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Abstract

This chapter describes and evaluates the design and implementation of a new fully
autonomous quadrocopter, which is capable of self‐reliant search, count and localiza‐
tion of a predefined object on the ground inside a room.

A camera attached to the quadrocopter and directed at the ground is used to find the
searched objects and to determine its positions during the autonomous flight in real
time. Hence, objects that fulfil the scanning parameters can be found in different
positions. Based on its own known position and the position of the object in the picture
of the camera, the position of the detected objects can be determined. Thus, repeated
detections of objects can be excluded. Consequently, objects can be counted and
localized autonomously.

The position of the object is transferred to the ground station and compared with the
true position to evaluate the system. Two different search situations and two different
strategies, breadth first search (BFS) and depth first search (DFS), are investigated and
their results are compared. The evaluation shows the potential, constraints and
drawbacks of this approach just as the effects of the search strategy, and the most
important parameters and indicators such as field of view (FOV), masking area (MA)
and minimal object distance. Moreover, the accuracy, performance and completeness
of the search are discussed. The entire system is composed of low‐cost components and
constructed from scratch. Its integration in the innovative real‐time operating system
RODOS (Real‐time Onboard Dependable Operating System) developed by the German
Aerospace Centre is described in detail. RODOS has been developed for embedded
systems such as satellites and comparable aerospace systems.

Keywords: autonomous UAV, quadrocopter, quadrotor, search and rescue, count, ob‐
ject localization
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1. Introduction

Equipping unmanned aerial vehicles (UAVs) such as quadrocopters with more and more
autonomous abilities is an interesting field of research. Furthermore, it is a requirement for
challenging autonomous search and rescue missions, which are still a field of interest [1–14].
Especially, fully autonomous systems are challenging since they cannot rely on external systems
like Global Positioning System (GPS) or optical tracking for accurate positioning. State of the
art is the usage of a laser scanner for obstacle detection, collision avoidance and via a simulta‐
neous localization and mapping (SLAM) algorithm for positioning [15, 16]. But laser scanners
are heavy, expensive and fail  in some situations like a smoking environment.  Other ap‐
proaches are vision based, but the high computational burden often requires an external
computer for computation [17–19].

Therefore, a solution for a fully autonomous system is presented using a new hardware design
combining optical and PMD cameras with infrared and ultrasonic distance holders for a
reliable system capable of search and rescue missions. This chapter focuses on the concept,
implementation and evaluation of the search, count and localization of red balls (example
search targets) with the mentioned autonomous system based on an innovative new hardware
design.

In a preliminary calibration scan, the parameters of the object are defined: a red ball is used as
an example object. The scan determines the colour and radius of the ball. The implementation
and principles of the object recognition and search will be described in detail. After determin‐
ing the scanning parameters, the autonomous search can be executed. This is done autono‐
mously by the quadrocopter, which uses inertial, infrared, ultrasonic, pressure and optical
flow sensors to determine and control its orientation and position in six DOF (degree of
freedom).

This research is part of the AQopterI8 Project of the Chair Aerospace Information from the
University of Würzburg [20].

2. Terms and background

To clarify different terms, parameters and algorithms, which will be used later, those are
defined in this chapter. The main idea of the presented search approach is that the quadro‐
copter uses a camera directed at the ground and by flying through the search area; it scans all
possible locations on the floor for a target (red ball). If a target is detected, it is added to the
list of detected targets unless a target has already been detected at this position. Thus, the
whole area can be searched for targets and the amount of targets as well as their positions can
be determined.

The most significant parameters for the performance of the search, the virtual field of view
(VFOV), the masking area (MA) and the search strategy are investigated, and therefore need
to be defined.
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In this case, the field of view (FOV) is defined as the area on the floor which the camera covers
(Figure 1). Using computer vision object detection, a target can be found on this single picture
of the floor. The field of view is specified by the camera (hardware), whereas the virtual field
of view is the area which the search strategy uses in order to cover the whole search area at
least once. For VFOV, a smaller value than the true FOV may be used to leave no room for
inaccuracy. Detection might fail if the quadrocopter does not fly exactly as expected by the
search strategy or if the target is located between two pathways and cannot be seen completely.
A smaller VFOV leads to a higher coverage and a longer search pathway (compare Figures 2
and 3).

Figure 1. Field of view (FOV).
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Figure 2. BFS waypoint list (VFOV 40 × 60).

Figure 3. BFS waypoint list (VFOV 60 × 90).

Two different search strategies, which are referred to as BFS (breadth‐first‐search) and DFS
(depth‐first‐search) later, are investigated. They correspond to the original algorithms, which
are used to search nodes in a graph. For reasons of simplification, all search algorithms start
at the bottom left corner of the search area.

The idea of the BFS strategy is shown in Figure 2. This strategy follows the general rule, which
says that closer positions are reached before farther ones. In general, the used algorithm follows
the iterative rule Up‐Right–Down‐Right–Up‐Left.
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In contrast to the BFS, the DFS does not search nearer but farther positions first. At first, the
algorithm covers the sides of the search area and proceeds with smaller iterations until the
complete search area is covered (compare Figures 4 and 5).

Figure 4. DFS waypoint list (VFOV 40 × 60).

Figure 5. DFS waypoint list (VFOV 60 × 90).

Figure 6. Masking area around an accepted target (red dot).
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The masking area (Figure 6) determines a square which is set around a found object to avoid
multiple detections of the same target. It is determined by a distance named MA. During the
search a target might be seen several times from different positions. Because of errors and noise
the target is never detected exactly twice at the same position, and therefore would be
considered as a new object multiple times. The masking area is subtracted and added to the
X‐coordinate and the Y‐coordinate of every accepted target and it is proved if the newly
detected target is located within one of these coordinates. If so, the newly detected target is
discarded, otherwise it is accepted. Instead of a circle a square masking area can be chosen for
reasons of simplification and the FOV being also a square.

3. Concept

The concept of the search is separated into two parts: the object or target search and the flight
search

3.1. Object search

The task of the object search is to determine the amount and positions of the targets by fusing
the results of the object detection with the current position of the quadrocopter (Figure 7). It
manages the list of found objects and adds new ones if necessary.

Figure 7. Object search concept.

Whenever the object detection has a hit, the absolute position of this new target is computed
by Formula (1),
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T O Q OP = P + P + C (1)

where CO is the offset between the camera and the centre of the quadrocopter or its position
sensor, PQ is the current position of the quadrocopter and PO is the relative position of the found
object determined by Formula (2)–(5):
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Mx andM y   in Formula (2) are the coordinates of the object's centre point determined by the
object detection, Cx and Cy are the calibration width in X and Y, respectively, at a height of Ch ,
h is the current height and Z is a constant. Cx and  Cy are determined by the true FOV of the
camera. Rx andRy are the resolution of the camera in the X ‐ and Y‐directions, respectively.

Next, the position PT is compared with all positions iPT with i indicating the index of the already
accepted position. If the new position PT occurs within the masking area of any target iPT, it is
discarded, otherwise it is accepted.

3.2. Flight search

The task of the flight search is the waypoint generation. It ensures that the quadrocopter with
a determined VFOV covers the whole search area at least once. The VFOV is a static parameter,
which represents the FOV. A bigger FOV leads to less waypoints and a shorter flight search,
while with a smaller FOV more waypoints and resulting pathways are created. In general,
waypoints are not generated next to each other iteratively in small steps because of the bad
flight performance of this approach [21], but with maximal distance according to the search
strategy.

Then, the flight search is executed statically. That means the waypoint list is generated once
at the beginning and it is not changed during the flight. The waypoint list is determined by
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the search strategy, the search area and the VFOV. Figures 2–5 illustrate the effect of these
parameters on the waypoint list.

4. Object recognition

The algorithm for object recognition is based on significant information about an object’s shape
and colour and determines if it is a target or not [22]. The implemented search algorithm (object
recognition) expects targets, which are round and monochrome, such as red balls. Extending
the system to enable a detection of more than one target colour at the time can easily be
achieved. To provide the possibility of searching for other shapes like rectangles or human
bodies the object recognition needs to be replaced or changed fundamentally. For the experi‐
ments described in this chapter, red balls with a diameter of approximately 7 cm are considered
as search targets.

In the following sections, the necessary image processing fundamentals will be briefly
discussed. Afterwards, the circle detection algorithm used to identify the balls will be intro‐
duced. Finally, the recognition procedure consisting of an initial scan to determine the search
parameters and a subsequent search will be explained.

4.1. Image processing fundamentals

For implementation and guidance, the open source computer vision library OpenCV can be
recommended [23]. It contains a variety of basic image processing core algorithms as well as
advanced procedures for applications such as object recognition, feature extraction and
machine learning.

4.1.1. Image representation

A standard way to represent a picture while using a PC is the RGB model. Each pixel is
described by three intensity values: red, green and blue. Here we assume a resolution of 8 bit.
Therefore, the range for each value is 0–255 (=28 – 1).

For a bench of calculations, the RGB representation of a pixel is impractical and a single value
per pixel is preferred. Using the so‐called greyscale image the value grey of a pixel x can be
determined by its original RGB values (Formula (6)):

( ) 0.299· . 0.587· . 0.114· .grey x x R xG x B= + + (6)

The simplest representation is the binary image in which only two values exist: 0 and 1. If a
pixel meets certain requirements, for example if it has a specific RGB or a greyscale value, a
value of 1 is assigned, otherwise it has a value of 0.
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Figure 8. Image of two balls using its RGB (left), greyscale (middle) and binary (right) representation.

An example image of two balls and the corresponding greyscale image can be seen in
Figure 8. Furthermore, a binary image was created by assigned value 1 to each pixel with a
red value higher than 100 and with green and blue values lower than 50.

4.1.2. Filters

In contrast to the operations already introduced, filters use a variety of pixels and not just a
single one to determine the new value of a pixel. The idea behind the filters is to perform 2D
convolution: a so‐called filter matrix is slid over the original image and simple multiplica‐
tions of the filter elements with the underlying values of the image pixels are performed.
The calculated outcomes are summed up and the result is stored as the new value of the pix‐
el, which is located under the so‐called hot spot, the centre of the filter matrix. The entire
process is shown in Figure 9.

Figure 9. Mode of operation of a linear filter [24].

4.1.3. Edge detection

One of the most frequent applications of filters is edge detection [24]. Edges can be defined as
regions in which big intensity changes occur in a certain direction. To detect those changes one
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or several filters have to be applied to the greyscale image. In most applications, the so‐called
Canny edge detector is used [25]: after deploying a Gaussian filter in order to remove noise,
the intensity gradients are computed by applying the Sobel operator, which consists of two
separate filter matrices. The first filter computes the gradient in the x‐direction:

1 0 1
2 0 2
1 0 1

S
xH

-é ù
ê ú= -ê ú
ê ú-ë û

(7)

The second one highlights the change of intensity in the y‐direction:

1 2 1
0 0 0
1 2 1

S
YH

- - -é ù
ê ú= ê ú
ê úë û

(8)

The local edge strength E can then be calculated by combining the resulting images Dx and Dy

for each pixel (u, v):

( ) ( ) ( )22, ( , ) ( , )x yE u v D u v D u v= + (9)

Furthermore, the local edge orientation angle Φ(u, v) can be determined as
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(10)

In general, the described procedure leads to blurry edges. Therefore, an edge thinning
technique called non‐maximum suppression is applied. The computed first derivatives are
combined into four directional derivatives and the resulting local maxima are considered as
edge candidates.

Finally, a hysteresis threshold operation is applied to the pixels. Two thresholds have to be
defined: an upper one and a lower one. If the local edge strength of a pixel is higher than the
upper one, the pixel immediately is accepted as an edge pixel. Pixels whose gradient is below
the lower threshold are rejected. If the local edge strength is between the lower and the upper
threshold, only pixels adjacent to pixels with gradients above the upper threshold are accepted.
This process promotes the detection of connected contours. In this work, values of 20 and 60
were used for the lower and upper thresholds, respectively.
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4.2. Hough circle transformation

A circle is defined by its centre C(xC , yC) and its radius r. All points P(xP , yP) on the outline of
the circle satisfy the circle equation:

2 2 2( ) ( )C P C Px x y y r- + - = (11)

Identifying circles from an edge image by using this equation and the simple approach of
checking for every centre candidate, how many edges lie on a circle around it, is very inefficient
and highly inadvisable. In the following sections two much faster and more robust approaches
are presented.

4.2.1. Basic method

The basic idea behind the Hough transformation can be seen in Figure 10. Given a target circle
with radius r. If circles with the same radius r are drawn around an edge point of the target
circle, they will intersect. The main accumulation of intersection will occur in the centre of the
target circle.

Figure 10. Intersecting circles (blue) drawn around the edge pixels of the target circle(s) (red) using one radius (left)
and a range of radii (right) [26].

To identify a circle with known radius r in an edge image, a so‐called accumulator array is
used. Typically, it has the same dimension as the edge image or is scaled down by a low integer
number. If the target radius is exactly known, a two‐dimensional array is sufficient. After
initializing every cell with zero the voting process starts. Each edge pixel is treated as a possible
circle outline and all corresponding centre candidates in the accumulator array get a vote. This
means that their value is incremented by 1. After voting all detected circles can be identified
by checking, in which cells in the accumulator array earned enough votes. Consequently, a
threshold is needed. As the value of each cell roughly corresponds to the number of circle
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outline pixels in the edge image, a useful threshold can be derived from the maximal number
of votes, i.e., the circle’s circumference [25].

However, in real‐world application the target radius often is not exactly known and the
algorithm has to search for a range of radii. This is implemented by extending the accumulator
array to three dimensions: two for the already described two‐dimensional arrays and one for
each radius. During the voting process each edge pixel votes for all possible circle centres by
incrementing the corresponding values in every radius plane.

It can easily be seen that the standard approach is not suitable to most real‐world applications
despite being very robust. First of all, it is slow because for every edge pixel approximately 2πr
centre candidates have to be calculated per radius r. Another problem is that the accumulator
arrays can be very memory intensive, especially if the input edge image resolution is high and
the target radius is not exactly known. Hence, several improvements were introduced and will
be discussed in the following section.

4.2.2. Gradient method

As shown in Formula (10), the local edge orientation angle can be easily determined. By
exploiting this, the circle detection algorithm can be executed with much higher efficiency. The
key observation is that all edges are perpendicular to the line that connects the edge pixel and
the centre of the circle. Therefore, it is not necessary to calculate up to 2πr centre candidates
for each edge pixel and vote for them in the accumulator array. Because of the edge orientation
angle the amount of candidates can be narrowed down to only a few pixels. This is shown in
Figure 11.

The vertical line in the centre of Figure 11 shows the respective local edge orientation. If the
radius is exactly known, in theory only two possible centres correspond to the given edge
direction: C1 and C2. They are located on a line perpendicular to the edge direction and their
distance to the considered edge pixel is r. If the algorithm is searching for a range of radii, the
sets of possible centres C1[ ] and C2[ ] are located on aforementioned line and the distances of
the centres to the initial edge pixel vary from rmin to rmax.

Hence, the accumulator array can be reduced to two dimensions even when searching for
several radii [27]. During the voting process the location of each edge pixel that casts a vote is
stored. After the vote the centre candidates are selected. To be taken into consideration the
accumulator value of a valid centre candidate has to be above the given threshold and higher
than the values of all its immediate neighbours. The approved centre candidates are sorted in
descending order according to their accumulator values.

Now the best fitting radius has to be determined. For this, the previously stored edge pixels
are considered. The distances between each of these pixels and the centre candidates are
calculated. Using these distances, the best supported radius can be determined. Finally, it has
to be checked, if the resulting centre is not too close to any previously accepted centre and if
it is supported by a sufficient number of edge pixels.
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Figure 11. Possible locations of centres given a specific edge direction (green) using one radius (left) and a range of
radii (right) [26].

4.2.3. Run‐time comparison

In Ding et al. [22], the run times of the described basic method and the gradient method are
compared by detecting red balls in an image using a resolution of 192 × 144 pixel. The achieved
results were averaged over 10 measurements and are displayed in Table 1.

1
ball

5
balls

Basic method 35.2 ms 63.4 ms

Gradient method 12.0 ms 12.5 ms

Table 1. Results of the run‐time comparison.

When only one ball is detected, the gradient method is already about three times faster than
the basic method. The difference becomes even more significant when the number of balls and
therefore the amount of edges is increased.

4.3. Recognition procedure

The recognition procedure is split into two phases: the initial search to determine the target
parameters pre‐flight and the actual search which is performed mid‐air by the quadrocopter.

4.3.1. Initial scan

Prior to the search, some parameters have to be predefined. Thus, a picture of the search target
is taken on a plane background and from a height close to the flying height of the quadrocopter.
The radius can be directly determined by detecting the ball and storing the radius, in which
the maximum number of votes in the accumulator array was achieved.
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Furthermore, the dominating colour within the detected circle is calculated by combining
several of the most frequent red, green and blue values. It is notable that the average values
are not used because they can be heavily influenced by bright spots on the search target which
emerge because of unfavourable lighting conditions. The final target colour does not consist
of exactly one set of RGB values but of ranges for each colour channel which are derived from
the original values.

Furthermore, the algorithm searches for more than one radius. Therefore, the initially detected
radius ±2 can be chosen as a target range to compensate for light variations of height during
the flight. To allow bigger chances in flying altitude, the radius range would have to be adjusted
according to the currently measured distance of the quadrocopter to the floor.

4.3.2. Search

The actual search is performed using a resolution of 192 × 144 pixels. This allows quick
processing while still preserving all the information necessary for a successful detection.

After taking a picture it is converted into a greyscale image and the Hough detection is
performed. The number and quality of detected circles heavily depend on the threshold used
during the Hough circle detection. A good value for the required number of votes is 30% of
the circumference of the smallest radius. With significantly higher values, target objects tend
to get missed far too often because the constant movement of the quadrocopter tends to prevent
the camera from taking sharp pictures.

All detected circles, i.e., all target candidates, are then analysed for their colour. For each pixel
inside a candidate's enclosing circle, it is checked if its RGB values lie within a certain range.
The range is determined during the initial scan. For a candidate to get confirmed as a target,
a certain percentage of its pixels has to be target pixels. Setting this threshold to about 40% was
a good value here.

5. Hardware design

Figure 12 depicts the hardware design of the quadrocopter (Figure 13). The brain of the system
is composed of two processing units, an AVR 32 bit MCU (microcontroller unit) UC3A and
the LP‐180 providing an AMD‐x86 processor and 2 × 1.6 GHz system clock [28].

The CPUs can be seen in the centre of the picture. The MCU interfaces all sensors except those
connected via USB and performs the control part with real‐time computing, while the task of
the LP‐180 contains all functions with a high computational burden such as object recognition
and mapping.

The quadrocopter uses a couple of sensors for obstacle detection and is capable of distance‐
controlled collision avoidance [29]. For object recognition, the C270 camera from Logitech is
used [30]. All processing is done on‐board the quadrocopter, so it is capable of a fully auton‐
omous flight.
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Figure 12. Hardware design.

Figure 13. AQopterI8 picture.

6. Software implementation

6.1. Overview and background (RODOS)

The underlying software problem with multiple, here three, real‐time processing units
interacting with each other is a typical application of the real‐time operation system RODOS
(Real‐time Onboard Dependable Operating System). An important aspect in the selection of
RODOS is its integrated real‐time middleware. Developing the control and payload software
on the top of a middleware provides the maximum of modularity. Different functions can be
developed independently and simultaneously and it is very simple to interchange modules
later without worrying about side effects because all modules are encapsulated as building
blocks (BB) and they interact only through well‐defined interfaces.

RODOS was originally developed for space applications at DLR (German Space Agency) and
is now distributed as open source for many applications such as Robotics [31, 32]. RODOS was
designed for application domains demanding high dependability (e.g., space) and targets the
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irreducible complexity in all implemented functions. It follows the quote ‘Perfection is
achieved, not when there is nothing more to add, but when there is nothing left to take away.’
from Antoine de Saint‐Exupery.

The quadrocopter firmware—ranging from attitude control to route planning, and payload
software, e.g., identification of objects—is implemented as a (software) network of communi‐
cating building blocks. A useful feature of the RODOS middleware is the location transparency
of building blocks. BBs can interact and communicate in the same way independently of the
location of communication partners. This includes the same computer, a different computer
in the same vehicle, on a different vehicle or between vehicles and ground station (operator
interface).

RODOS was designed as the brain of the Avionic system and introduced for the first time
(2001) the NetworkCentric concept. A NetworkCentric core avionics machine consists of
several harmonized components, which work together to implement dependable computing
in a simple way. In a NetworkCentric system we have a software network of BBs and a
hardware Network interconnecting vehicles (radio communication), computers inside of
vehicles (buses and point‐to‐point links), intelligent devices (attached to buses) and simple
devices attached to front end computers. To communicate with external units, including
devices and other computing units, each node provides a gateway to the network and around
the networks several devices may be attached to the system. The communication is asynchro‐
nous using the publisher–subscriber protocol. No fixed communication paths are established
and the system can be reconfigured easily at run time. For instance, several replicas of the same
software can run in different nodes and publish the result using the same topic without
knowing each other. A voter may subscribe to that topic and vote on the correct result.
Application can migrate from node to node or even to other vehicles without having to
reconfigure the communication system. The core of the middleware distributes messages only
locally, but using the integrated gateways to the NetworkCentric network, messages can reach
any node and application in the network. The communication in the whole system includes
software applications, computing nodes and even IO devices. Publishers make messages
public under a given topic. Subscribers (zero, one or more) to a given topic get all messages
which are published under this topic. As mentioned before, for this communication there is
no difference in which node (computing unit or device) a publisher and subscribers is running,
and beyond this they may be any combination of software tasks and hardware devices! To
establish a transfer path, both the publisher and the subscriber must share the same topic. A
topic is a pair consisting of a data type and an integer representing a topic identifier. Both the
software middleware and the hardware network switch (called middleware switch) interpret
the same publisher/subscriber protocol.

6.2. Software design

A simplified RODOS‐based software design of the AQopterI8 quadrocopter can be seen in
Figure 14. The different BBs exchange services by middleware topics. These BBs are located
on three different CPUs, the on‐board MCU UC3A, the on‐board x86 PC LP‐180 and the ground
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segment (GS) with an off‐board CPU. The GS provides the user with a GUI and is used for
commanding (Figure 15).

Figure 14. RODOS‐based software design (simplified).

Figure 15. I8Quatplay (Qt‐based Commanding Software GUI).

The IMU BB updates the IMU readings every 10 ms with already calibrated and conditioned
sensor values. The attitude heading reference system (AHRS) computes from these data the
3D orientation of the quadrocopter using a complementary quaternion filter. The control BB
performs the six degree of freedom (DOF) position control based on the position and orienta‐
tion given by other BBs. The Steer BB drives the motors and executes the commands of the
operator and navigation.

The position is further required by the Object Search BB and sent via the gateway using the
serial communication link as well as to the GS via WiFi. Thanks to the Gateway and Middle‐
ware of RODOS, these data can be used in the same way on another device as on the same
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device. The kernel of RODOS provides support for thread execution, time management,
synchronization and transparent access to external devices such as sensors by the HAL
(hardware abstraction layer) interface.

7. Evaluation

7.1. Overview evaluation

To investigate the performance, accuracy and limitations of the proposed system and to
compare both search strategies (DFS, BFS) as well as to discuss the optimal parameters for the
masking area and VFOV, the results of 63 experiments from two setups are presented.

7.2. First setup

The first setup contained 42 experiments. The search area consisted of a 3 m × 2 m square with
two randomly placed balls at the positions (50, 50) and (240, 140) according to Figure 16.

Figure 16. First setup.

In this setup the experiment was repeated for both search strategies, BFS and DFS, for four
different masking areas with MA = 0.1 m, MA = 0.15 m, MA = 0.2 m and MA = 0.3 m and with
three different VFOV: 0.3 m × 0.45 m, 0.40 m × 0.60 m and 0.60 m × 0.90 m. Then the computed
position of the target was compared with the manually measured one, supposed to be the true
position. For every single parameter setting, the average error dx in the X‐ and dy in the Y‐
direction was computed, first over both targets and then over the entire run together. Also the
number of double detections D (fail positive) and misses M (fail negative) was counted
(Table 2). In the second run, the experiments for MA = 0.3 m were skipped because MA = 0.2
m showed no problem in this setup.
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Detection failures DFS BFS

M D M D

VFOV 30–45 0 0 0 3

40–60 0 1 1 0

60–90 4 0 2 1

MA 10 2 1 1 3

15 0 0 1 1

20 0 0 1 0

30 2 0 0 0

Table 2. Detection errors first setup: M missing and D double detections.

From these data no clear difference in accuracy between DFS and BFS or between the different
parameter settings could be identified, but it could be concluded that the average error in one
axis is less than 15 cm. This setup of randomly placed balls is predominantly affected by
coincidence. It might be that one setting leading to one flight path fits well to the placement
of the balls.

By taking a look at the detection failures (Table 2), clear conclusions can be made. The real
FOV is about 65 cm × 45 cm and it can clearly be seen that a VFOV of 40 cm × 60 cm or higher
leads to misses. The bigger the VFOV is, the more misses occur, as expected. A proper VFOV
of 30 cm × 45 cm leads to no misses for both search strategies. The data show that a lower MA
can lead to double detections. This is the case because a target might be seen several times. As
the position error in one direction is about 15 cm, MA should be at least in the same range.
Conclusively, it can be seen that the DFS performed better and also that there is still a domi‐
nating systematical error.

7.3. Second setup

Based on the outcome of the first setup, in the second setup more balls were placed to reduce
the effect of coincidence. In addition, the search area was changed to a 2 m × 3 m square
(Figures 17 and 18), which aimed to equalize the results between the two search strategies and
to improve the results of the BFS. This time positions were selected, which should cause
troubles for all settings (Table 3).

Figure 17. Second setup.
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Figure 18. Picture of second setup from above.

Detection failures DFS BFS

MA VFOV M D M D

15 25–35 Skipped 2 4

30–45 0 2 2 0

40–60 0 0 1 0

60–90 2 0 4 0

20 25–35 Skipped 3 2

30–45 0 0 1 0

40–60 0 0 2 0

60–90 2 0 4 0

30 25–35 Skipped 2 0

30–45 0 0 1 0

40–60 1 0 1 0

60–90 3 0 4 0

Table 3. Detection errors second setup: M missing and D double detections.

Figure 19 depicts the results shown in the QT Control‐Software for a run with the settings MA
= 20 cm and 30 × 45 cm for VFOV. It demonstrates that for these settings all targets were detected
properly.

The second setup more clearly showed the effect of each parameter or setting and underlined
the already expected results. More targets reduced the effect of coincidence, and therefore one
run was seen to be enough.

The average position error for the DFS was 16 cm and for the BFS it was about 20 cm. According
to these data the DFS can already be concluded as more accurate, but a clearer distinction
between both search strategies can be made by taking the detection failures into account. For
the DFS there are 10 detection errors in nine experiments compared to 20 detections errors of
the BFS in the same setup. Considering these bad results, a value of 25 cm × 35 cm for VFOV
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was tested with the BFS, but this led to even worse results. There is no setting for the BFS
without detection error, but there are four settings with no detection error for the DFS.

Figure 19. GUI picture of search result (20–30–45): red: found targets; green: waypoints; yellow: position.

7.4. Summary evaluation

To sum up, it can be said that all settings, the search strategy, the masking area and the VFOV
have a significant effect on the performance of the search. Although still other, partly random
parameters and circumstances have an important influence on the result, optimal values of
these parameters are required. This is underlined by Figures 20–22, which show that the DFS
with MA = 20 cm and a VFOV of 30 cm × 45 cm or 40 cm x 60 cm detected eight balls exactly
and nothing else mistakenly. This means there exist settings, which solved this challenging
setup. It shall be mentioned that an MA of 30 cm led to a miss in one of the two cases because

Figure 20. DFS detection failures (general distribution).

Figure 21. BFS detection failures (distribution after MA).
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then one of the closest balls, which are 20 cm away, was not accepted. The BFS showed no
good results here and only a VFOV of 30 cm × 45 cm and of 40 cm × 60 cm led to acceptable
results. Altogether these results also made the BFS look worse than it was. Some balls were
positioned in such way that the BFS failed them by a few centimetres.

Figure 22. BFS detection failures (distribution after VFOV).

8. Conclusion and discussion

The evaluation demonstrated that the system is capable of autonomously detecting, counting
and localization of objects with an accuracy of about 15–20 cm. It was proven that an optimal
value for MA (20 cm) has to be a bit higher than the accuracy of the position system and that
objects with the distance of 20 cm (MA) in each axis can still be distinguished. Also the
coherence of the parameters MA and VFOV on the performance of the search and the detection
errors was demonstrated. A smaller VFOV with a smaller MA leads to more double detections,
while a too high MA leads to misses of nearby objects. As a general rule, too high VFOV leads
to misses because some areas are not searched properly. In this context the acceptance
tolerance, which was set to 25 cm in setup 2, is a parameter, which comes into effect. A waypoint
is already marked as reached if the current position of the quadrocopter is within this tolerance.
This can result in an incomplete cover of the search area and it explains why the BFS misses
some targets at the side of the search area.

The best parameter for VFOV was 30 cm × 45 cm. This setting together with the best value for
MA showed no detection error even in a challenging room with eight objects.

Furthermore, the evaluation proved that the DFS performed better than the BFS. The reason
for that is the fact that smaller waypoint steps are less accurate than less big ones because of
the set point jumps and the jump effect as well as the control and sensor system. These result
simplified mean that also for a flying robot such as a quadrotor using the underlying on‐board
sensors less turns and commands are better. This could already be demonstrated in previous
experiments [21]. The reason for that can be found in the dynamic of the quadrotor as an aerial
vehicle with very little friction (air) and the on‐board optical sensors, which are especially
affected by the behaviour of the system. Rotations, which mainly occur after set point changes,
are a source of error for the position determination.
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Although the system was proven capable of performing autonomous and challenging search,
count and localization missions, the evaluation of the system did not show a very high accuracy
according to the determined positions and the fact that optical sensors were used, which
generally can reach higher accuracies. There are multiple sources for accuracy errors, which
start from the manually measured and placed target positions in a region of several centime‐
tres. The next major source of error is the starting error, which means the wrong position
measured by the optical flow during lift off and the wrong initial position and orientation or
placement error of the quadrocopter on the starting position. An initial orientation error for
yaw of only 1° leads to a position error of 5 cm after 3 m. It is most likely that the initial yaw
orientation error was sometimes in the range of a few degrees. These are good explanations
for the high systematical error, which can be seen in the data. A proof of this fact is given by
a closer look at some raw data. They demonstrate that the accuracy for the closer object is much
better than for the farer object, even if the closer object is detected later in some cases. The best
explanation for this is an initial yaw orientation error or missing alignment.

In general, it can be concluded that for this setup proof of high accuracy is challenging and the
accuracy of the system might be better than the data show, but at the same time this is not the
presented work.

Other sources of error are wrong calibration values for the relative position of the detected
object Po (Formula (2))) and simplifications of Formula (2), an incorrectly measured height, a
wrong scaling factor for the optical flow and bad lighting and surface conditions, which lead
to position errors measured by the optical flow sensor.

The current orientation of the quadrocopter is not considered in the computation of the
position PT. This was intended because the effect of an orientation error should be excluded
from the evaluation. In some cases this led to double detection errors.

9. Perspective

Although the system performed quite well in general, there is potential for optimization. The
effect of the already mentioned acceptance tolerance and an improved procedure for the
waypoint navigation would allow higher values for VFOV. Furthermore, the system can be
improved by using two phases. In the first phase, the object search just tries to find something
with a low resolution reducing the computational burden and increasing the possible sample
time. The focus of the first phase is to overlook nothing. If it has a hit, the quadrocopter
suspends the waypoint search and flies to the position of the hit. Then, the second phase is
executed using a high resolution and accuracy and only in this phase the accepted position is
determined. Computational burden is unimportant in the second phase because the quadro‐
copter is on position hold.

A different approach with a moving camera and flexible height could also be investigated. In
this case, the quadrocopter would possibly not need to search the whole area or at least the
waypoint list could be much smaller. In our setup, the quadrocopter could simply fly 4 m up
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and could see the complete search area. But that will not be possible in every situation as
usually rooms are not that high. However, it needs to be compared that which accuracies and
detection performance could be achieved then. Taking obstacles and unknown limitations into
account as well as the fact that objects might not be detected properly from a distance and at
an angle, this approach is much more sophisticated, but also offers more potential and might
save flight time, and therefore could reduce the energy consumption.

Another interesting improvement would be to use the obstacle detection sensors to improve
the position computation, and therefore the accuracy of the localizations. A challenging part
here is a reasonable distribution of the limited resources of the LP‐180 to the different de‐
manding tasks.
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