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Abstract

A novel three-dimensional (3D) model based on Reynolds turbulence stress model
(RSTM) closure of equations of carrier and particulate phases was elaborated for channel
turbulent flows. The essence of the model is the direct calculation of normal and shear
components of the Reynolds stresses for the particulate phase similar to the carrier fluid.
The model is  based on the Eulerian approach, which is applied for the 3D RANS
modeling of the carrier flow and the particulate phase and the statistical probability
dense function (PDF) approach focusing on the mathematical description of the second
moments of the particulate phase.

The obtained numerical results have been verified and validated by comparison with
experimental data obtained on turbulent dispersion of solid particles ejected from point
source for turbulent uniform linear shear flow. Two cases of spatial orientation of shear
of the flow mean velocity were examined: in the direction of gravity and in the direction
perpendicular  to  gravity.  Numerical  data  on turbulent  dispersion of  particles  and
spatial displacement of the maximum value of the concentration distribution show
satisfactory agreement with experimental results.

Keywords: turbulent channel flows, solid particles, closure equations, PDF of particu‐
late phase velocity, shear flow

1. Introduction

Turbulent channel particulate flows have numerous engineering applications ranging from
pneumatic conveying systems to coal gasifiers, chemical reactor design and are one of the most

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



thoroughly investigated subject in the area of the particulate flows. These flows are very
complex and influenced by various physical phenomena, such as particle-turbulence and
particle-particle interactions, deposition, gravitational and viscous drag forces, particle
rotation and lift forces, turbulent dispersion, etc.

One of the most applicable approaches in computational fluid dynamics (CFD) is the Reynolds-
averaged Navier-stokes (RANS) equation approach, which is found in many industrial
implementations and is very likely to be claimed and applied in the foreseeable future.

The procedure of analysis of the predicted fluid parameters becomes much more complicat‐
ed in case of the three-dimensional (3D) dense particulate flows, with additional inclusion of
two or/and four coupling phenomena of inter-particle collisions. Within a frame of the RANS
modeling, one of the challenging and advantaged theoretical approaches is the Reynolds
turbulence stress model (RSTM), since k-ε closure model cannot describe properly the flow of
complex geometry.

For the proper modeling of the particulate flows, which may include multifold processes, e.g.,
the particle-turbulence, or/and particle-particle, and particle-wall interactions and other
relevant effects, one can apply the probability dense function (PDF) approach, which gives
reasonable formalism for the closure of the governing mass and momentum equations of the
particulate phase. Within the PDF approach, the closure of the governing equations of the
particulate phase is based on a solution of the differential transport equations written for each
particle velocity covariance, taking into account possible mechanisms of the particle-turbu‐
lence and particle-particle interactions. Such procedure is similar to the RSTM closure.

Currently, the probability dense function (PDF) approach is widely applied for the numeri‐
cal modeling of the particulate flows. The PDF models, e.g., [1, 2], contain more complete
differential transport equations, which are written for various velocity correlations and
consider both the turbulence augmentation and attenuation due to the presence of particles.

As opposed to the round channel flows, the rectangular or/and square channel flows, even in
case of unladen flows, are considerably anisotropic with respect to the components of the
turbulence energy, that is more expressed near the channel walls and corners being notable
for the secondary flows. In addition, the presence of particles enhances such anisotropy. Such
particulate flows are studied by RSTM, which are based on the transport equations written for
all components of the Reynolds stress tensor-associated with the particulate phase.

The RSTM approach allows to completely analyze the influence of particles on axial, trans‐
verse, and spanwise components of the turbulence kinetic energy, including also possible
modifications of the cross-correlation velocity moments.

A number of studies based on the RSTM approach showed its good performance and capability
for simulation of the complicated flows [3], as well for the turbulent subsonic [4] and super‐
sonic flows [5] and viscoelastic flows [6].

Taulbee [7] used the RSTM approach to calculate the particle-laden shear flow by applying the
direct numerical simulation (DNS). The flow Reynolds number was low (Re = 952). There‐
fore, the method by [7] cannot be applied to the real turbulent flows characterized by consid‐
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erably higher Reynolds numbers, unlike the present numerical simulation which handles with
the flow Reynolds numbers of 56,000 and 140,000.

The RSTM approach was also applied in the model [8]. The only difference was in the fact that
the closure of equations of motion of the particulate phase was based on the Boussinesq
hypothesis, where the turbulent viscosity of the particulate phase was introduced and
calculated using the algebraic expressions obtained in the PDF approach [9]. However, the
model [8] was inherently eclectic, since it applied the RSTM closure for a carrier flow and at
the same time the Boussinesq hypothesis for the particulate phase.

Recently, Mukin and Zaichik [10] have proposed the nonlinear algebraic Reynolds stress
model for the gas flow laden with small heavy particles based on the PDF approach. The
original equations written for each component of Reynolds stress were reduced to their general
form in terms of the turbulence energy and its dissipation rate with additional effect of the
particulate phase. However, the model [10] does not enable a direct solution of the differen‐
tial transport equations and it applies the k-ε solution.

The study of the particle dispersion that occurs in the velocity uniform shear turbulent flow
assumes knowing the internal structure, general relationships, and methods of the flow
generation.

Based on the analysis of results of numerous investigations of turbulent dispersion of finite
inertia particles, it should be singled out three effects that are of high importance and should
be considered: (i) the inertia effect implying that the dispersion of solid particles might exceed
the dispersion of the fluid particles in the absence of a body force [11, 12]; (ii) the crossing
trajectory effect [13] meaning that in the presence of a drift velocity a finite inertia particle will
disperse less than a fluid particle; and (iii) the continuity effect [14] where the dispersion in
the direction of the drift velocity exceeds the dispersion in other two directions.

In the mathematical description of the particle turbulent dispersion, there are a number of
models and numerical simulations, which can be classified into the Lagrangian and Eulerian
(two-fluid) approximations. They relate to the specific flow structures, such as confined flows
in pipes and channels or free jets, wakes, and wall boundary flows.

Taylor [15] made the Lagrangian analysis of the dispersion of a particle in a stationary
homogeneous turbulence, which showed that turbulent dispersion varies in time and derived
the asymptotic expressions of dispersion for short and large times. Later on, the Lagrangian
approach for the turbulent dispersion of particles was further developed in [16–21].

One of the most comprehensive numerical research of the particle dispersion in the uniform
shear flow, based on the Lagrangian approach, was carried out in [22]. Ahmed and Elghoba‐
shi [22] applied DNS to the investigation of the particle inertia effect, effect of direction of
gravitation as well as magnitude of a shear number. In particular, Ahmed and Elghobashi [22]
have revealed that gravity reduces the particle turbulent dispersion and diffusivity in all
directions due to the drift velocity effects.
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On the contrary, there are very less studies on the particle turbulent dispersion, which are
based on the Eulerian approach. The most significant are the numerical investigations [9, 23],
where the statistical PDF models were applied to the particle behavior in the turbulent flows.

The 3D RSTM approach presented here applies the closure of equations of motion of the
particulate phase, which is carried out similarly to the closure of the carrier flow, i.e., the
equations are written for the normal and shear components of the Reynolds stress. The
Reynolds stress equations are derived from the PDF model [9] and presented in a general case.
The advantage of the given model is in use of the same closure for both the carrier flow and
particulate phase, namely, the Reynolds differential equations.

The given 3D RSTM model has been applied for the turbulent dispersion of solid particles in
a turbulent horizontal channel flow imposed to uniform shear.

The obtained numerical results have been verified and validated by comparison with the
experimental data.

2. Numerical model

The present numerical model being proposed for the evaluation of the particle dispersion is
the Eulerian approach, which applies both the 3D RANS modeling of the carrier flow and the
particulate phase [24] and the statistical PDF approach focusing on the mathematical descrip‐
tion of the second moments of the particulate phase [9]. Within the Eulerian approach, the
particulate phase is considered as the diluted medium; therefore, the effect of the particle
collision is negligible that means the application of the one-way coupling.

The numerical simulation considered the turbulent dispersion of solid particles in horizontal
channel uniform shear turbulent flow for two different cases: i) shear of the mean flow velocity
is along the direction of gravity (Figure 1a) and ii) shear of the mean flow velocity is direct‐
ed normally to gravity (Figure 1b). Here u is the mean axial velocity of gas.
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Figure 1. Shear of the mean flow velocity in horizontal channel flow. (a) shear of the mean flow velocity is along the
direction of gravity; (b) shear of the mean flow velocity is directed normally to gravity.

The particles were brought into the uniform shear gas flow, which has been preliminarily
computed to obtain the velocity flow field.

The system of the momentum and closure equations of the gas phase are identical for the
unladen flows, while the particle-laden flows are under the impact of the viscous drag force.
The Cartesian coordinates are used here.

2.1. Governing equations for the particulate phase

The 3D governing equations for the particulate phase are written as follows:

The particle mass conservation equation:
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(2)

y-component of the momentum equation:
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z-component of the momentum equation:
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where u, v, and w are the axial, transverse, and spanwise time-averaged velocity compo‐

nents of gas, respectively; us, vs and ws are the axial, transverse, and spanwise time-averaged

velocity components of particulate phase, respectively; ρ is the material density of gas; ρp is

the material density of particles; α is the particle mass concentration; gy is the y-component of

gravity.

The relative friction coefficient CD
'  is calculated according to [25].

The closure model for the transport equations of the particulate phase was applied to the PDF

model [26], where Ds is the coefficient of the turbulent diffusion of the particulate phase.

The equations for the second-order moments of the fluctuating velocity (turbulent stresses) of

the particulate phase are written based on the PDF approach in [9]. These equations describe

convective and diffusive transfer, generation of particle velocity fluctuations due to the

velocity gradient, generation of fluctuations resulting from particle entrainment into the

fluctuating motion of carrier gas flow, and dissipation of turbulent stresses of the particulate

phase caused by interfacial forces:

Equation of the x-normal component of the Reynolds stress:

2 2
2 2

2 2 2 2
3

n
p s u

l s s
s s p s u s s

v g vu uu u u g u v u
x x y y

t
a t a

é ùæ ö¢ ¢+é ù ç ÷ê ú¢ ¢¶ ¶¶ ¶æ ö è øê ú¢ ¢ ¢ ¢- + + -ê úç ÷ê ú¶ ¶ ¶ ¶è ø ê úë û ê úë û

Numerical Simulation - From Brain Imaging to Turbulent Flows344



( ) ( )

2
2 2

2 2

3
p k s

s s s u

n ks s
p s s u s s u

uw u w g w
z z

u uu v g u v u w g u w
x y z

t
a

at

ùé ¢¶¶ æ ö ú¢ ¢ ¢+ - +ê ç ÷ ú¶ ¶è øë û
ì üé ù¢ ¢¶ ¶¶ ï ïê ú¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢= + + +í ýê ú¶ ¶ ¶ï ïë ûî þ

( ) ( )2 22 2 2
3
p l n ks s s s s s

s u s s u s s u
u v u v u vu g u u v g u v u w g u w

y x y z
at éì ¢ ¢ ¢ ¢ ¢ ¢¶ ¶ ¶¶ ï æ ö¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢+ + + + + +êí ç ÷¶ ¶ ¶ ¶è øï êî ë

( ) ( )
2 2

2 22
3

l ks s
s s u s s u

p l s s
s u

u uu v g u v v w g v w
x z

u wu g u
z x

at

üù¢ ¢¶ ¶ ïú¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢+ + + + ýú¶ ¶ ïûþ
ì é ¢ ¢¶¶ ï æ ö¢ ¢+ +êí ç ÷¶ ¶è øêï ëî

( ) ( ) ( )
2

2 2n k ls s s s s
s s u s s u s s u

u w u w uu v g u v u w g u w u w g u w
y z x
¢ ¢ ¢ ¢ ¢¶ ¶ ¶¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢+ + + + + +
¶ ¶ ¶

( )
2

,n s
s s u

uv w g v w
y

üù¢¶ ï¢ ¢ ¢ ¢+ + úý
¶ úïûþ

(5)

Equation of the y-normal component of the Reynolds stress:
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Equation of the z-normal component of the Reynolds stress:
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Equation of the xy shear stress component of the Reynolds stress:
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Equation of the xz shear stress component of the Reynolds stress:
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Equation of the yz shear stress component of the Reynolds stress:
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where gu
l , gu

n, and gu
k  are the coefficients characterizing the entrainment of particles into the

fluctuating motion of the flow [9] for x, y, and z directions, respectively.

2.2. Boundary conditions

The wall conditions are set for the gas at the side walls of the channel based on the control
volume method by [27, 28] in a similar way as in the case of the coincidence of shear of the
mean flow velocity and gravity.

The numerical simulation considers the turbulent dispersion of solid particles in horizontal
channel uniform shear turbulent flow for two different cases: i) shear of the mean flow velocity
is along the direction of gravity (Figure 1a) and ii) shear of the mean flow velocity is direct‐
ed normally to gravity (Figure 1b). Therefore, two sets of the boundary conditions are used
for the calculations.

The boundary conditions for the particulate phase are set at the flow axis as follows:

Case 1 for z = 0:

2 2 2
0.s s s s

s s s s s s s s
u u v wv w u v u w v w
z z z z z

a¢ ¢ ¢¶ ¶ ¶ ¶ ¶¢ ¢ ¢ ¢ ¢ ¢= = = = = = = = = =
¶ ¶ ¶ ¶ ¶

(11)

Case 2 for y = 0:
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The boundary conditions for the particulate phase are set at the channel walls according to [9]:

Case 1 for y = 0.5hy:
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and applying the expression u ′
sv ′

s
¯= −ηxv ′

s
2̄, where ηx is the coefficient of friction between the

particles and the wall,

0,vvs wws uvs uws vwsP P P P P= = = = =

Case 2 for z = 0.5hz:
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0.vvs wws uvs uws vwsP P P P P= = = = = (19)

ex is the coefficient of restitution in the axial direction, which is modeled as:
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Here, the parameter ξx =ηx(1 + er)tanθx, where er is the coefficient of restitution of the particle
velocity normal to the wall; θx =tan−1(vs / us) is the angle of attack between the trajectory of the
particle and the wall; χ is the reflection coefficient, which is the probability of the particles
recoiling off the boundaries and back to the flow. The coefficient of restitution reflects the loss
of the particle momentum as the particle hits the walls. In the given model, χ= 1/3, er= 1 and ηx

= 0.39 [29].

The conditions for the transverse and spanwise components of the gas velocity are set at the
channel walls in terms of impenetrability and no-slip.

The set of boundary conditions for gas and particulate phase at the exit of the channel is written,
respectively, as follows:

2 2 2
0.s s s s s s s s s s s su v w u v w u v u w v w

x x x x x x x x x x
a ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶¶

= = = = = = = = = =
¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶

(21)

2.3. Computational method

The control volume method was applied to solve the 3D partial differential equations written
for the unladen flow and the particulate phase (Eqs. (1)–(11)), taking into account the boun‐
dary conditions (Eqs. (12)–(21)). The governing equations were solved using the implicit lower
and upper (ILU) matrix decomposition method with the flux-blending-differed correction and
upwind-differencing schemes by [27]. This method is utilized for the calculations of the
particulate turbulent flows in channels of the rectangular and square cross sections. The
calculations were performed in the dimensional form for all the flow conditions. The num‐
ber of the control volumes was 1120000.

3. Laboratory experiments

The obtained numerical results have been verified and validated in comparison with the
data obtained by the experimental facility of Tallinn University of Technology.
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The experimental method for the determination of the particle dispersion was based on
recording the particle trajectories by means of a high-speed video camera on separate re‐
gions of a flow that locate at various distances from a point source of particles, and the
subsequent processing of the frames [30].

The experimental setup for the investigations of particle dispersion (Figure 2) allowed to
generate the shear flow similarly to [31] by means of flat plates installed with a varied
pitch. The test section was 2 m long with 400 × 200 mm cross section.

Figure 2. Experimental setup.

Two cases of spatial orientation of shear of the mean flow velocity were investigated. Figure
2 shows the top view of the setup for the case when shear is along the direction of gravity
(Figure 1a). For investigations of the particle dispersion when shear is directed normally to
gravity (Figure 1b), the setup was turned sideways as a whole at an angle of 90° around the
axis of the flow.

The mean flow velocity was 5.1 m/s. Glass spherical particles (physical density of 2500 kg/m3)
with an average diameter of 55 μm were used in the experiment runs. The root-mean-square
deviation of the diameter of particles did not exceed 0.1. The particles were entered into the
flow through the source point which was the L-shaped tubule of 200 μm inner diameter.

All measurements and data processing were carried out at the flow location x = 1212 mm.

The data processing technique [30] was applied to determine the particle spatial displace‐
ment along the y-axis, namely Dy, which characterizes quantitatively the particle turbulent
dispersion. Dy is calculated as the axial displacement of the maximum value of distribution of
the particle mass concentration determined at the location x = 1212 mm relative to the initial
flow location that disposes near the exit of the source point.

Two-Fluid RANS-RSTM-PDF Model for Turbulent Particulate Flows
http://dx.doi.org/10.5772/63338

353



4. Results and discussions

The numerical results presented below have been obtained at two locations of the flow: initial

location signed “ini” and disposed at the exit of the particle source point and the location

2x/hy= 12.63 from the exit of the particle point source. The turbulent dispersion of 55-μm glass

spherical particles was examined. The flow mass loading was about 10−6 kg dust/kg air.

Figures 3–15 show the numerical data obtained by the presented model for two cases of spatial

orientation of shear of the mean flow velocity: shear is along the direction of gravity (case 1),

and shear is directed normally to gravity (case 2).

Figure 3. Transverse distributions of axial velocities of gas and particles, case 1. Here and below u0 is the mean flow
velocity; u0 = 5.1 m/s.

Figure 4. Spanwise distributions of axial velocities of gas and particles, case 2.
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Figure 5. Transverse distributions of a turbulence kinetic energy; cases 1 and 2.

Figure 6. Spanwise distributions of a turbulence kinetic energy, cases 1 and 2.

Figure 7. Transverse distributions of xy shear stress component of the Reynolds stress of gas and particles, case 1. Here
u ′v ′̄ =u ′v ′̄ / u0

2.
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Figure 8. Spanwise distributions of xz shear stress component of the Reynolds stress of gas and particles, case 2. Here
u ′w ′̄ =u ′w ′̄ / u0

2.

Figure 9. Transverse distributions of x-normal components of the Reynolds stress of gas and particles, case 1. Here
u ′2̄ =u ′2̄ / u0

2 and u ′
s
2̄ =u ′

s
2̄ / u0

2.

Figure 10. Transverse distributions of particles mass concentration, case 1.
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Figure 11. Spanwise distributions of axial velocities of gas and particles, case 1, location 2x/hy= 12.63.

Figure 12. Spanwise distribution of particles mass concentration, case 1.

Figure 13. Transverse distribution of particles mass concentration, case 2.
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Figure 14. Spanwise distribution of particles mass concentration, case 2.

Figure 15. Transverse distributions of axial velocities of gas and particles, cases 1 and 2, location 2x/hy= 12.63.

Figure 3 shows the transverse distributions of axial velocities of gas and particles for case 1. It
is evident that the linear profiles of the averaged axial velocity components of gas and
particulate phase across the flow are almost preserved starting from the initial cross section
till the pipe exit. Besides, they occupy almost the whole turbulent core of the flow with slight
increase of the values in the turbulent core and decrease near the walls due to the effect of a
viscous dissipation. The similar profiles are observed with respect of distribution of the same
averaged axial velocity components for gas and particulate phase along the spanwise
direction (Figure 4).

Since the axial velocity increases toward the bottom wall, the profiles of a turbulence kinetic
energy have their higher values near the bottom wall area (Figure 5). However, along the
spanwise direction, the profiles of the turbulence kinetic energy are symmetrical, since there
is no change of the axial velocity along this direction (Figure 6).

The profiles of the Reynolds shear stresses of gas and particulate phase are shown in Figures 7
and 8. Here it is evident that there is some kind of plateau in the turbulent core. This con‐
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firms that we deal with the shear flow; hence, it must be the constant value of the Reynolds
shear stresses observed for cases 1 and 2, i.e., for the xy-plane (case 1) and xz-plane (case 2)
Reynolds shear stress components. Here, the linear distributions of the averaged axial velocity
components across the flow take place along the spanwise direction.

Figure 9 show the transverse distributions of x-normal components of the Reynolds stress of
gas and particulate phase obtained for case 1. It can be seen that unlike u ′2̄, the maximum value
of u ′

s
2̄ distribution located near the channel top wall is larger than the one near the bottom wall.

This is due to the effect of particle inertia and their crosswise motion that cause different axial
particle accelerations near the top and bottom walls (Figure 3).

Figures 10–13 present the transverse and spanwise distributions of the particle mass concen‐
tration c/c0 across the flow at the initial location and the location 2x/hy= 12.63 for both the cases
of spatial orientation of shear of the mean flow velocity. Here c0 is the value of the particle mass
concentration at the initial location at the flow axis. These distributions reflect the character of
the particle turbulent dispersion that occurs in the given channel shear flow. It is obvious that
a) due to gravity the particles go down, and thus the mass concentration profile shifts toward
the bottom wall (case 1) and b) the profiles become wider relative to their initial distribu‐
tions due to the particle turbulent dispersion (Figure 10).

Since in case 1 there is symmetrical distribution of parameters along the spanwise direction
(Figures 6 and 11), the symmetrical distribution of the mass concentration along this direc‐
tion (Figure 12) can be observed, both at the initial and exit cross sections.

A similar situation is observed for case 2, when the linear change of the axial velocity takes
place along the spanwise direction. Here the particles go down due to gravity (see Figure 13),
and simultaneously there is no shift of the distribution of the mass concentration along the
spanwise direction (Figure 14).

Table 1 presents the values of the particle spatial displacement Dy obtained experimentally
and numerically for two cases of spatial orientation of shear of the mean flow velocity. This
displacement characterized quantitatively the particle turbulent dispersion. It is evident that
the numerical values of displacement fit satisfactory with the experimental ones that vali‐
date the reliability of the presented model.

Case 1 Case 2

Experiment Modeling Experiment Modeling

Dy, mm 46.0 43.7 48.2 50.0

Table 1. Particle displacement.

Table 1 shows that the particle dispersion in case 1 is smaller than in case 2. This fact can be
explained by the particle axial velocity taking place in case 2 is smaller than the one for case 1
in the same y location (Figures 10, 13, and 15).

Two-Fluid RANS-RSTM-PDF Model for Turbulent Particulate Flows
http://dx.doi.org/10.5772/63338

359



5. Conclusions

The 3D Reynolds stress turbulence model (RSTM) based on the 3D RANS and statistical PDF
approaches has been elaborated for the turbulent dispersion of solid particles in particulate
horizontal channel shear flow domain.

The main distinctive feature of the given model is in use of the same closure for both the carrier
flow and particulate phase, namely the Reynolds differential equation.

The presented model has several important advantages over the Lagrangian approach:

1. direct simulation of the particle concentration;

2. direct simulation of the particles influence on a carrier flow;

3. there is no basic limit for the parameters of a particulate flow, namely the flow Rey‐
nolds number and value of the particle concentration.

Based on the given model, two cases of spatial orientation of shear of the mean flow velocity
have been examined. It has been obtained that the effect of orientation of shear appears through
decrease of the particle dispersion in case of directional coincidence between shear and gravity
as compared with the case of their mutual perpendicularity.

The validity of the elaborated model has been confirmed by experimental investigations of
effect of shear of the mean flow velocity on the turbulent particle dispersion.
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