
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



6 

Robotic Grasping: A Generic Neural  
Network Architecture 

Nasser Rezzoug & Philippe Gorce 
LESP EA 3162 - Université du Sud Toulon - Var 

France 

1. Introduction 

Reproducing human dexterity and flexibility in unknown environments is one of the major 
challenges of robotics. Among the issues related to the use of robots with artificial hands of 
varying complexity, the definition of their kinematical configuration when grasping an object is 
one of the most difficult problems. Indeed, it necessitates the consideration of a large number of 
constraints related to the structure of the hand as well as the object, the requirements of the task 
and the state of the environment. In this frame, sensing capability is crucial to obtain information 
about the robot state and the quality of sensory signals that may be noisy or of low precision has to 
be considered to control efficiently a robotic grasping task.  

In the literature, several paradigms have been proposed to perform grasp planning. Mainly, 
they can be divided in three categories: knowledge based grasp planning, geometric grasp 
planning and sensory driven or learning based grasp planning. 
Knowledge based grasp planning refers to techniques where posture definition is made 
according to direct or indirect knowledge in human prehension. In fact, in order to better 
understand the different parameters involved during grasping, several studies have been 
conducted to classify human prehension. Their main principle is that prototypical hand shapes 
are used to perform classes of tasks according to particular hand, environment and task related 
constraints (Napier, 1956; Iberall et al., 1986; Cutkosky, 1987; Tomovic et al., 1987; Bekey et al., 
1993; Iberall, 1997; Saito & Nagata, 1999). These classifications have been intensively used to 
propose solutions in the robotics field, especially in the frame of artificial intelligence and expert 
systems (Pook & Ballard, 1993; Kang & Ikeuchi, 1997;). The concept of “assembly plan from 
observation” states that a robot can perform complicated grasps and manipulations by taking 
advantage of the human dexterity. Thus, optimal solutions can be obtained by the direct 
observation of human behavior and the extraction of the appropriate movement features 
(Jeannerod, 1984; Bard et al., 1991; Lee & Xu, 1996; Becker et al., 1999). These methods are very 
effective but they need sophisticated motion sensing devices such as datagloves. Moreover, the 
robot can learn only what is demonstrated and it is difficult to generalize from one task to 
another. Also, an alternative way to define hand posture is to use the concept of preshaping 
coming from experimental studies on prehension. In fact, it has been demonstrated (Wren & 
Fischer, 1995) that, prior to grasping, there is an anticipation of hand opening and orientation 
which is a function of object and task constraints. Therefore, the grasp planning problem is 
dramatically simplified by the choice of a finite number of hand preshapes. Then, hand closure 
schemes are defined in order to achieve grasp from the adequate preshape (Miller and al., 2003).  

Source: Mobile Robots Towards New Applications, ISBN 3-86611-314-5, Edited by Aleksandar Lazinica,  pp. 784, ARS/plV, Germany, December 2006

O
pe

n 
A

cc
es

s 
D

at
ab

as
e 

w
w

w
.i-

te
ch

on
lin

e.
co

m

www.intechopen.com



106 Mobile Robots, Towards New Applications 

Geometric contact level grasp synthesis algorithms have been developed to find an 
optimal set of contacts according to grasp quality measures like force and form closure 
(Kerr & Roth, 1986; Nguyen, 1986; Ferrari & Canny, 1992; Gorce & Fontaine, 1994; Mirtich 
& Canny, 1994, Miller & Allen, 1999). In this case, the hand is represented by a set of 
contacts and while these algorithms are applicable to any dexterous hand they leave the 
problem of finding a suitable hand configuration open. Optimization based methods are 
then proposed to define the hand kinematical configuration (Borst et al., 2002; Guan & 
Zhang, 2003). The main drawback of such approaches is that they often rely on a precise 
knowledge of the task to be performed. 

Sensory driven grasp planning tries to solve this difficulty by incrementally constructing a 

model of the task by exploration and learning (Coehlo & Grupen, 1997; Wheeler et al., 2002; 

Grupen & Coehlo, 2002; Pelossof and al., 2004). In this frame, neural network based 

approaches are used to learn the underlying rules adopted during grasping. For example, 

(Kurperstein & Rubinstein, 1989) developed a neural network based scheme called INFANT 

in order to perform grasping tasks with a 5 degrees of freedom gripper. (Uno et al., 1995) 

proposed a neural based computational scheme able to integrate an internal representation 

of objects as well as the corresponding hand shape. (Taha et al., 1997) developed a model of 

preshaping of a planar hand model (with seven degrees of freedom) for circular and 

rectangular objects. (Moussa & Kamel, 1998) proposed a computational architecture able to 

learn grasping rules called “generic grasping functions”. This representation treats grasping 

knowledge as a mapping between two reference frames: the object body attached coordinate 

frame, and the gripper body attached frame. This paradigm is applied to a very simple 

mechanism (single jaw gripper) and can not be applied to a multifingered hand where the 

mapping between the hand and the object frames may not be sufficient. 

In this chapter, a new method based on neural networks is proposed. It allows learning 

multichain redundant structures configuration during grasping in the presence of noise and 

uncertainty as well as unknown obstacles. Theses structures include serial manipulators 

equipped with a single jaw gripper or a multifingered hand. The developed model is composed 

of one generic module whose inputs and outputs vary according to the considered robot. A 

second module carries out the learning of the fingers inverse kinematics when a multifingered 

hand is used. It is based on a modular architecture composed of several neural networks. Using 

reinforcement learning, the main neural network based module optimizes the position and 

orientation of the grasping device taking into account noisy sensing information. Working 

together these two modules exchange information to define the complete robot configuration. 

The main interest of this architecture is that it is generic and can define the posture of hand, 

arm+hand or non anthropomorphic robots (e.g. the MANUS: a robotic assistant for the disabled) 

with noise or obstacles with few modifications. In order to illustrate the capabilities of the 

proposed model, simulation results are proposed using different situations considering different 

robot kinematical structures.  
This chapter is organized as following. In section 2, we describe the model architecture. The 
retained scheme to learn the inverse kinematics of the fingers is described in section 3. Then, 
section 4 is focused on the procedure used to define and optimize robot configuration. 
Finally in the remaining sections, simulation results are presented to demonstrate the 
efficiency of the proposed tools with considering the anthropomorphic hand only (section 
5), the hand + arm model (section 6) and a non anthropomorphic robot (section 7). 

www.intechopen.com



Robotic Grasping: A Generic Neural Network Architecture 107 

2. Model presentation 

The adopted approach will be explained considering the hand palm configuration only (i.e. 
position and orientation). The resolution process is almost the same when applied to the 
arm + hand model with only few modifications. 

 

 2 dofs. 

1 dof.

1 dof.

2 dofs.

1 dof. 

1 dof. 

                  

Hand palm 
frame 

Contact 
set 

Hand

Object
 

 a/ b/ 
Fig. 1. a/ 3D model of the hand,             b/ Problem statement 

2.1 Hand model 
The hand model is composed of five articulated rigid chains representing the fingers. They 
are connected to a common body representing the palm (Fig. 1a/). Each finger has three 
links connected by three joints with a total of four degrees of freedom. The first joint of each 
finger has two degrees of freedom that allow to simulate the flexion-extension and 
abduction-adduction movements. The two other joints have one degree of freedom 
representing joint flexion. The complete model has 26 degrees of freedom. They are divided 
in two groups: 20 for the fingers joint angles and 6 for the hand palm position and 
orientation relative to a global frame. This architecture is generic and can be associated with 
many robotic hand designs directly as is or with simplifications with fewer fingers or fewer 
degrees of freedom. In the remainder of this article, the terms hand posture or grasping 
posture are used to define the numeric value of the set of parameters describing the 
kinematical configuration of the hand model during grasping. 

2.2 Problem definition and chosen hypotheses 
The definition of the problem is: Given an object and a contact set, define all the kinematics 
parameters of the hand model in such a way that all the fingertips can reach a defined contact position 
on the surface of the object to be grasped. This task has to be executed in the presence of noise and 
uncertainty. The number of contacts is between two and five (Fig. 1b/).  
To define the hand posture, the following assumptions are made: 

1.  Only precision grasps are considered, therefore there is only one contact per finger, 
2.  We assume that the contact set is already defined and satisfies force closure, 
3.  Each contact on the surface of the object is associated with a particular finger, 

The input data of the model are: 
1.  The hand geometry, 
2.  The number of contacts, 
3.  The finger associated to each contact, 

www.intechopen.com



108 Mobile Robots, Towards New Applications 

4.  The location of the contacts in the object reference frame, 
5.  The bounds of a 6D hand palm search space. 

The outputs of the model are: 
1.  The location and orientation of the hand palm reference frame expressed in the 

world frame, 
2.  The configuration of the fingers in joint coordinate space. 

2.3 Retained approach 
Defining all these kinematics parameters in a single step is a complex task because of the large 
number of degrees of freedom. One can consider it as an inverse kinematics problem of a 
redundant multichain mechanism with multiple objectives. Indeed, several difficulties arise: 
several fingers are involved and a hand palm configuration may conduct to a good solution for 
one finger but bad for the others. The second point is relative to the fact that an infinite number of 
solutions may exist. To solve this problem, we start from the idea that if the hand palm 
configuration is held fixed it is possible to compute the configuration of the fingers in joint 
coordinate space by using inverse kinematics. Furthermore, if we express the desired fingertip 
position in the frame of the finger and construct a model of inverse kinematics by learning, it is 
possible to compute quickly the fingers joint angles given any hand palm configuration. Thus, the 
number of unknown parameters decreases from to twenty six to six. These latter correspond to the 
hand palm configuration which remains to be defined. The chosen mechanism has to optimize the 
hand palm configuration in such a way that the fingers configuration allows the fingertip to reach 
the contact on the surface of the object. In order to integrate sensor noise and uncertainty, a 
stochastic search procedure based on reinforcement learning is chosen. The process of hand 
grasping posture definition has two parts: the hand palm configuration is generated by a first 
network (called “Hand Configuration Neural Network” or HCNN) and the corresponding finger 
joints are obtained by inverse kinematics with a second neural network model called “Finger 
Configuration Neural Network” or FCNN. Then the whole grasping posture is evaluated and 
from the corresponding evaluation the HCNN is trained by reinforcement learning in order to 
generate a better hand posture at the next iteration. 

 

Fingers 
Configuration 

Neural Networks

 
Hand 

Configuration 
Neural 

Network  

Hand 

configuration 

at time t+1 

Hand 

configuration 

at time t 

Desired fingertip 

position 

Fingers 

posture Evaluative function 
and reinforcement 

computation 

+

- 

reinforcement 

signal 

Desired fingertip 
position 

expressed in 
finger frame 

 

Noise 

 
Fig. 2. Model architecture. 

2.4 Model structure and principle 
According to the method presented in the former section, the model global structure is 
composed of two neural modules working in a closed loop (Fig. 2). The first module 

www.intechopen.com



Robotic Grasping: A Generic Neural Network Architecture 109 

(HCNN) is aimed at determining the appropriate hand palm configuration (location and 
orientation) relative to a global frame. It is a multilayer feedforward neural network with a 
learning process based on the paradigm of reinforcement learning. This type of learning is 
achieved with resorting to a particular type of processing unit called Stochastic Real Valued 
(SRV) neurons. The detailed structure of the HCNN is presented in section 4. The FCNN, 
the second module, is devoted to the definition of the fingers configuration in joint 
coordinate space from the desired fingertips position. Its output data are used to evaluate 
the appropriateness of the hand configuration by an evaluative function. The corresponding 
reinforcement signal is used by the HCNN to update its internal parameters. In section 3, 
the FCNN is presented in details. The principle of the developed method is now described: 

1. The current hand configuration and the difference between the actual and previous 
hand configurations (equivalent to a speed with unit time) are input to the HCNN. 
As output, a new hand palm configuration is obtained, 

2. Thanks to this new hand palm configuration, it is possible to express the position of 
the contacts in the frame of each corresponding finger (on the surface of the object, a 
particular contact is affected to each finger), 

3. Using the inverse kinematics scheme (FCNN), the joint configuration of the fingers is 
computed.  

4. The complete hand configuration (hand palm configuration and fingers joint angles) 
is tested with a criterion. From this latter, a reinforcement signal is computed and is 
used to update the HCNN internal parameters. Before this last step and in order to 
introduce noise and uncertainty, the actual reinforcement is perturbed with noise 
with zero mean and predefined variance, 

5. This procedure is repeated until a good solution is found (i.e. the reinforcement 
reaches a sufficiently high value and the criterion is optimized) or until the 
maximum number of iterations is reached 

The evaluative function evaluated after each iteration is based on the computation of the sum of 
the distance between each fingertip desired and actual position. In step 2, the location of the 
contacts is expressed in the frame of the fingers and therefore the desired fingertip position is 
available. For each finger, forward kinematics is used to evaluate the actual fingertip position. Let 

 
( )TD

i
D
i

D
i

D
i zyx ,,=PX  (1) 

be the vector of the desired fingertip position expressed relative to the coordinate frame of 
finger i at step k and  

 
( )TM

i
M
i

M
i

M
i zyx ,,=PX  (2) 

be the vector of the actual fingertip position expressed relative to the coordinate frame of 
finger i. If n fingers are involved, the total error obtained at step k is:  

 
∑

=

−=
n

i

M
i

D
ikE

1

PXPX   (3) 

In order to model the effect of low quality sensors, this evaluative function is perturbed with 
a noise of known properties. The chosen procedure is detailed in section 4. The purpose of 
the next two sections is to provide further explanations on the structure and function of the 
two neural network based modules FCNN and HCNN. 

www.intechopen.com



110 Mobile Robots, Towards New Applications 

3. Finger configuration neural networks (FCNN) 

Given a contact set in the reference frame of the object and a global hand palm 
configuration, the problem is to compute the configuration of the fingers in joint coordinate 
space. To carry out this task (Rezzoug and Gorce, 2001; Gorce and Rezzoug, 2005), a slightly 
modified version of the modular architecture defined by Oyama and Tachi (Oyama & Tachi, 
1999; Oyama & Tachi, 2000) is used. The main advantage of this method over other 
connectionist models is that it takes into account the discontinuity of inverse kinematics 
mapping of multi-joints mechanisms with joint limits by its modular nature. Indeed, it is 
difficult to approximate such a function by a single multi-layers neural network. The 
principle of the formalism defined by Oyama and Tachi (Oyama & Tachi, 1999; Oyama & 
Tachi, 2000) is based on three particular points. Firstly, the learning of inverse kinematics is 
performed by the incremental creation of multiple neural networks called experts each one 
spanning correctly one sub-set of the finger workspace. Secondly, when an expert is created, 
a representative posture in joint coordinate space is attached to it. Thirdly, after learning and 
for a given fingertip desired position, the finger joint angles are obtained by the appropriate 
competition among the created experts. 
An expert is a feedforward neural network with four layers. The activation function of the 
input and output layers is linear and tangent sigmoid for the hidden layers. The input layer 
is composed of three units that correspond to the X, Y and Z position of the fingertip. The 
output layer has 4 units corresponding to the 4 degrees of freedom of a finger. The two 
hidden layers have 35 units each. The error backpropagation algorithm is used to update the 
neurons weights. During learning, four to six experts are generated for each finger. 
In the remainder of this section, some details on the learning procedure are provided. 

3.1 Learning procedure 
At the beginning of the learning process, there is only one expert, with the representative 
posture [0, 0, 0, 0]T in joint coordinate space. For one particular finger, during one epoch of 
learning the following steps are performed: 

1. A fingertip desired position XD in an appropriate 3D workspace is chosen randomly. 
Each expert produces an output representing the finger joint angles �i. For each 
expert, the finger forward kinematics is used to compute the current fingertip 
Cartesian position XC from the joint angles �i. The output error is the Euclidean 
distance between the current and the desired fingertip position (��XC-XD��). The 
posture generated by the expert with the minimal error is chosen as a start point. 
Then, a reaching motion represented by a straight line is constructed in Cartesian 
and joint spaces from the current to the desired fingertip position. The number of 
points that defines this motion is a function of the produced error. If the error is 
large, several points are stored. On the other hand, if the error is below a predefined 
threshold, an iterative procedure is used to improve the accuracy of the finger 
posture for the current training point (see section 3.2 for further details). Finally, the 
points of the reaching motion or the improved fingertip position and the 
corresponding joint angles are stored in the training set of the expert that has 
produced the minimal error among all the experts. Then, for a predefined number of 
steps, the learning of the training set is performed for the chosen expert. 

2.  If during the reaching motion construction, no satisfactory solution is obtained for the best 
expert either due to joint limits or if the finger reaches a singular position, another expert is 

www.intechopen.com



Robotic Grasping: A Generic Neural Network Architecture 111 

selected in increasing order of the predicted error. The procedure described in step 1 is 
repeated until a satisfactory solution is found or until all the experts are tested, 

3. If no satisfactory solution is obtained during steps 1 and 2, an expert is randomly 
chosen and a reaching motion is constructed from the fingertip position derived from 
the expert representative posture to the desired fingertip position. This procedure is 
repeated until a solution is found or all the experts are tested, 

4. If no solution is obtained during steps 1, 2 and 3, a posture is randomly computed 
and a reaching motion is performed between the actual and desired fingertip 
position. This procedure is repeated until a satisfactory motion is generated (i.e. no 
singular position and joints within their limits). If so, the finger configuration 
obtained at the end of the reaching motion is considered as the representative 
posture of a new expert, which is added to the set of experts. 

3.2 Reaching motion and iterative improvement of fingertip position 
In this section, the reaching motion definition and the iterative improvement of fingertip 
position (Oyama & Tachi, 1999; Oyama & Tachi, 2000) are described. 

We consider θ(0), the output of one selected expert. Then, the error between the current and 
the desired fingertip position is computed: 

 e(0) = |XD - g(θ(0))|  (4) 

XD represents the desired fingertip position and g(.) the finger forward kinematics. 
Two cases are considered: 

1. if e(0) < rst , rst being a predefined threshold, perform the iterative procedure is 

performed and the joint angles θ(k+1) are computed according to the following 
equation:  

 ( ) ( ) ( )( ) ( )( )( )Dθ 1 θ J θ X θk k k g k++ = + ⋅ − until e(k) < re (5) 

re is a second predefined threshold. 
2. if e(0) > rst , a reaching motion is performed. To do this, a straight line is constructed 

in Cartesian space from XC = g(θ(0)) to XD according to the following precdure: 
Let T  be an integer satisfying the following inequality: 

 D CX X
1

st

T T
r

−
− < <  (6) 

The Cartesian trajectory XD(k) is constructed in the following way: 

 
( ) ( )C D

D

D

1 X X 0
X

X ( )

k k
k T

k T T

k T

⎧⎛ ⎞− ⋅ + ⋅ ≤ <⎪⎜ ⎟= ⎝ ⎠⎨
⎪ ≥⎩

 (7) 

If rst is sufficiently low, the set of joint angles θ(k) that produces the trajectory of the fingertip 
as defined by (7) can be calculated in the following way:  

 ( ) ( ) ( )( ) ( ) ( )( )( )Dθ 1 θ J θ X 1 θk k k k g k++ = + ⋅ + −  (8) 

J+ represents the pseudo inverse of the finger Jacobian matrix. 

www.intechopen.com



112 Mobile Robots, Towards New Applications 

During the iterative procedure, a single value of θ(k) is computed while several are 
determined during the reaching motion construction. This is due to the fact that, in the first 
case the error is considered small enough and it is just necessary to improve this particular 
output of the expert. Practically, at the beginning of the training phase, large reaching 
motions are constructed denoting the fact that the experts fail to approximate correctly the 
desired finger joint configuration. As training progresses, smaller reaching motions are 
generated and finally only the iterative procedure is performed. 
The function g(.) representing finger forward kinematics can be obtained from a previously 
trained neural network or directly from its closed form expression. For simplicity the latter 
procedure was chosen. The main difference between the architecture of (Oyama & Tachi, 
1999; Oyama & Tachi, 2000) and our implementation  (Rezzoug & Gorce, 2001; Gorce and 
Rezzoug, 2005) is that while forward and inverse kinematics are learned by two separate 
modules, the closed form expression of forward kinematic is used and therefore only the 
inverse model is learned. At each iteration, the current generated motion only is learned by 
the best expert(Oyama & Tachi, 1999; Oyama & Tachi, 2000). On the other hand (Rezzoug & 
Gorce, 2001; Gorce and Rezzoug, 2005), we keep track of all the previous learned motions to 
speed up the learning. Also, every five epochs, all the training sets are tested by all the 
experts. If it happens that a point is best approximated by an expert, this point is transferred 
to the training set of the corresponding expert. Therefore, as training proceeds, we insure 
that the points of an expert training set are best learned by the corresponding expert. 

4. Hand configuration neural network (HCNN) 

4.1 Reinforcement learning with a direct method 
The learning process used to define the hand palm configuration (HCNN) is based on 
reinforcement learning (Sutton, 1988; Watkins, 1989; Kaelbling et al., 1996; Sutton & Barto, 1998; 
Doya; 1999). In this frame, a learning agent has to infer appropriate actions to perform a task based 
solely on evaluative feedback. Unlike supervised learning, the agent does not know what action to 
take in a given situation but has only limited information on how well it behaves after the 
execution of the action. This information called reinforcement can take the form of a binary signal 
such as 0 (failure) or 1 (success) or be a real value. An extensive amount of relevant work has been 
proposed describing reinforcement learning problems (Sutton, 1988; Watkins, 1989; Kaelbling et 
al., 1996; Sutton & Barto, 1998; Doya, 1999). Most of the developed methods deals with discrete 
input and action spaces such as temporal difference learning (TD) (Sutton, 1988) or Q-learning 
(Watkins, 1989). The necessity to work in continuous input and action spaces, (e. g. to control 
robots) has led to the development of new methods based on an adequate discretization of state 
and action spaces or on the adaptation of the TD(�) algorithm (Doya; 1999). 
Another point of interest of this technique is the choice of the process to infer the appropriate 
actions from evaluations. Gullapalli (Gullapalli, 1990; Gullapalli, 1995) presented the two major 
categories, indirect and direct methods. Indirect methods rely on the model construction of the 
transformation from the controller's action to the evaluations. Then, this model is used to obtain 
gradient information for training the controller (Gullapalli, 1990). On the other hand, direct 
methods perform this task directly by perturbing the process. From the produced effects on the 
performance evaluation the agent is able to modify its internal parameters in order to maximize 
the reinforcement. Usually, the perturbation takes the form of a random noise with known 
properties and a stochastic search procedure is conducted (Gullapalli, 1990). This latter procedure 
seems to be very attractive, since no model of the process is necessary. Indeed, building such a 

www.intechopen.com



Robotic Grasping: A Generic Neural Network Architecture 113 

model is very difficult especially in the presence of noise and uncertainty. In the frame of direct 
methods, the process itself provides the necessary training data. That is the reason why we have 
chosen this formalism to determine the hand palm configuration by the mean of a neural network 
composed of backpropagation and Stochastic Real Valued (SRV) units which are detailed in 
section 4.2 The main interest of SRV units is that they enable the learning of functions with 
continuous outputs using a connectionist network with a direct method (Gullapalli, 1995). 
The neural network has 2 hidden backpropagation layers and an output layer composed of SRV 
units. The input layer has 12 units: 6 for the hand palm attached coordinate frame configuration 
and 6 for the difference between the actual and previous hand palm configuration. The 2 hidden 
layers have 20 units each. The association of SRV and backpropagation units allows to take 
advantage of both supervised and reinforcement learning. The whole network still has the 
benefits of reinforcement learning thanks to its stochastic search behavior. Also, the 
backpropagation units in the hidden layer enable to develop the right internal distributed 
representation of the problem as it is seen in supervised learning.  
In order to better understand how the SRV units learn, a description of their input-output 
relation and stochastic learning behavior is now presented.  

4.2 SRV unit input-output relation and learning process 

An input vector ik from X ⊆ ℜn, where ℜ is the set of real numbers, is presented to a SRV unit at 
time step k. The unit produces a random output ok selected from some internal probability 

distribution over the interval O ⊆ ℜ. The SRV unit uses its input ik to compute the parameters µk 

and σk of an internal normal probability distribution (µk is the mean and σk the standard 
deviation). These parameters are obtained by the weighted sum of the input ik, with a particular 
set of weights for each parameter. We define the weight vectors (or matrices for a layer of SRV 

units) Θ and Φ respectively for µk and σk. In the case of several SRV units θlj and ϕlj corresponds 
to the weight associated with the jth component of the input vector and lth SRV unit parameter. 
For a single unit, the mean of the normal probability distribution is obtained as following: 

 k
T

k iθµ =  (9) 

θ  is a column weight vectors. 
The computation of the standard deviation is done in two stages. Firstly, an expected 

reinforcement is computed as the weighted sum of the input vector ik by the column vector ϕ: 

 k
T

k ir ϕ=ˆ  (10) 

Then, the standard deviation is obtained as a function of the expected reinforcement as: 

 ( )kk rs ˆ=σ  (11) 

where s(.) is a monotonically decreasing, non negative function of kr̂ . Moreover, s(1.0) = 0, 

so that when the maximum reinforcement is expected, the standard deviation decreases to 
zero 0. The expected reinforcement represents the internal estimation of the reinforcement 
obtained after taking a particular action. The standard deviation represents the degree of 
exploration around the mean. Therefore, if the expected reinforcement is high it is likely that 
the amount of exploration is low and therefore the standard deviation should be low.  

Once µk and σk are computed, the SRV unit computes its activation drawn form the normal 

distribution defined by µk and σk: 

www.intechopen.com



114 Mobile Robots, Towards New Applications 

 ( )kkk Na σµ ,~  (12) 

Finally, the output is obtained as a function of the unit's activation as ok = f(ak). In the present case the 
chosen function f(.) is the logistic function, because the output is restricted to lie in the interval [0, 1]. 
In order to obtain an output vector within the desired bounds, the network output vector ok 
is scaled according to the following equation: 

 
( ) ki o⊗−+=+ minmaxmin1 XXXX  (13) 

Xi+1 denotes the new output, Xmin the lower bounds of the search space, Xmax the upper bounds of 

the search space, ok the network output vector and ⊗ the componentwise vector product. 
The environment evaluates the new output Xi+1 according to the evaluation function (1-3) and the 

context of ik and returns a reinforcement signal rk ∈R = [0, 1], with rk = 1 denoting the maximum 
possible reinforcement. Therefore, the reinforcement signal value is obtained as follows: 

 
( )kk Ehr −= 1  (14) 

where Ek (3) corresponds to the error at time step k. h is a monotonic increasing function of the 
error Ek taking values over the interval [0, 1]. If Ek is large, h tends towards 1 and therefore the 
network receives a maximum punishment with a reinforcement toward 0. On the contrary, if the 
error Ek is low, h tends towards 0 and, consequently, the system receives a higher reinforcement 
through equation (14). In the present case, h is the tangent sigmoid function. 
In order to model low sensing quality and noise effect, the actual reinforcement is perturbed 

with a random noise with a zero mean and known standard deviation σν   (15). Also, it is 
considered to be distributed according to a Gaussian probability distribution. This random 
parameter reflects the quality of hand position sensors providing information about the 
hand palm configuration as well as fingers joint position sensors: 

 ( )0,k k nr r N σ= +   (15) 

To update the two parameters θ(k) and ϕ(k) used in the computation of the mean µk and 

standard deviation σk, the following learning rules are used: 

 
( )

( ) ( ) ( )

( )

ˆ if 0
1

 if 0

k k
k k k k

k

k

a
k r r i

k

k

µθ α σ
σθ

θ σ

⎧ ⎛ ⎞⎛ ⎞−
+ − >⎪ ⎜ ⎟⎜ ⎟⎜ ⎟+ = ⎨ ⎝ ⎠⎝ ⎠

⎪ =⎩

 (16) 

 ( ) ( ) ( )ˆ1 k k kk k r r iϕ ϕ ρ+ = + −  (17) 

α and ρ are constant learning rates. 
The update rules are designed to produce the following behavior. If the normalized perturbation 
added to the mean output of the unit (fraction in (16)) leads to a reward that is greater than the 
expected reward, then it is likely that the unit produces an output that is closer to the actual 
output. In other words, the mean should be changed in the direction of the perturbation that has 
produced a better reward and the unit should update its weights accordingly.  

To update the weight vector ϕ (17), the following procedure is used. To each input 
vector is associated an expected reinforcement value. Since these two parameters are 
available, to learn their association, a supervised learning paradigm can be used. In 
this case the Widrow-Hoff LMS rule is chosen. The second important point in the 

www.intechopen.com



Robotic Grasping: A Generic Neural Network Architecture 115 

learning rule (16) is that the standard deviation depends on the expected 
reinforcement. Therefore, the SRV unit can control the extent of search through the 
standard deviation value. In fact, as the expected reinforcement increases, the standard 
deviation decreases and, therefore, the size of the search space is narrowed in the 
neighborhood of the mean output. 

4.3 Integration of the layer of SRV units in the HCNN 
Recalling that the HCNN is composed of two layers of neurons using backpropagation 
(BP) and one output layer with SRV neurons, the input vector of the SRV units is the 
output vector of a hidden layer of BP units. To train the BP neurons, an error vector is 
needed and since SRV output units are used, the error signal is not available because 
there is no desired output. (Gullapalli, 1990) wrote that randomly perturbing the mean 
output and observing the consequent change in the evaluation, enables the unit to 
estimate the gradient of the evaluation with respect to the output. Therefore, to train the 
backpropagation layers, the actual error is replaced with an estimated error of the 
following form: 

 ( )( )ˆk k k kSRV
n

k

r r a µ
∂

σ
− −

=
 (18) 

In order to propagate the error from the SRV units back to the BP units, we have used the 
following equation. 

 SRV
n

TBP
n ∂∂ ⋅Θ=  (19) 

Where Θ [i, j] is the weight θ used to compute the mean parameter of the ith SRV unit from the jth 
BP unit's output (considered as input j of the SRV unit). With this properly propagated error (19), 
we can train the BP layers using the standard backpropagation algorithm. 
The purpose of the following sections is to study the performances of the proposed model. 
In a first part, the model is applied to define the posture of the MANUS manipulator used in 
rehabilitation robotics. Then, we evaluate the capability of the model to construct the 
posture of an anthropomorphic upper-limb model for a particular grasp with the 
incorporation of noise in the reinforcement signal and obstacles in the environment.  

5. Simulation results 

The purpose of this section is to study the performances of the proposed model. In a first 
part, we evaluate the capability of the model to construct hand posture for a particular grasp 
with the incorporation of noise in the reinforcement signal. In a second time, for three 
different tasks, proposed model is tested. 

5.1 Grasping with noise and uncertainty 
In this section, simulation results are presented. The hand posture to grasp a 
parallelepiped with five fingers is constructed. Before each test, the weights of the 
HCNN are initialized with random values over the interval [-0.5, 0.5] and the hand 
palm is placed in a random configuration within the search space. The learning is 
performed until a reinforcement greater than 0.99 is obtained or until the maximum 
number of iterations is reached. 

www.intechopen.com



116 Mobile Robots, Towards New Applications 

 

0 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 

0,7 

0,8 

0,9 

1 

0 500 1000 1500 2000

Time steps

Reinforcement 

σn = 0

σn = 0,2 

σn = 0,1
σn = 0,05 

 

 

0,001

0,01

0,1

1

500 1000 1500 2000

Time steps 

Error (m) σn = 0

σn = 0,05 

σn = 0,2 

σn = 0,1 

 
 a/ b/ 
Fig. 3. Evolution of learning parameters according to noise level: a/ Reinforcement signal 
and b/ corresponding error (m). 

In order to identify the influence of uncertainty and noise reflecting low quality sensors, we have 

considered four levels of noise with zero mean and standard deviation σn of 0.2, 0.1, 0.05 and 0 

(which corresponds to a deterministic reinforcement, rk ∈ [0, 1]). Each trial has duration of 2000 
steps and the bounds of the workspace are defined in Table I. In order to have a satisfying 

convergence, we use the following learning rates αBP = 0.01 for the BP units, α = 0.01 and ρ = 0.01 
for the SRV units. In Fig. 3a/, the obtained reinforcement signals with the four noise standard 
deviation levels are displayed as well as the corresponding deterministic error in Fig. 3b/. The 
algorithm finds a satisfactory solution even if the curves are more irregular for large standard 
deviations. We can also notice that the convergence is of the same order than the trial with 
deterministic reinforcement attesting the model robustness to noise. Finally, a satisfactory solution 
is obtained after a relatively low number of time steps. 
At the beginning of the learning process the SRV units expected reinforcement is low and the 
standard deviation parameter is high; thus the exploratory behavior is predominant. As training 
proceeds, the mean of the SRV units Gaussian distribution is gradually shifted in such a direction 
that the reinforcement increases. Consequently, the expected reinforcement increases and the 
standard deviation decreases rapidly as well as the total error. Then, the exploitation behavior 
becomes predominant and the hand configuration is slightly modified to optimize the solution.  

 X (m) Y (m) Z (m) θX (°) θY (°) θZ (°) 
min. value -0.1 -0.1 0.15 -45 -45 -135 
max. value 0.1 0.1 0.25 45 45 -45 

Table 1. Search space bounds for the rectangular block five fingered grasp. 

The results of the methods are constructed for grasps with different number of fingers and different 
contact sets. MATLAB environment is used to solve the grasp planning problem (Pentium 4 HT 
3.0Ghz, 512 ram, FSB 800 MHz). Three different grasps are considered in increasing number of 
fingers : grasping a glass with three fingers (task 1) or four fingers (task 2) and grasping a videotape 
with five fingers (task 3) (Fig. 4). For each task, twenty simulations are performed using the 
proposed model. Only the deterministic reinforcement with a zero noise level is considered. The 
results are summarized in Table 2. Results are displayed for each task in three columns. For task 1, 
in the first and second ones are indicated the total error and the detail for each fingertip after 2 and 5 
seconds of learning respectively. Finally, in the third column, the error after 2000 iterations is 
displayed. For task 2, results are provided after 2 and 6 seconds of learning in first and second 
columns and after 1000 iterations in the third one, for task 3, after 3 and 7 seconds and after 1000 
iterations in column 1, 2 and 3 respectively. Average values ± standard deviation are provided. 

www.intechopen.com



Robotic Grasping: A Generic Neural Network Architecture 117 

 Task 1 Task 2 Task 3 

Time (s) 2 5 18.5±12.3 2 6 14.8±5.2 3 7 18.9±3.2 

Error (mm) 9.0±9.4 4.1±1.1 3.1±0.04 8.4±5.8 6.2±1.7 5.1±1.2 21.3±21.7 9.1±2.8 6.9±1.3 

Thumb (mm) 2.6±1.4 1.9±0.8 1.5±0.7 3.4±2.9 2.5±1.3 2.1±0.9 7.0±9.8 3.7±1.5 3.0±0.9 

Index (mm) 4.5±7.5 1.1±0.7 0.8±0.4 1.9±1.5 1.3±0.3 1.2±0.4 4.9±6.2 2.2±1.3 1.6±0.9 

Middle (mm) 2.0±2.2 1.1±0.4 0.8±0.4 1.5±1.5 1.2±0.7 0.9±0.5 3.5±5.1 1.1±0.5 1.0±0.3 

Ring (mm)    1.6±0.9 1.2±0.5 0.9±0.5 2.2±2.8 1.0±0.5 0.7±0.3 

Pinky (mm)       3.7±7.4 1.2±1.0 0.7±0.3 

Table 2. HCNN results. 

Finally, in Fig. 4, the obtained postures for task 1, 2 and 3 are displayed. 

   
 a/ Task 1  b/ Task 2 c/ Task 3 
Fig. 4. Postures obtained by HCNN and optimization for the three tasks: a/ glass grasp with 
3 fingers, b/ glass grasp with four fingers, c/ videotape grasp with five fingers. 

  
a/ b/ 

Fig. 5. Complete arm model, Model architecture when considering the arm and obstacles in 
the environment. 

6. Complete upper-limb posture definition with obstacle avoidance 

In this section, a complete upper-limb is considered including an arm model associated with 

the hand model described and used in the former section. The model capabilities are 

extended by considering the presence of unknown obstacles in the environment (Rezzoug & 

www.intechopen.com



118 Mobile Robots, Towards New Applications 

Gorce, 2006). The resolution principle is the same than the one used when considering the 

hand only. Instead of the hand palm position, the arm joints configuration is considered as 

input of the ACNN (Arm Configuration Neural Network) which replaces the HCNN of the 

original model. Also, the arm forward model is used to compute the contact set in the frame 

of the considered fingers as shown in Fig. 5b/. 

6.1. Arm model 
The model of the arm is composed of two segments and three joints (Fig. 5a/). The first 
joint, located at the shoulder (gleno-humeral joint) has three degrees of freedom. The second 
joint is located at the elbow and has one degree of freedom. Finally, the last joint, located at 
the wrist, has three degrees of freedom. The final frame of the last segment defines the 
orientation of the hand palm. According to this formulation, the arm posture is completely 
defined by the joint angles vector q = [q1 , q2, q3, q4, q5, q6, q7]T. The chosen model has 7 
degrees of freedom (Fig. 5a/). 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration number

R
e
in

fo
rc

e
m

e
n
t

R3, C > 0 

R4, C = 2 

R4, C = 3 

R4, C = 4 

R4, C = 5 
R4, C = 6 

R1 = 0.99 

R2 = 0.495, C > 0 

 
Fig. 6. Evolution of the reinforcements R1, R2, R3 and R4 relative to the iteration and collision 
numbers. 

6.2. Improving learning performances by shaping 
In order to define a suitable reinforcement signal, two aspects of the performance have to be 
taken into account. The first one evaluates the upper-limb positioning task while the second 
is relative to collision avoidance. In the following, the different steps that conduct to the 
definition of the appropriate reinforcement signal are described. Firstly, the positioning task 
is evaluated. To do this, given the arm and fingers configuration, the actual position of the 
fingertips is calculated using forward kinematics. 
The simplest form of the reinforcement R1 as used in section 4 gives a maximum penalty if 
error Ek is large and is given in (14) and recalled here (a is a positive real number): 

 ( )1 1 . khR a E= −  (20) 

Starting from the definition of R1, the basic expression of the reinforcement signal that 
incorporates collision avoidance behavior is given by: 

www.intechopen.com



Robotic Grasping: A Generic Neural Network Architecture 119 

 1

2

1

if no collision

if collision

 
     

/ 2  

R
R

R

⎧
= ⎨

⎩
 (21) 

In order to fulfill the secondary task i.e. collision avoidance, the reinforcement R1 is 
divided by two whenever a collision is detected. Therefore, even if the principal task is 
accomplished with success the reinforcement is low due to the occurrence of a collision. 
One can notice the simplicity of the incorporation of collision avoidance behavior in the 
learning process. However, the criterion R2 uses a somewhat crude strategy and the 
results may not be as satisfying as expected. Indeed, the learning agent has to directly 
discover the right strategy to satisfy two kinds of constraints at the same time. This is a 
more complex task than arm positioning only.  
In order to circumvent this difficulty, we propose to use a technique inspired from animal 
training called shaping (Skinner, 1938). (Gullapalli, 1992) gave a nice definition of this 
concept and applied it to the frame of reinforcement learning : “The principle underlying 
shaping is that learning to solve complex problems can be facilitated by first learning to 
solve simpler problems. … the behavior of a controller can be shaped over time by gradually 
increasing the complexity of the task as the controller learns”. 
To incorporate shaping in the learning procedure, the basic idea is to let the agent 
learn the positioning task first and the collision avoidance behavior during a second 
phase. To implement this, a reinforcement signal that gradually increases over time the 
penalty due to collisions is defined. In this way, the agent can learn adequately the 
first task and modify its behavior in order to achieve the second one. The 
reinforcement value used in this case is the following (i is the current iteration number 
and p the maximum number of iterations): 

 

( )
1

3

1

if no collision

if collision
     

/ 1 /

R
R

R i p

⎧
= ⎨ +⎩

 (22)  

If collisions occur, for the same value of R1, an increase of i conducts to an increase of the 
denominator in (22) and consequently to a decrease of R3. If i = p, we can notice that R3 = R2 
and that there is a gradual shift from R1 (no penalty for collision) to R2 (full penalty for 
collision). This weaker definition of arm positioning with collision avoidance may be easier 
to learn than direct collision avoidance as defined by R2. The evolution of R3 with R1 = 0.99 
when collisions occur is displayed in Fig. 6.  
The main drawback of R3 is that the same penalty is applied whatever the number of 
collisions. It may be easier to learn the task successfully if the learning agent can grade 
differently two situations with different numbers of collision, giving more penalty to the 
posture conducting to more collisions or interpenetrations. In order to solve this problem, 
we define the reinforcement R4:  

 

( )( )
1

4

1

if no collision

if collision
     

/ 1 /

R
R

R c i pβ

⎧⎪= ⎨ +⎪⎩

 (23) 

where c is the number of detected collision(s) or interpenetration(s) and β a positive real number. 
Reinforcements R3 and R4 use the same strategy, except that R4 takes into account the number 
of collisions. Indeed, for the same value of R1, i and p, an increase of c conducts to an increase 
of the denominator in (23) and therefore to a decrease of the reinforcement R4. If c = 1, we 
notice that R4 = R3. The evolution of R4, with different values of c is displayed in Fig. 6.  

www.intechopen.com



120 Mobile Robots, Towards New Applications 

 
Fig. 7. Environments for the two grasping tasks. 

6.3. Simulation results 
The task to be performed is to grasp a cylinder with three fingers. Two different 
environments are considered, the first one with a big obstacle between the arm and the 
object and the second one with two obstacles (Fig. 7). 

Reinforcement R1 R2 R3 R4 

Success 26 20 22 26 

Positioning task 4 10 7 4 Causes 
of failure Collision 22 3 6 2 

Mean iterations number 102 430 281 310 

Standard deviation 126 271 259 245 

Table 3. Simulation results for Task 1. 

Reinforcement R1 R2 R3 R4 

Success 25 8 22 16 

Positioning task 5 22 7 14 Causes 
of failure Collision 24 4 2 5 

Mean iterations number 120 454 273 260 

Standard deviation 161 266 228 223 

Table 4. Simulation results for Task 2. 

Thirty simulations are performed for each reinforcement and for each environment. The 
weights of the ACNN are initialized with random values over the interval [-0.5, 0.5] and a 
random arm configuration is chosen within the search space. We use the following values 

for the parameters of the ACNN : αBP = 0.03, αSRV = 0.03, ρ = 0.01, n1 = 14, n2 = n3 = 20, n4 = 7, 

a = 1.5, p = 2000 and β = 0.25 The learning has to be completed for each task and 
environment and is performed until a reinforcement greater than 0.99 is obtained or until 
the maximum number of iterations is reached. A FCNN is constructed off line for each 
finger before the simulations. Collision or interpenetration check is implemented with a two 
steps scheme. Axis aligned bounding boxes are constructed for each element of the 
environment to make a first check. If it is positive, the distance between any pair of solids 
that are likely to collide is computed. This is done by minimizing the distance between any 
pair of points on the surface of two elements of the scene modeled with superquadrics.  

www.intechopen.com



Robotic Grasping: A Generic Neural Network Architecture 121 

In Tables 3 and 4 are displayed the obtained results. In the first row, the number of successes 
is indicated for each reinforcement. This corresponds to the case where the reinforcement is 
greater than 0.99. In the second and third rows is indicated the number of cases for which a 
failure is due either to the positioning task or to collisions. Finally, for the successful cases, 
the last two rows indicate the mean and standard deviation of the required number of 
iterations to obtain a suitable reinforcement. 

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration number

R
e
in

fo
rc

e
m

e
n
t

Reinforcement

Expected reinforcement

Standard deviation

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration number

R
e
in

fo
rc

e
m

e
n
t

Reinforcement

Expected reinforcement

Standard deviation

 
 a/ b/ 

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration number

R
e
in

fo
rc

e
m

e
n
t

Reinforcement

Expected reinforcement

Standard deviation

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration number

R
e
in

fo
rc

e
m

e
n
t

Reinforcement

Expected reinforcement

Standard deviation

 
 c/ d/ 
Fig. 8. Examples of learning parameters evolution for task 1 obtained with reinforcement a/ 
R1 , b/ R2, c/ R3 and d/ R4. 

Reinforcement R1 is used as a reference in order to demonstrate that the other 
reinforcements R2, R3 and R4 have effectively an effect on collision avoidance. 
The first observation is that the incorporation of collision avoidance behavior in the 
reinforcement signal effectively leads to collision avoidance even if the positioning task is 
not achieved. Using R1, 22 solutions out of 26 valid ones are obtained with collisions 
between the upper limb and the environment for the first task and 24 out of 25 for the 
second task. This number falls to 3, 6 and 2 for R2, R3 and R4 for the first task and 4, 2 and 5 
for the second task respectively. Also, one can notice that there is an increase of the number 
of successes when shaping is incorporated compared to the case where crude collision 
avoidance reinforcement is used (R2). This is particularly obvious for the second task (8 
successes with R2 compared to 22 using R3). This suggests that the strategy of shaping 
conducts to a higher number of valid solutions and therefore that the learning is enhanced. 

www.intechopen.com



122 Mobile Robots, Towards New Applications 

In Fig. 8 is presented the evolution of the learning parameters using reinforcements R1, R2, R3 and 
R4. These curves give interesting information on the learning process. Indeed, using R1 (Fig. 8a/), 
the evolution of the expected reinforcement which is an internal parameter representing the 
learning performance is “monotonic” and increasing, suggesting that the learning is performed in 
one sequence and that there is a gradual shift from exploration to exploitation. This parameter 
using R2 (Fig. 8b/) has a far less regular evolution, denoting the increased difficulty to find a 
solution due to the strict nature of R2. The evolution of R3 and R4 (Fig. 8c/ and 8d/) show the effect 
of shaping. At the beginning of the learning, the expected reinforcement follows the same pattern 
than using R1, i.e. a monotonic increasing function on average. As the number of iterations (NOI) 
increases, the occurrence of collision(s) is more penalized and there is a decrease of the expected 
reinforcement. This causes an augmentation of exploration evidenced by the augmentation of the 
standard deviation (bold dashed curve). Then, taking advantage of the previous learning of the 
positioning task, a solution is found that exhibits collision avoidance behavior. This is particularly 
visible in Fig.9 where the evolution of the number of collisions using R3 is shown (this case 
corresponds to the results of Fig. 8c/). The agent has learned the first task without considering the 
collisions. This is evidenced by the high number of collisions at the beginning of the learning. 
Then, as the number of iterations increases this behavior is more penalized and using the previous 
acquired knowledge the agent is able to learn the second aspect of the task (collision avoidance) 
without a deterioration of the performance concerning the first aspect (i.e. grasping). 

0 50 100 150 200 250 300

0

2

4

6

8

10

12

Iteration number

N
u
m

b
e
r 

o
f 

c
o
lli

s
io

n
(s

)

 
Fig. 9. Evolution of the number of collision(s) using reinforcement R3. 

To determine if the use of the different reinforcements has an effect on the NOI, a one way analysis 

of variance (ANOVA) (Miller, 1997) on the number of iterations to complete the task is conducted. 

A Bonferoni post-hoc test is used to perform multiple comparisons between means. The ANOVA 

evidences a significant difference between four groups means (F(3, 161) = 14.33, p<0.0001). Also, the 

post-hoc tests show a significant increase of the NOI using R2 compared to the NOI using R3 and R4 

(p<0.05). Also, a significant increase of the NOI using R2, R3 and R4 compared to the NOI using R1 is 

noticed (p<0.05). There is no significant difference between the NOI using R3 and R4. These results 

suggest that learning the positioning task is easier than the positioning task with collision avoidance 

because, on average, more iterations are needed whatever the chosen reinforcement. Secondly, the 

incorporation of shaping in the learning process reduces significantly the required number of 

iterations to reach the goal. Finally, taking into account the number of collisions in the reinforcement 

definition does not seem to improve significantly the learning performances. Therefore, among all 

the reinforcement signals proposed in this study, we can consider that R3 is the best one to perform 

grasping posture definition with obstacles in the frame of the considered model. In Fig. 10, the 

posture obtained to grasp a cylinder surrounded by 3 obstacles is shown. 

www.intechopen.com



Robotic Grasping: A Generic Neural Network Architecture 123 

 
Fig. 10. Upper-limb posture to grasp a cylinder surrounded by 3 obstacles. 

In the following section, a non anthropomorphic arm is considered. The method is slightly 
modified to handle this case. 

7. MANUS robot configuration definition 

Several movements are needed to grasp an object: an approach phase during which the 
end-effector is brought in the vicinity of the object followed by a grasping phase that 
implies precise adjustments in order to orient properly the end-effector. This latter 
phase can necessitate fine motions that are tedious if executed in manual control. To 
reduce the difficulty of this task, we propose to automate partially the grasping phase 
working in the vicinity of the arm configuration chosen by the user at the end of the 
approach phase. More precisely, we define the angular configuration of the robot joints 
in order to place the end-effector in an adequate configuration. 

 

H 

∆H 

L1

L2 

L3 

P 
 

 
MANUS 

Configuration 
Neural 

Network  

MANUS 

configuration at 

time t +1 

MANUS 

configuration 

at time t

End-effector 

configuration 

+

- 

MANUS forward 
kinematics  

Position of the 2 
points on the MANUS 

end-effector

Position of the 2 
target points on the 

object

-

+
Reinforcement 
computation 

 
Fig. 11. a/ Degrees of freedom of the MANUS robot , b/ Model architecture. 

7.1. Robot arm model  
To define the mobile platform configuration 9 degrees of freedom have to be controlled (6 for the 
MANUS and 3 for the mobile base). This task is made difficult due to the existence of an infinite 

www.intechopen.com



124 Mobile Robots, Towards New Applications 

number of solutions to put the platform and the MANUS arm in a given configuration (Fig. 11a/). 
In order to identify the object to be grasped, it is necessary to obtain information from a 
camera. It seems important to define the needed amount of information to achieve the task 
considering the trade off between efficacy and complexity. 
During the grasping phase, two points defined on the end-effector of the MANUS arm 
are associated with two points on the surface of the object. The goal of the grasping 
task is to bring the MANUS arm in such a configuration that the two pairs of points 
overlap. In this way, the constraints relative to the position as well as the orientation of 
the end-effector are treated. Furthermore, the amount of the needed information is 
limited to the position of four points in 3D. The corresponding model architecture is 
displayed in Fig. 11b/. 
The inputs of the model are the location of the two points of interest both on the MANUS 
gripper and on the object and also the arm joint limits. The output is the mobile platform 
configuration that optimizes a particular cost function composed of two parts: 

1. A first term that insures that the axes defined by the two points on the surface of the 
object and on the MANUS gripper are collinear. 

2. A second term to minimize the distance between each couple of points. 
The first part evaluates the orientation of the gripper relative to the object. Its expression is 
given in (24). 

 
1R = ⋅Gripper Objectn n  (24) 

nGripper is the unit vector aligned with the axe defined by the two points on the MANUS 
gripper and nObject is the unit vector defined by the two points on the object. The maximum 
value of R1 is reached when the two vectors are collinear, then R1 = 1. On the other hand, 
when the two vectors are orthogonal R1 = 0. 
The second part of the cost function evaluates the distance between the couples of points. It 
is defined as following: 

 ( )2 1 tanhR d= −  (25) 

where 

 ( )1 2min ,d d d=  (26) 

With 

 
1d = +Object Gripper Object Gripper

1 1 2 2X - X X - X  (27) 

 
2d = +Object Gripper Object Gripper

2 1 1 2X - X X - X  (28) 

Object
iX and Gripper

iX (i = 1, 2) represent the 3D position of the points attached to the object and to 

the gripper in. d represents the minimum of the summed distances between the couple of 
points on the gripper and the object. 
The function tanh insures that R2 lies in the interval [0, 1]. R2 is minimum if d is high and 
maximum (R2 = 1) if d = 0. Combining the two criteria, the cost function R (29) is obtained.  

 1 2

2

R R
R

+
=  (29) 

www.intechopen.com



Robotic Grasping: A Generic Neural Network Architecture 125 

 
 a/ b/ 
Fig. 12. a/Criterion evolution and b/simulated MANUS robot configuration. 

7.2. Simulation results 
In this section, simulation results are presented. The grasp of a cube placed at different 
locations is considered. The contact points location and the position of the object are known 
and considered as input data. The arm starts from a random position within its workspace. 
The graphs of Fig. 12a/ displaying the evolution of the learning criteria R1, R2 and R during 
learning show the ability of the model to discover the adequate configuration while 
satisfying orientation and position constraints. Also, to evaluate the performances of the 
method over a workspace, 30 simulations are performed for each of 64 object positions 

equally distributed in a 0.6 m x 0.6 m x 1m workspace. The obtained mean d (3) is 9.6 ± 4.1 
mm. For one situation, the platform configuration is shown in Fig. 12b/. 

8. Conclusion 

In this chapter, a new model was proposed to define the kinematics of various robotic 
structures including an anthropomorphic arm and hand as well as industrial or service 
robots (MANUS). The proposed method is based on two neural networks. The first one 
is dedicated to finger inverse kinematics. The second stage of the model uses 
reinforcement learning to define the appropriate arm configuration. This model is able 
to define the whole upper limb configuration to grasp an object while avoiding 
obstacles located in the environment and with noise and uncertainty. Several 
simulation results demonstrate the capability of the model. The fact that no 
information about the number, position, shape and size of the obstacles is provided to 
the learning agent is an interesting property of this method. Another valuable feature 
is that a solution can be obtained after a relatively low number of iterations. One can 
consider this method as a part of a larger model to define robotic arm postures that 
tackles the “kinematical part” of the problem and can be associated with any grasp 
synthesis algorithm. In future work, we plan to develop algorithms based on 
unsupervised learning and Hopfield networks to construct the upper-limb movement. 
In this way, we will be able to generate an upper-limb collision free trajectory in joint 
coordinate space from any initial position to the collision free final configuration 
obtained by the method described in this article. 

www.intechopen.com



126 Mobile Robots, Towards New Applications 

9. References 

Bard, C.; Troccaz, J. & Vercelli, G. (1991). Shape analysis and hand preshaping for grasping, 
Proceedings of the 1991 IEEE/RSJ Int. Workshop on Intelligent Robots and Systems, pp 
64-69, 1991, Osaka, Japan 

Becker, M.; Kefalea, E.; Mael, E.; von der Malsburg, C.; Pagel, M.; Triesch, J.; Vorbruggen, J. 
C.; Wurtz, R. P. & Zadel, S. (1999). GripSee: A gesture-controlled robot for object 
perception and manipulation. Autonomous Robots, Vol. 6, No 2, 203-221 

Bekey, G. A.; Liu, H.; Tomovic, R. & Karplus, W. J., (1993). Knowledge-based control of 
grasping in robot hands using heuristics from human motor skills. IEEE 
Transactions on Robotics and Automation, Vol. 9, No 6, 709-721  

Borst, C.; Fischer, M. & Hirzinger, G. (2002). Calculating hand configurations for precision 
and pinch grasps, Proceedings of the 2002 IEEE Int. Conf. on Intelligent Robots and 
Systems, pp 1553-1559, 2002, Lausanne, Suisse 

Coehlo, J. A. & Grupen, R. A. (1997). A control basis for learning multifingered grasps. 
Journal of Robotic Systems, Vol. 14, No. 7, 545-557 

Cutkosky, M. R. (1989). On grasp choice, grasp models, and the design of hands for 
manufacturing tasks. IEEE Transactions on Robotics and Automation, Vol.5, 269-279 

Doya, K., (2000). Reinforcement learning in continuous time and space. Neural Computation, 
Vol. 12, 243 - 269 

Ferrari, C. & Canny, J. (1992). Planning optimal grasps, Proceedings of the 1992 IEEE Int. Conf. 
on Robotics and Automation, pp 2290-2295, 1992, Nice, France 

Gorce, P. & Fontaine J. G. (1996). Design methodology for flexible grippers. Journal of 
Intelligent and Robotic Systems, Vol. 15, No. 3, 307-328 

Gorce, P. & Rezzoug, N. (2005). Grasping posture learning from noisy sensing information 
for a large scale of multi-fingered robotic systems. Journal of Robotic Systems, Vol. 
22, No. 12,  711-724. 

Grupen, R., & Coelho, J. (2002). Acquiring State form Control Dynamics to learn grasping policies 
for Robot hands. International Journal on Advanced Robotics, Vol. 15, No. 5, 427-444 

Guan, Y. & Zhang, H. (2003). Kinematic feasibility analysis of 3-D multifingered grasps. 
IEEE Transactions on Robotics and Automation, Vol. 19, No. 3, 507-513 

Gullapalli, V. (1990). A stochastic reinforcement learning algorithm for learning real valued 
functions. Neural Networks, Vol. 3, 671-692 

Gullapalli, V. (1992) Reinforcement learning and its application to control. PhD Thesis, University 
of Massachusetts, MA, USA 

Gullapalli, V. (1995). Direct associative reinforcement learning methods for dynamic 
systems control, Neurocomputing, Vol. 9, 271-292 

Iberall, T. (1997). Human prehension and dexterous robot hands. International Journal of 
Robotics Research, Vol. 16, No 3, 285-299 

Iberall, T.; Bingham, G. & Arbib, M. A. (1986). Opposition space as a structuring concept for the 
analysis of skilled hand movements. Experimental Brain Research, Vol. 15, 158-173 

Jeannerod, M. (1984). The timing of natural prehension. Journal of Motor Behavior, Vol. 13, No 
3, 235-254 

K. Pook and Ballard, Recognizing teleoperated manipulations, Proceedings of the 1996  IEEE 
Int. Conf. on Robotics and Automation , pp 578-583, 1993, Atlanta, GE, USA 

Kaelbling, L. P.; Littman, M. L. & Moore, A. W. (1996). Reinforcement learning: a survey. 
Journal of Artificial Intelligence Research, Vol. 4, 237-285 

www.intechopen.com



Robotic Grasping: A Generic Neural Network Architecture 127 

Kang, S. B. & Ikeuchi, K., (1997). Toward automatic robot instruction from perception - 
Mapping human grasps to manipulator grasps. IEEE Transactions on Robotics and 
Automation, Vol 13, No 1, 81-95 

Kerr, J. & Roth, R. (1986). Analysis of multifingered hands. The International Journal of 
Robotics Research, Vol. 4, 3-17 

Kuperstein, M. & Rubinstein, J. (1989). Implementation of an adaptative controller for 
sensory-motor condition, in: Connectionism in perspective, Pfeiffer, R.; Schreter, Z.; 
Fogelman-Soulie, F. & Steels, L., (Ed.),  pp. 49-61, Elsevier Science Publishers, ISBN 
0-444-88061-5 , Amsterdam, North-Holland 

Lee, C. & Xu, F. Y., (1996). Online, Interactive learning of gestures for human/robot 
interface, Proceedings of the 1996 IEEE Int. Conf. on Robotics and Automation, pp 2982-
2987, 1996, Minneapolis MI, USA 

Miller, A. T. & Allen, P. K. (1999). Examples of 3D grasps quality measures, Proceedings of the 1999 
IEEE Int. Conf. on Robotics and Automation, pp. 1240-1246, 1999, Detroit MI, USA  

Miller, A. T.; Knoop, S.; Allen, P. K. & Christensen, H. I. (2003). Automatic grasp planning 
using shape primitives, Proceedings of the 2003 IEEE Int. Conf. on Robotics and 
Automation, pp. 1824-1829, 2003, Taipei Taiwan 

Miller, R.G., (1997). Beyond Anova, Basics of applied statistics, Chapman & Hall/CRC, Boca 
Raton, FL, USA 

Mirtich, B. & Canny, J. (1994). Easily computable optimum grasps in 2D and 3D, Proceedings 
of the 1994 IEEE Int. Conf. on Robotics and Automation, pp 739–747, 1994, San Diego 
CA, USA 

Moussa M. A. & Kamel, M. S. (1998). An Experimental approach to robotic grasping using a 
connectionist architecture and generic grasping functions. IEEE Transactions on 
System Man and Cybernetics, Vol. 28, 239-253 

Napier, J.R. (1956). The prehensile movements of the human hand. Journal of Bone and Joint 
Surgery, Vol. 38, 902-913 

Nguyen, V. (1986). Constructing force-closure grasps, Proceedings of the 1986 IEEE Int. Conf. 
on Robotics and Automation, pp 1368-1373, 1986, San Francisco CA , USA 

Oyama, E. & Tachi, S. (1999). Inverse kinematics learning by modular architecture neural 
networks, Proceedings of the 1999 IEEE Int. Joint Conf. on Neural Network, pp 2065-
2070, 1999, Washington DC, USA 

Oyama, E. & Tachi, S. (2000). Modular neural net system for inverse kinematics learning, 
Proceedings of the 2000 IEEE Int. Conf. on Robotics and Automation, pp 3239-3246, 
2000, San Francisco CA, USA 

Pelossof, R.; Miller, A.; Allen, P. & Jebara, T. (2004). An SVM learning approach to robotic 
grasping, Proceedings of the 2002 IEEE Int. Conf. on Robotics and Automation, pp. 3215-
3218, 2004, New Orleans LA, USA 

Rezzoug, N. & Gorce, P. (2001). A neural network architecture to learn hand posture 
definition, Proceedings of the 2001 IEEE Int. Conf. on Systems Man and Cybernetics, pp. 
3019-3025, 2001, Tucson AR, USA 

Rezzoug, N. & Gorce, P. (2006). Upper-limb posture definition during grasping with task 
and environment constraints. Lecture Notes in Computer Science / Artificial 
Intelligence, Vol. 3881, 212–223. 

Saito, F. & Nagata, K.  (1999). Interpretation of grasp and manipulation based on grasping 
surfaces, Proceedings of the 1999 IEEE Int. Conf. on Robotics and Automation, pp 1247-
1254, 1999, Detroit MI, USA 

www.intechopen.com



128 Mobile Robots, Towards New Applications 

Skinner, B.F. (1938). The behavior of organisms : An experimental analysis, D Appleton century, 
New York, USA  

Sutton, R. S. & Barto, A.G. (1998). Reinforcement learning, MIT Press, Cambridge, MA 
Sutton, R. S. (1988). Learning to predict by the methods of temporal difference. Machine 

Learning, Vol. 3, 9-44 
Taha, Z.; Brown, R. & Wright, D. (1997). Modelling and simulation of the hand grasping 

using neural networks. Medical Engineering and Physiology, Vol. 19, 536-538 
Tomovic, R.; Bekey, G. A. & Karplus, W. J. (1987). A strategy for grasp synthesis with 

multifingered hand, Proceedings of the 1987 IEEE Int. Conf. on Robotics and 
Automation, pp. 83-89, 1987, Raleigh NC, USA  

Uno, Y.; Fukumura, N.; Suzuki, R. & Kawato, M. (1995). A computational model for 
recognizing objects and planning hand shapes in grasping movements. Neural 
Networks, Vol. 8, 839-851 

Watkins, C. J. C. H., (1989). Learning form delayed reward. PhD thesis, Cambridge University, 
MA, USA  

Wheeler, D., Fagg, A. H. & Grupen, R. (2002). Learning prospective Pick and place behavior, 
Proceedings of the 2002 IEEE/RSJ Int. Conf. on Development and Learning, pp 197-202, 
2002, Cambridge MA, USA 

Wren, D. O. & Fisher, R. B. (1995). Dextrous hand grasping strategies using preshapes and 
digit trajectories, Proceedings of the 1995 IEEE Int. Conf. on Systems, Man and 
Cybernetics, pp. 910-915, 1995, Vancouver, Canada 

www.intechopen.com



Mobile Robots: towards New Applications

Edited by Aleksandar Lazinica

ISBN 978-3-86611-314-5

Hard cover, 600 pages

Publisher I-Tech Education and Publishing

Published online 01, December, 2006

Published in print edition December, 2006

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The range of potential applications for mobile robots is enormous. It includes agricultural robotics applications,

routine material transport in factories, warehouses, office buildings and hospitals, indoor and outdoor security

patrols, inventory verification, hazardous material handling, hazardous site cleanup, underwater applications,

and numerous military applications. This book is the result of inspirations and contributions from many

researchers worldwide. It presents a collection of wide range research results of robotics scientific community.

Various aspects of current research in new robotics research areas and disciplines are explored and

discussed. It is divided in three main parts covering different research areas: Humanoid Robots, Human-Robot

Interaction, and Special Applications. We hope that you will find a lot of useful information in this book, which

will help you in performing your research or fire your interests to start performing research in some of the

cutting edge research fields mentioned in the book.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Nasser Rezzoug and Philippe Gorce (2006). Robotic Grasping: A Generic Neural Network Architecture, Mobile

Robots: towards New Applications, Aleksandar Lazinica (Ed.), ISBN: 978-3-86611-314-5, InTech, Available

from:

http://www.intechopen.com/books/mobile_robots_towards_new_applications/robotic_grasping__a_generic_ne

ural_network_architecture



© 2006 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


