ADAS. Of these only 4 out of 13 tried, while braking, to steer.

Scenario A Scenario B Scenario C Scenario D Overall

Success 6 9 8 6 29

Failure 6 1 2 4 13

Total 12 10 10 10 42

Table 4. Number of failed and successful tests in different scenarios.

Tests without ADAS had higher speed at collision than those with ADAS, being in average
33.1 km/h (SD = 11.9 km/h) versus 22.4 km/h (SD = 9.4 km/h), with some statistical significance
(P-value = 0.06 following the t-test [23]). As regards the functions of the simulated ADAS
device, 4 out of 30 declared they did not hear the acoustic alarm, whereas 10 out of 10 saw the
visual one.
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5.1. Time of action and reaction

Time of action was determined by analysing the signal regarding pedals (brake and accelera‐
tor) and steering wheel. Every effort was put to identify the first action caused by the perception
of a hazard. Approaching the obstacle an action on the brake was always detected; in the cases
of scenarios with ADAS, sometimes the action on the accelerator was detected before the alarm
was issued, mainly because the driver was prudently reducing the speed approaching an
intersection with some traffic, so that the first action was considered braking; this happened
11 times out of 30.

Since the moment when the driver saw the pedestrian cannot be determined, it was not possible
to obtain a reaction time following such event. In the cases of scenarios with ADAS, reaction
time was here defined as the time interval between the alarm and the first successive action
(on accelerator or brake); its mean value resulted to be 0.88 s.

An indication about the degree of emergency perceived by the driver can be the time difference
between the first (releasing the accelerator) and the second action (pressing the brake pedal)
tA2 − tA1; the comparison between different scenarios, as well as the overall scenarios with
ADAS, is shown in Figure 5. The t-test showed that there is no significant difference among
the scenarios with ADAS (P-value > 0.5), whereas these last are significantly different from
scenario A (no ADAS, P-value < 0.05).

Figure 5. Mean values of tA2 − tA1 ± SD.

5.2. Time to collision

Time to collision [15] is the time at the end of which a collision will occur if speed does not
change; in this study it was evaluated at the moment of the first action (release of accelerator)
and the second action (braking). In Figures 6 and 7, mean values of both parameters are shown
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together with their dispersion. Scenario A yielded a significantly lower value for ttcA1 (1.46 s
vs. 2.52 s, P-value < 0.0001) as well for ttcA2 (1.34 s vs. 1.92 s, P-value < 0.01) in comparison to
all the scenarios with ADAS.

Figure 6. Mean values of ttcA1 ± SD.

Figure 7. Mean values of ttcA2 ± SD.

Among the scenarios with ADAS, as expected, there were significantly higher values for
scenario B as compared to scenario C as regards ttcA1 (2.87 vs. 2.32 s, P-value = 0.06) and above
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all as regards ttcA2 (2.13 vs. 1.46 s, P-value = 0.03). No significant difference was found between
scenarios C and D.

5.3. Braking

Braking represented, for 27 drivers out of 29, the first active actions attempted by successful
drivers (as said, only two avoided the obstacle by steering only) since releasing the accelerator
pedal, in itself, has a little effect on speed reduction. Braking is one of the actions that showed
differences throughout the experimentation. In Figure 8, for instance, some typical modes of
actions on the brake pedal are shown; they are related to the emergency braking approaching
the pedestrian during four tests, two successful and two failed.

Figure 8. Typical emergency brake pedal activation; tests 28 and 41 were successful, and tests 26 and 71 were failed.

The main difference lies in the different time that the driver used to reach the maximum pedal
activation. In order to characterise such difference, the parameter tmax – tA2 is introduced, as the
time difference between the beginning of the braking activation and the instant when the
maximum action is reached. Such value could not be calculated for all the tests since in some
failed tests the collision happened before the braking action reached a stabilised level. As
shown in Figure 9, where tmax – tA2 is plotted as a function of time to collision, a clear trend is
visible, indicating that when ttc decreases, the action on the brake tends to be faster.
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Figure 9. Trend of tmax − tA2 as a function of time to collision.

As shown in Figure 10, tmax – tA2 is also influenced by the presence of ADAS; scenarios with
ADAS yielded significantly higher values than scenarios without ADAS (in average 2.03 s vs.
1.09 s, P-value < 0.001). As a consequence, part of the advantage afforded by ADAS devices
(seen above, for instance, in terms of time to collision) is wasted because of a slower action on
the brake pedal; trials that ended with a collision (indicated by a cross) are in some cases
characterised by relatively high tmax – tA2, indicating that a different braking approach could
sometimes help avoiding the collision.

Figure 10. Cumulated distribution for tmax − tA2 in tests with and without ADAS; the cross indicates a failed test.

5.4. Actual degree of emergency

The parameter ADE introduced above can provide indications on the degree of emergency
(meant as the urgency to react) of a given hazardous situation, but also indicates if a manoeuvre
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based on braking only can be successful, since the deceleration that a vehicle can experience
is limited by the friction available.

In Figure 11, the cumulated distributions of actual degree of emergency corresponding to the
action on the brake are shown, for failed and successful trials. A statistically relevant difference
was identified between the two samples (in average 8.78 m/s2 for the failed tests vs. 3.89 m/s2

for the successful tests, P-value < 0.001). It is evident that it is impossible to stop before the
collision when having ADE values near or greater than the maximum possible deceleration.
Actually, the maximum value of ADEA2 that allowed a successful manoeuvre only acting on
brakes was equal to 5.89 m/s2; the cases with higher ADE (tests 31 and 34, highlighted in
Figure 11) were successful only because a steering manoeuvre was performed.

Figure 11. Cumulated distribution for ADEA2 in failed and successful tests. The cross indicates trials in which the driver
avoided the obstacle by steering instead of braking (tests 31 and 34).

6. Conclusion

The effect of the presence of the ADAS was relevant since, for instance, it was capable to halve
the percentage of collisions. Similarly, some of the other parameters that were examined
showed clear advantages of using such device, as ttCA1, ttCA2, actual degree of emergency and
speed at collision. Parameters as tA2 − tA1 and tmax − tA2, instead, showed that the presence of the
ADAS could not prevent a slower execution of the required actions, perhaps caused by the
anticipated perception of danger, so that sometimes it seemed that the driver was not capable
of fully exploiting the advantages allowed by ADAS. In such cases, the use of further auto‐
mation as autonomous braking or emergency brake assist (helping applying and maintaining
the correct pressure on the brakes, already used by several manufacturers) will certainly help.
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As regards the comparison between the different ADAS modes (scenarios B, C and D), the
conclusions are less straightforward. Scenarios B and C have the same alert mode (a beep with
increasing frequency), but in the latter it starts one second later. Consequently, in scenario C,
time to collision is significantly lower, as well as tmax − tA2, but no significant difference was
identified as regards the other parameters, though always better. The advantage of an early
alert seems, as expected, evident, and the risk of increasing the frequency of false positive in
the attempt of anticipating the issue of the alarm must be carefully evaluated. As regards
scenario D, in which a luminous rectangle framing the pedestrian was added to the same
configuration of scenario C, no significant difference was noted, though all the drivers declared
to have seen it but not everyone remembered to have heard the acoustic signal. Further
experimentation and deeper comprehension is certainly necessary.
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