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Abstract

The ability of bone to heal with practically no scarring is the most extraordinary feature
of it. However, perturbations of the fracture site could disrupt the repair process when
defects reach a critical size, resulting in non‐union. Current therapies include allograft‐
ing, autografting, applying vascularized grafts, and other bone transport techniques.
However, although commonplace in orthopaedic surgery, these treatments have some
limitations.

Harvesting autografts is very expensive, typically from the iliac crest, associated with
donor‐site morbidity due to infection and haematoma and constrained by anatomical
limitations. Allografts are limited by the possible risks of introducing infection or disease,
while vascularized grafts are prohibitively expensive. So, due to technical difficulties and
shortcoming of reconstructive surgery, the need for suitable fillers in large fracture
reconstructive surgery is inevitable. Thus, recent tissue engineering approaches have
been attempted to create  new bone based on stem or precursor cells  seeded onto
biocompatible materials or scaffolds, with or without appropriate growth factors to
improve clinical outcome. This chapter review the clinical necessity for tissue engi‐
neered bone, recent approaches attempting to create new bone, the main challenges of
them and the novel strategies to overcome these barriers.

Keywords: bone fracture, regenerative medicine, stem cell, scaffold, growth factor, os‐
teogenesis

1. Introduction

Reconstruction and regeneration of significant skeletal defects have amazed mankind for
thousands of years. Grafting techniques were employed as early as 2000 BC when Khurits
employed a piece of animal bone to reconstruct a small skull defect. In the modern age, Job
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van Meekeren, a Dutch surgeon, performed first documented bone graft in 1668. He utilized
a xenograft to repair a skull defect in an injured soldier [1]. The understanding of orthopaedic
science and bone grafts was further propelled in the seventeenth century by the work of Antoni
van Leeuwenhoek who is famously known for his work on microscopy. Also, he primitively
explained the microarchitecture of bone, what we now refer to as Haversian canals [2]. Hard‐
working examination of bone‐grafting criteria and outcomes surfaced in the early 1900s by
Vittorio Putti who determined the principles of grafting. Putti's work presented a foundation
for grafting science in the orthopaedic field. Since then, researchers and surgeons have
continued to smooth the science of bone grafting to allow for the most proper surgical
intervention with the best outcomes [2, 3]. The current standard treatment is harvesting
autologous grafts from other positions in the body (harvested primarily from the patient’s iliac
crest or other locations, such as the distal femur, proximal tibia, ribs and intramedullary canal)
and transplantation into the massive fractures, or the transplantation of allografts, which have
many obstacles, such as donor‐site morbidity, limited tissue supply, infection, and poor
integration [2, 4, 5]. Autografts are clinically approved therapies, which demonstrate the
biological characteristics of osteogenesis, osteoconduction, and osteoinduction. Both grafts
possess unique advantages and disadvantages; however, autografts gained desirability over
allograft in the early 1900s with recognition of the advantage that vascularization provided to
the integrity of the graft with the surrounding bone [6]. So, synthetic bone graft substitutes
that were developed to overcome the inherent limitations of auto‐ and allograft represent an
alternative strategy. These synthetic substitutes, or matrices, are made from a variety of
materials, such as natural and synthetic polymers, ceramics, and composites that are designed
to mimic the three‐dimensional (3D) characteristics of autograft tissue while maintaining
viable cell populations. Matrices also function as delivery vehicles for factors, chemothera‐
peutic agents, and antibiotics depending on the nature of the injury to be repaired. This junction
of matrices, cells, and therapeutic molecules has collectively been termed tissue engineering
(TE) [7]. Clinically, a bone regenerative therapeutic to treat patients must provide fundamental
criteria, including safety, predictability, and reproducibility, in providing the clinical outcome.
Also, as noted earlier, a tissue‐regenerative therapy should exhibit four characteristics,
including osteogenicity, osteoconductivity, osteoinductivity, and osteopromotivity [8, 9].
Osteogenesis refers to the process by which osteoprogenitor cells mature into osteoblasts,
which subsequently mineralize and form bone tissue [9]. During osteoconduction process,
bone formations occur on a surface. With respect to biomaterials, osteoconduction is defined
by the ability of an implant to support the growth of bone at a defect site three dimensionally.
Osteoinduction is the process of recruitment of immature osteoprogenitor cells to the site and
the subsequent differentiation of them into osteoblasts under the influence of a diffusible bone
morphogenetic factor. Finally, osteopromotion refers to the ability of a substance to enhance
osteoinduction without being osteoinductive on its own [1, 9, 10].

2. Bone grafts

Fracture healing is performed based on a delicate balance between biology of fracture repair
and biomechanical stability of fracture fixation, which are interrelated. Too many ‐ attempts
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have been developing to minimize damage to the blood supply of the fracture blocks during
surgery, but the sequential activation of cells and bioactive molecules necessary for fracture
healing still remains disrupted. Moreover, a non‐union often develops when this sequential
activation is interfered. Some approaches suggested to overcome non‐unions and some acute
fractures include bone grafts and bone graft alternatives—specifically autologous bone grafts,
allografts, synthetic bone grafts, and osteoinductive proteins. The ability of grafts to promote
healing depends on their osteoconductive, osteoinductive, osteogenic, and osteopromotive
qualities [11–13]. Each bone graft type and its alternative own some combination of these
qualities. This section is going to compare benefits and potential limitations of available
grafting strategies.

The iliac crest bone graft (ICBG), harvested from the anterior and posterior iliac crest, is the
gold standard for cancellous autografts in cases in which fracture healing rather than void
filling is needed. It is corticocancellous with osteoconductive, osteoinductive, and osteogenic
effects. Also, the other benefit of ICBG is the availability of large amounts of bone without
structural compromise to the extremity [14]. In a study, Takemoto et al. objected to consider
whether there are variations in the expression of bone morphogenetic proteins (BMPs) and
their receptors in different bone‐graft‐harvesting sites. They analysed autogenous marrow
aspirates obtained from the iliac crest, the proximal humerus, and the proximal tibia for the
mRNA levels of BMPs and their receptors. Their results suggested that ICBG is rich in colony‐
forming cells, and the number of progenitor cells directly promotes healing [15]. Despite the
relative advantages of ICBG, it is not without disadvantages. The limitations, however, have
been well documented in the literature and include donor‐site morbidity, increased time in
the operating room, and an increased length of hospital stay [16, 17]. So, for certain patients
with compromised bone or inadequate volume for grafting, bone graft substitutes may be
preferable.

Substitutes to bone grafting consist of bone bank allograft, osteoconductive materials, demin‐
eralized bone matrix (DBM), and osteoinductive proteins. The orthopaedic association has
extensive experience with bone bank allograft, with the first clinical tissue bank opening in
1949 [18]. The main concerns of allografts include the risk of rejection, disease transmission,
inconsistent incorporation, and late resorption. An alternative to bone bank allograft is DBM.
DBM is made from an allograft with the inorganic materials removed. Researchers demon‐
strated that DBM implanted intramuscularly resulted in new bone formation [19]. Also, DBM
has osteoconductive property but only weak osteoinductive feature. Furthermore, DBM offers
an advantage over allografts or synthetic biomaterials that need incorporation by the host
before they can support mechanical loads and would diminish the morbidity associated with
harvesting autologous bone [20].

Synthetic osteoconductive materials have been widely used for bone graft in orthopaedic
practice and include hydroxyapatite (HA), coralline hydroxyapatite, CaSO4 and CaPO4

cements, and collagraft [21]. Hydroxyapatite has a porous structure comparable to the
cancellous bone and functions as an effective osteoconductive matrix and thus replicates the
biological properties of bone extracellular matrix (ECM). The nominal composition of this
mixture is Ca10(PO4)6(OH)2 with an atomic ratio for calcium‐to‐phosphate of 1.67 [22, 23]. Most
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studies have reported the mineralization and remodelling of this material can lead to the
formation of mature bone [21]. Coralline hydroxyapatite is a similar substance, in which coral
is converted to pure crystalline hydroxyapatite. It has good compressive strength but has low
tensile strength and limited remodelling potential. Similar to hydroxyapatite, coralline
hydroxyapatite functions strictly osteoconductive, but lacking osteogenic and osteoinductive
properties. Calcium‐based bone cements are osteoconductive and primarily used for filling
metaphyseal defects. They possess sufficient compressive strength but lack resistance to shear
and torsional forces and are very costly. They are also associated with resorption, leading to
wound drainage [21]. The situations in which osteoinduction is the primary concern, BMPs
are available. Detailed insights into BMPs will be provided later.

3. Molecular aspects of fracture healing

Fracture healing is a complex physiological process. Cascade of complex biological events
involving intracellular and extracellular molecular signalling for bone induction and conduc‐
tion remain unknown to a great extent. Indeed, it is a multistep repair process that follows a
determined spatial and temporal sequence [24–26]. It was clearly demonstrated that known
molecular mechanisms that regulate skeletal tissue formation during embryological develop‐
ment are replicated during the fracture‐healing process [27]. Many growth and differentiation
factors (GDFs), such as cytokines, hormones, and extracellular matrix, are local and systemic
regulatory factors that interact with various cell types, including bone‐ and cartilage‐forming
primary cells, or even muscle mesenchymal cells, recruited at the fracture site or from the
circulation. Advances in understanding cellular and molecular mechanisms will provide the
tools for discovering the fracture‐healing process. This section aims to contribute to promoting
and inhibiting fracture healing and to prepare awareness of the complexity of involved
signalling pathways.

3.1. Biology of fracture healing

The nature of the repair phase is dependent on mechanical conditions in the fracture‐healing
zone (primary or secondary bone healing) and the anatomical location of the fracture (meta‐
physeal‐epiphyseal trabecular bone healing or diaphyseal callus healing). Indeed, fracture
healing is a complex process, resulting in optimal skeletal repair and restoration of skeletal
function. However, it is a well‐orchestrated, regenerative process, which is initiated in
response to injury. Repair process is promoted by the normal pathway of embryonic devel‐
opment repeated with the coordinated participation of several cell types [28]. Depending on
several parameters involved in the fracture site, such as growth factors, nutrients, hormones,
and oxygen tension, pH, the mechanical stability and the electrical environment, various
components present at the injured tissue, such as the cortex, the periosteum, the external soft
tissues and the bone marrow, contribute to the healing process [29–31]. Classical histology has
divided fracture healing into direct (primary) and indirect (secondary) mode.
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Direct strategy (known as primary cortical bone healing) occurs only when there is extremely
low interfragmentary movement or if the bony fragments are under compression [32]. Most
often compression plates and lag screws provide the required stability for direct healing [33].
Similar to the normal bone‐remodelling process, fracture surfaces in contact and under
compression are bridged by Haversian systems (or osteons) when such stability is achieved.
Indeed, primary process involves a direct attempt by the cortex to regenerate new Haversian
systems by the formation of discrete remodelling units known as ‘cutting cones’, in order to
restore mechanical continuity [34]. Osteoclasts digest bone, causing tunnels from one side of
the fracture to the other, which provides the in‐growth of blood vessels. Subsequently, vascular
endothelial cells and perivascular mesenchymal cells prepare the osteoprogenitor cells to
differentiate into osteoblasts which create new osteons connecting both fragments [35, 36].
Healing by Haversian systems is slow, and notable time is necessary to gain sufficient strength
by healing zone and, therefore, allow removal of load‐bearing implants. Also, because it is not
associated with a major influx of inflammatory cells, primary bone healing is less affected by
systemic inflammation [37].

Another type of fracture healing is indirect mode that heals the majority of fractures. This mode
of fracture healing occurs by either intramembranous ossification or endochondral ossification
with the subsequent formation of a callus [38, 39]. This mode is usually enhanced by motion
and inhibited by rigid fixation [38].

Intramembranous ossification forms bone directly without first forming cartilage. Migrated
mesenchymal stromal cells that reside in the periosteum directly differentiate into osteoblasts
that synthesize and deposit bone matrix. This process results in callus formation, characterized
histologically as ‘hard callus’ [40]. In this type of healing, the bone marrow contribute to bone
formation during the early phase of healing, when endothelial cells transform into polymor‐
phic cells that subsequently express an osteoblastic phenotype [12]. Advanced studies have
shown that flat bones such as bones from the skull, trabecular bones, and clavicle heal via
intramembranous ossification [41].

By contrast, endochondral ossification involves the recruitment, proliferation, and differen‐
tiation of undifferentiated mesenchymal cells into a transient cartilaginous matrix, which
calcifies into mature bone. This type of fracture healing is advocated to have the following
identifiable stages: (1) an initial stage of haematoma formation and inflammation, (2) subse‐
quent angiogenesis and formation of cartilage, (3) cartilage calcification, (4) cartilage removal,
(5) bone formation, and (6) ultimately bone remodelling [42]. Also, it is contributed from the
adjacent to the fracture periosteum and the external soft tissues, providing an early bridging
callus, histologically described as ‘soft callus’ that stabilizes the fracture fragments [40]. Many
studies have shown that diaphyseal fractures heal by endochondral mechanisms, forming a
cartilaginous callus intermediate [41].

The classification of fracture healing into direct and indirect forms reflects the histological
events that happen during the repair process. However, it is necessary to provide a further
understanding of various signalling molecules and elucidate their contribution in the initiation
and control of this physiological event at the molecular level.
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3.2. Signalling molecules in bone regeneration and fracture repair

Various types of signalling factors influence the fracture healing, and continuous study of these
factors can lead to promising new clinical treatments for bone repairing. To date, the delivery
of signalling molecules for bone regeneration has been based primarily on factors that directly
affect the bone formation pathways (osteoinduction) or that apply to increase the number of
bone‐forming progenitor cells. Overall, the signalling molecules can be classified into three
groups, including the pro‐inflammatory cytokines, the transforming growth factor‐β (TGF‐β)
superfamily and other growth factors, and the angiogenic factors [43].

3.2.1. Pro‐inflammatory cytokines

Pro‐inflammatory cytokines, such as Interleukin‐1 (IL‐1), IL‐6, IL‐11, IL‐18 and tumour necrosis
factor‐α (TNF‐α), are critical for triggering the repair cascade [44]. They are secreted by
macrophages, inflammatory cells, and cells of mesenchymal origin existing in the periosteum
[43, 45, 46]. These molecules play key roles in the induction of downstream mediators to the
fracture site by exerting a chemotactic effect on other inflammatory cells, augmenting ECM
synthesis, stimulating angiogenesis, and recruiting endogenous fibrogenic cells to injury [47].
Furthermore, cytokines were found to regulate endochondral bone formation and remodelling
[43, 47]. For example, TNF‐α recruits mesenchymal stem cells (MSCs), promotes the induction
of apoptosis in hypertrophic chondrocytes during endochondral ossification and incites
osteoclastic function. Also, IL‐1 mainly provided by osteoblasts and simplifies bone remodel‐
ling by stimulating proteases to degrade callus tissue [46]. The absence of TNF‐α results in
delayed resorption of mineralized cartilage, delayed endochondral bone formation by several
weeks, and impaired fracture healing. Several studies have demonstrated that TNF‐α signal‐
ling is unique to postnatal fracture repair [46].

3.2.2. Growth and differentiation factors

3.2.2.1. Transforming growth factor‐β superfamily

It is a large group of regulatory polypeptides that includes bone morphogenetic proteins
(BMPs), multiple isoforms of transforming growth factor‐βs (TGF‐βs), growth and differen‐
tiation factors (GDFs), activins (ACTs), inhibins (INHs), and glial‐derived neurotrophic factors
(GDNFs), as well as some proteins not included in the above families, such as Mullerian‐
inhibiting substance (MIS), also known as anti‐Mullerian hormone (AMH), left‐right determi‐
nation factor (Lefty), and nodal growth differentiation factor (Nodal) (Figure 1) [48, 49]. Their
isolation from bone extracts and further gene identification was accomplished in the 1980s,
based on the previous results by Marshall R. Urist [19]. Transforming growth factor‐β family
encompasses at least 34 members in the human genome. These molecules originate from high‐
molecular‐weight precursors, which are activated by proteolytic degradation. They can
activate serine/threonine kinase membrane receptor on target cells. TGF‐β ligand‐bound
receptor triggers an intracellular signal transmission via a canonical signalling pathway, which
ultimately affects gene expression in the nucleus [47].
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Figure 1. A schematic illustration of TGF‐β superfamily. BMPs: bone morphogenetic proteins, TGF‐β: transforming
growth factor beta, GDF: growth and differentiation factor, GDNF: glial‐derived neurotrophic factors, ACT: activin,
INH: inhibin, other ligands include Mullerian‐inhibiting substance (MIS) or anti‐Mullerian hormone (AMH), left‐right
determination factor (Lefty), and nodal growth differentiation factor (Nodal).

Several members of the subfamilies of these morphogens including bone morphogenetic
proteins (BMPs 1–8), growth and differentiation factors (GDF‐1, 5, 8, 10) and transforming
factor β (TGF‐β1, TGF‐β2, TGF‐β3), have been shown to promote the various stages of
intramembranous and endochondral bone ossification during fracture healing (the following
parts provide details on the use of them in attempts at bone regeneration) [24]. Of course, it is
difficult to determine the physiological role of many of the members of this superfamily
because of their functional redundancy.

Bone morphogenetic proteins are secreted signalling molecules that belong to the TGF‐β
superfamily, acting as potent regulators during embryogenesis and bone and cartilage
formation and repair. BMP ligands are divided into at least four separate subfamilies depend‐
ing on their primary amino acid sequence similarity and functions [50]. The first group consists
of BMP‐2, BMP‐4, and the second group includes BMP‐5, BMP‐6, and BMP‐7. Group three
includes GDF‐5 (or BMP‐14), GDF‐6 (or BMP‐13) and GDF‐7 (or BMP‐12), and finally, group
four consists of BMP‐3 (or osteogenin) and GDF‐10 (or BMP‐3b) [51, 52]. BMP‐1 does not
include in this list as a member of the TGF‐β superfamily and it may carry out a role in
modulating BMP functions by the proteolysis of BMP antagonists/binding proteins, such as
chondrin and noggin [47, 53].

BMPs bind to type‐II serine/threonine kinase receptors and thus provoke the assembly of type‐
I and type‐II receptors in a hetero‐oligomeric complex [54]. Subsequently, the Smad‐signalling
cascade is triggered into the cell. BMPs are pleiotropic morphogens and carry out an important
role in regulating growth, differentiation, and apoptosis of various cell types, including
osteoblasts, chondroblasts, epithelial cells, and neural cells [55]. Furthermore, it has been
demonstrated that the active signalling molecule is usually formed by homodimerization
through a disulphide bond [56]. However, in particular, experimental settings heterodimers
have been shown to have enhanced osteoinductive activity regulating more efficiently
differentiation and proliferation of mesenchymal cells to osteoblasts in vitro and in vivo than
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the corresponding homodimers (i.e., BMP‐2/‐5, BMP‐4/‐7, BMP‐2/‐6; BMP‐2/‐7) [57, 58]. In
bone, BMPs are produced by different types of cells, including osteoprogenitors, mesenchymal
cells, osteoblasts, and chondrocytes. BMPs are able to induce a sequential cascade of events
for chondro‐osteogenesis, including mesenchymal and osteoprogenitor cells proliferation and
differentiation, chemotaxis, angiogenesis, and controlled synthesis of extracellular matrix [53,
55].

Regulatory effect of BMPs depends on the type of the targeted cell, its differentiation stage,
the local concentration of the ligand and the interaction with other circulating factors [59].

BMPs are closely related structurally and functionally; however, each has a unique role and
different temporal expression pattern during the fracture healing. The researchers demon‐
strated in several studies that BMPs could have a variety of osteogenic effects, mitogenic
capacities, and temporal expressions in the rat and mouse [24, 60, 61].

Cheng et al. prepared a comprehensive analysis of the osteogenic activity of 14 types of BMPs
and their results suggested an osteogenic hierarchical model of BMPs. BMP‐2, BMP‐6, and
BMP‐9 may act as the most potent to induce osteoblast differentiation of mesenchymal
progenitor cells, while most BMPs (except BMP‐3 and BMP‐13) promote the terminal differ‐
entiation of committed osteoblastic precursors and osteoblasts [62]. Furthermore, BMPs are
able to stimulate the synthesis and secretion of other bone and angiogenic growth factors such
as insulin‐like growth factor (IGF) and vascular endothelial growth factor (VEGF), respectively
and also stimulate bone formation by directly activating endothelial cells to stimulate angio‐
genesis [63].

Recent studies have shown that the expression of the BMP antagonists, most importantly
noggin, plays an important role in fracture healing regulation [64]. They could block BMP‐2
interaction with its receptor [65].

Transforming growth factor‐β family includes five isoforms such as TGF‐β1, TGF‐β2, and
TGF‐β3 [66, 67]. The main sources of TGF‐β existing during the bone healing are practically
all cells involved in healing process, incoming blood platelets, and the surrounding ECM
releasing TGF‐β following a mechanical injury causing tissue ischaemia and local change in
pH, facilitating release of not only of TGF‐β, but also other growth factors, such as VEGF,
platelet‐derived growth factor (PDGF), or BMP‐2 [68, 69]. Intracellular signal transduction is
exerted via type‐I and type‐II serine/threonine kinase receptors, activating the Smad cascade
(Smad 2 and 3) [70]. TGF‐β is a potent chemotactic stimulator of mesenchymal stem cells and
it enhances proliferation of MSCs, preosteoblasts, chondrocytes, and osteoblasts. Indeed, its
main role is thought to be during processes of proliferation, differentiation, and synthesis of
cartilage and bone tissue, collectively mentioned as the bone‐healing process [67, 71]. Also, it
is able to induce the production of extracellular proteins, such as proteoglycans, fibronectin,
collagen, osteonectin, osteopontin, thrombospondin, and alkaline phosphatase [72]. Moreover,
TGF‐β may trigger signalling for BMP synthesis by the osteoprogenitor cells, while it may
inhibit activation, proliferation, and differentiation of osteoclasts and promote their apoptosis
[60, 73].
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Several studies have shown that TGF‐β2 and possibly TGF‐β3 had stronger effect in fracture‐
healing process than TGF‐β1, as their expression peak during chondrogenesis. On the other
hand, Joyce et al. injected TGF‐β1 and TGF‐β2 subperiosteally to newly born rats, at doses
ranging from 20 to 200 ng, and their results showed that subperiosteal MSC starts to proliferate
and differentiate at the injection site, promoting chondrogenesis and osteogenesis, and that
TGF‐β2 play more important roles than TGF‐β1 [74]. Moreover, Beck et al., designed an
experiment concerning local administration of TGF‐β1 at doses ranging from 0.5 to 5 μg to
rabbits with skull defect, caused stimulation, recruitment, and proliferation of osteoblasts at
the defect site resulting in healing [75]. Despite different studies demonstrated that TGF‐β
induces cellular proliferation, its osteoinductive potential is limited by concern for its unfore‐
seen side effects [71].

Platelet‐derived growth factors (PDGFs) are homo‐ or heterodimeric polypeptides in which
their A and B chains are linked by disulphide bonds. PDGF receptors exert their effect on cells
by activating receptors that have tyrosine kinase activity [76]. PDGF's binding is affected by
IL‐1, TNF‐a, and TGF‐β1 affect [77]. It is synthesized by numerous cell types, including
platelets, monocytes, macrophages, osteoblasts, and endothelial cells and is a major mitogen
for cells of mesenchymal origin such as osteoblasts, fibroblasts, glial cells, and smooth muscle
cells [78–80].

PDGF is released by platelets upon activation during the early callus phase of healing and acts
as a potent chemotactic for inflammatory cells and a major proliferative and migratory
stimulus for MSCs and osteoblasts. It has been demonstrated that treating with PDGF
increased callus density and volume in tibial osteotomies in rabbits [47, 81]. However, its
therapeutic potential still remains unclear.

Fibroblast growth factors (FGFs) consist of nine structurally related polypeptides. The acidic
and basic FGFs are the most abundant FGFs in normal adult tissue [82]. FGF effect is exerted
via binding to tyrosine kinase receptors [82].

FGFs are synthesized by monocytes, macrophages, osteoblasts, mesenchymal cells, and
chondrocytes during bone healing. FGFs are able to induce growth and differentiation of a
variety of cells, such as fibroblasts, osteoblasts, myocytes, and chondrocytes. They function
during the early stages of fracture healing and play a critical role in angiogenesis and mesen‐
chymal cell mitogenesis. α‐FGF mainly affects chondrocyte proliferation and is probably
crucial for chondrocyte maturation, while β‐FGF is produced by osteoblasts and is recognized
as a potent mitogen than a‐FGF [71]. In a canine tibial osteotomy model, a single injection of
FGF‐2 resulted in an early increase in callus size [83].

Insulin‐like growth factors (IGFs) consist of IGF‐I (or somatomedin‐C) and IGF‐II (or skeletal
growth factor) [84]. The sources of IGF‐I and IGF‐II are the bone matrix, osteoblasts and
chondrocytes, and endothelial cells. The concentration of circulating IGF‐I is mainly regulated
by the growth hormone. Also, it has been demonstrated that the biological actions of IGFs is
modulated in a cell‐specific manner by IGF‐binding proteins (IGFBPs) [71, 85].

IGF‐I promotes bone matrix formation such as type‐I collagen and non‐collagenous matrix
proteins by fully differentiated osteoblasts and acts more effective than IGF‐II [71, 86]. IGF‐II
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functions at a later stage of endochondral bone formation and incites type‐I collagen produc‐
tion, cellular proliferation cartilage matrix synthesis [87]. The findings from various animal
studies assessing the influence of IGF on skeletal repair have reported different results, so
further studies are required [88].

3.2.3. Metalloproteinases and angiogenic factors

Conditions of fracture healing establish a demand on the surrounding tissues to increase blood
flow so that can induce bone regeneration within the callus [89]. Also, endochondral ossifica‐
tion in normal fracture healing requires the following two processes: (1) molecular mechanisms
that regulate the extracellular matrix remodelling and (2) the vascular penetration of new blood
vessels into the resorbing matrix [90]. Thus, angiogenesis and matrix degradation are either
concurrent or correlated processes during endochondral ossification. The final stages of
endochondral ossification and bone remodelling are accomplished by the action of specific
matrix metalloproteinases, which degrade the cartilage and bone, allowing the invasion of the
blood vessels. Angiogenesis regulation requires the coordination of both separate pathways,
including a vascular endothelial growth factor (VEGF)‐dependent pathway and an angio‐
poietin‐dependent pathway [91]. Numerous types of studies reported that VEGFs are required
mediators of endothelial‐cell‐specific mitogens and neo‐angiogenesis [92]. Whereas angio‐
poietin 1 and 2 are regulatory vascular morphogenetic molecules related to the formation of
larger vessel and development of colateral branches from present vessels [43]. Street et al.
showed that exogenous administration of VEGF can induce fracture repair [48]. Also, recent
studies have reported that BMPs promote the expression of VEGF by osteoblasts and osteo‐
blast‐like cells. However, their contribution in bone repair is still not as well understood.

3.3. Role of mesenchymal stem cells in bone regeneration and fracture repair

Mesenchymal stem cells (MSCs) are non‐haematopoietic stromal stem cells capable of
extensive replication without differentiation. They have many sources including bone marrow,
peripheral circulation, adipose, periosteum, muscle, vessel walls, tendon, umbilical cord
blood, skin, and dental tissues. MSCs have the potential to commit and differentiate along
several cell lineages giving rise to those cells that form mesenchymal tissues, including
cartilage, bone, muscle, ligament, tendon, and marrow stroma and fat [93, 94]. MSCs can
migrate to sites of injury and have been used widely in tissue engineering, stem cell trans‐
plantation and immunotherapy. There are different sets of molecules interacting with both
local cells and circulating cells to coordinate the healing cascade, such as effectors of inflam‐
mation (IL‐1, IL‐6, TNF‐a), mitogens (TGF‐β, IGF, FGF, and PDGF), morphogens (BMPs), and
angiogenic factors (VEGF and angiopoietins). The effects of these molecules on the prolifera‐
tion and differentiation of MSCs have been widely investigated in vitro [47]. The results
indicated that these signalling molecules can induce cell proliferation and differentiation, both
MSC and other progenitor lineages. The temporal expression of this array of signalling
molecules in models of fracture healing has been charted, but explicit data on how this
microenvironment can regulate MSC activity is still needed.
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4. Tissue engineering strategies for bone regeneration

As it was defined by Laurencin, tissue engineering (TE) is ‘the application of biological,
chemical, and engineering principles toward the repair, restoration, or regeneration of living
tissue by using biomaterials, cells, and factors alone or in combination’ [95].

Bone tissue engineering (BTE) is a dynamic and complex process that includes migration
and recruitment of osteoprogenitor cells, followed by their proliferation, differentiation, ma‐
trix formation along with remodelling of the bone. In this section, we consider BTE as three
interplaying components: (a) the extracellular matrix/scaffold, (b) the cells that reside in the
matrix/scaffold, and (c) the environment that hosts the cells. However, major advances in
BTE with scaffolds are achieved through biochemical factors, such as growth factors, genes,
proteins, and drugs. Bone scaffolds are typically made of porous‐degradable materials that
prepare the mechanical support during repair and regeneration of diseased or damaged
bone [7]. Also, physical factors, including substrate topography, stiffness, shear stress, and
electrical forces, are other stimuli that have been proposed as one of the principal mediators
of de novo tissue formation [96]. Box 1 highlights requirements for an ideal scaffold.

4.1. Biomolecule delivery

The strategy of concurrently modulating the chemical environments of the fracture site in
vivo via controlled delivery/elution of biomolecule agents from an orthopaedic implant rep‐
resents an elegant method of targeted therapeutics in bone regeneration [97, 98]. This strat‐
egy enables higher local concentration (localized delivery) of the bioactive agent to the
fracture site, while the favourable bulk properties of the orthopaedic implant are un‐
changed. It also provides the chance to maximize the local growth‐inducing potentials of bi‐
oactive agents at a desired rate without any local and systematic toxic effects to the host
tissue that is attributed to other routes of delivery such as systemic or non‐controllable local
delivery. Soluble biochemical molecules that are integrated into scaffolds include proteins/
growth factors, such as TGF‐β, BMP, VEGF, IGF, and FGF, which have attracted much atten‐
tion because of their potency in bone tissue repair. As described earlier, these growth factors
are able to control osteogenesis, bone tissue regeneration, and ECM formation via recruiting
and differentiating MSCs (osteoprogenitor) to specific lineages [99]. Therefore, various
growth factors and other biomolecules are of special interest for bone tissue engineering and
effective incorporation of them in scaffolds could reduce fracture healing time and thus fa‐
cilitate in patient recovery [100, 101]. Also, bone is a highly vascularized tissue; therefore,
the performance of a scaffold in bone engineering can be affected by its ability to induce
new blood vessel formation. Because insufficient vascularization can lead to oxygen and nu‐
trient deficiency, this may result in improper cell integration and cell death [102, 103]. On
the other hand, in the in vivo conditions, supply of oxygen and nutrients are essential for the
survival of growing cells and tissues within scaffolds. So, VEGF is used to induce a complex
network of blood vessels throughout a scaffold [104].
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Box 1. Requirements for an ideal scaffold

Biocompatibility is one of the primary requirements of bone scaffolds. It is a term that has been defined
in many ways. Biocompatibility can be principally defined as the ability of scaffold to support normal
cellular activity, such as molecular signalling pathways, without any local and systematic toxic effects to
the host tissue [105]. An ideal bone scaffold must act as an osteoconductive substrate such that it permits
the bone cells to adhere, proliferate, and form ECM on its surface and pores. Furthermore, the scaffold
needs to induce bone formation within the defect through signalling systems and recruiting progenitor
cells, a feature known as osteoinduction. Also, an ideal scaffold should be able to serve as a platform for
formation of blood vessels in or around the implant during few weeks of implantation to promote nutrients
and metabolic waste transportation [106].

Mechanical properties: An ideal bone scaffold should yield a close match to the host bone properties and
also convenient load transfer is important. Mechanical properties of bone vary widely from cancellous to
cortical bone. Cortical bone exhibits a Young's modulus between 15 and 20 GPa and that of cancellous
bone is between 0.1 and 2 GPa. Compressive strength of cortical bone is between 100 and 200 MPa, and
between 2 and 20 MPa for cancellous bone. Because of the large variation in mechanical property and
geometry, it is difficult to design an ‘ideal scaffold’ for BTE [106].

Pore size and closed void volumes may concurrently play important roles in scaffold degradation patterns
and associated bone healing [107]. It should be approximately 100 μm in diameter for successful cellular
infiltration and nutrient and oxygen supply for cell survivability [102]. However, scaffolds with pore sizes
between 200 and 350 μm are indicated to be optimum for bone tissue in‐growth [108]. Moreover, recent
papers have reported that multi‐scale porous scaffolds which involve both micro‐ and macroporosities
can act better than only macroporous scaffolds [109]. Unfortunately, porosity can reduce mechanical
properties, such as compressive strength, and also increase the complexity for reproducible scaffold
making. Researchers have developed porous scaffolds using polymers, ceramics, metals, and composites.
Strength of different polymers matches close to the cancellous bone and dense bioceramic materials to that
of cortical bone. However, scaffolds manufacturing ceramic‐polymer composite are typically weaker than
bone. Porous metallic scaffolds provide the mechanical necessities of bone, but fail to meet the required
implant‐tissue integration and also, there is potential concern regarding metal ion leaching [110].

Bioresorbability is another crucial requirement for scaffolds in BTE [105]. In addition to similar me‐
chanical properties that of the host tissue, an ideal scaffold should be able to degrade with time in vivo
by cellular and enzymatic activity, preferably at a controlled resorption rate in parallel with the produc‐
tion of new bone matrix. The degradation behaviour of the scaffolds is determined based on their appli‐
cations; for example, 3–6 months for scaffolds in cranio‐maxillofacial applications or 9 months or more
for scaffolds in spinal fusion. Recently, design and development of multi‐scale porous scaffolds having
ideal composition, including related bioresorbability, targeted biomolecules, and mechanical properties
are some challenging areas of research [106, 111].
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4.2. Stem/progenitor cells applicable to bone tissue engineering

4.2.1. Mesenchymal stem cells

Mesenchymal stem cells have been isolated from a diverse host tissues throughout the adult
organism including bone marrow [94] and an array of other postnatal tissues, such as adipose
tissue [112], periodontal ligaments [113], synovium [114], blood [115] and the lung [116]. As
the ultimate aim of regenerative medicine is to avoid in vitro expansion of cells and the
associated complications, the adipose‐derived stem cell indicates an ideal progenitor cell in
bone tissue engineering.

Intriguingly, several studies have reported that 6 × 106 nucleated cells can be isolated from 1
mL bone marrow of which 0.001–0.01% are considered to be stem cells [94]. Contrastingly,
adipose tissue aspiration yields 2 × 106 nucleated cells per 1 g, of which 10% are stem cells.
Thus, one can easily distinguish the potential clinical implications of this abundant source of
MSCs [117, 118]. In a study, researchers compared the in vivo osteogenic potential of adipose‐
derived, bone marrow‐derived, and periosteal‐derived MSCs in a guided bone regeneration
model in pig calvarial defects to identify if there is a more desirable site from which to harvest
MSCs for bone tissue engineering. They reported that regardless of the tissue source of MSCs,
the speed and pattern of bone healing after cell transplantations into monocortical bone defects
were comparable, indicating that the performance of autologous adipose‐derived MSCs,
periosteal‐derived MSC, and bone marrow‐derived MSC (BM‐MSCs) following ex vivo cell
expansion was not considerably different for the guided regeneration of bone defects [119].

4.2.2. Endothelial progenitor cells

Vascularization is a vital process for the survival of the implanted cells on the carrier material
after implantation. Many studies demonstrated that close spatial and temporal association
between blood vessels and bone cells is necessary to maintain skeletal integrity. Several studies
have shown that new bone formation in porous scaffolds was considerably increased by the
insertion of a vascular pedicle in the scaffold, while others have shown that fracture healing
and new bone formation could be prohibited by the administration of angiogenesis inhibitors.
Such that previous reports illustrated that the rate of delayed union or non‐union of fracture
can be as high as 46% in fracture patients with concomitant vascular injuries [120]. Because
adequate vascularization making it possible to stem cells reach the site of tissue repair and
allows the delivery of nutrients, oxygen, and morphogens and the removal of waste [121–124].

In 1997, Asahara and colleagues identified endothelial progenitor cells (EPCs) in the peripheral
blood and reported their ability to initiate neovascularization [125]. EPC derived from purified
hematopoietic progenitor cells, express endothelial‐associated markers (i.e., cluster of differ‐
entiation molecule, CD34) and display endothelial phenotypical characteristics. They can
enhance neovascularization by incorporation and differentiation, and by the secretion of
angiogenic factors affecting resident endothelium [126].

The major role of EPCs in the ability of EPCs to proliferate and differentiate into endothelial
cells and new vessel formation present them as an ideal therapeutic strategy for recovery of
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the ischemic environment of a critical‐sized bone defect in bone tissue engineering. Further‐
more, a research group reported that the frequency of EPCs increased in the bone marrow and
peripheral blood in the early stages of fracture repair and further illustrated incorporation of
EPCs into developing blood vessels at the site of bone injury. Further histological results
demonstrated that neovascularization did not exclusively involve the EPC population;
however, supporting the hypothesis that paracrine signalling from EPCs may also contribute
to neovascularization at the ischemic site [127].

4.2.3. Induced pluripotent stem cells

Induced pluripotent stem (iPS) cells, a discovery that resulted in a Nobel Prize in 2012, are
somatic cells from embryonic or adult fibroblasts that are reprogrammed with defined classical
transcription factors (Oct4, Sox2, Klf4, and c‐Myc) [121, 128]. By forcing expression of these
transcription factors, iPS cells retain the capacities of embryonic stem cells, including self‐
renewal and pluripotentiality to differentiate into all three germ layers [129]. Using these
biological properties, iPS cells with an incorporation of gene therapy will be able to not only
treat degenerative syndromes and genetic disorders but also appear as a promising candidate
for autologous cell transplantation in bone defects. [129, 130]. Also, iPS cells, without the
challenges of immunological rejection and ethical controversy, are preferable to embryonic
stem cells and seem to be a potential alternative stem cell source for bone tissue engineering.

5. Conclusion

Bone regeneration strategies can make convenient, efficacious alternative therapies for or‐
thopaedic usages and is attractive on a several aspects including: (1) in vitro tissue engineer‐
ing for transplantation would reduce the necessity for donor tissue as required skeletal cells
could be expanded in the laboratory prior to implantation; (2) using scaffolds with similar
mechanical characteristics to bone that could integrate with the surrounding native tissue
has the potential to alleviate the rate of implant failure and the need for revision surgery;
and (3) treatment of damaged tissue at an early stage with mesenchymal stem cells could
decrease or even cure the disease, reducing the need for lifelong treatment and improving
the quality of life of the patient. Clinical applications include for the support of bone stock,
in maxillo‐facial surgery as well fracture and non‐union fractures [131]. However, it is clear
that a single approach is not able to support many of the bone tissue requirements, and re‐
fined approaches targeted to a specific application site/problem will be needed.
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