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Abstract

Middleware architectures have proven to be of major importance when dealing with
distributed systems, as they are able to abstract the inevitable heterogeneity of the
hardware devices present in a deployment with the aim of offering a collection of
interfaces  and  resources  of  homogeneous  appearance  to  the  upper,  application‐
oriented layers. In an energy‐based distributed system as the Smart Grid, this role is
replicated, as the hardware devices that are found, while essentially related to the power
grid and the functionalities that can be extracted from it (advanced metering infrastruc‐
ture, remote terminal units, renewable energy resources, etc.), still present the same
challenges that other distributed systems are expected to deal with, such as heteroge‐
neous features, different information formats, diversity of their performance proce‐
dures, or integration and interconnectivity issues. Therefore, a middleware architecture
is still of major usability in the power grid. This chapter offers information about the
common features that are present in a middleware architecture that works under the
requirements and use cases typical of the Smart Grid, as well as offers examples on how
middleware integrates legacy, proprietary, and newly developed pieces of equipment
within the same distributed energy grid.

Keywords: middleware, distributed systems, software architecture, data manage‐
ment, service integration

1. Introduction

Interconnecting hardware devices of different features has been a challenge faced repeated times
in different areas of knowledge. It started as a task to be done at the network layer, where different
proprietary systems struggled to communicate with each other when equipment from differ‐
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ent manufacturers had to cooperate in retrieving and exchanging information. Some of the most
prominent organizations regarding standardization (ISO, CCITT) started working back in the
late 1970s [1] in a layered solution that would allow interoperability among different pieces of
equipment while (open system interconnection (OSI) model), around the same time, another
layered architecture would impose its own criteria in order to solve interconnectivity challeng‐
es (transmission control protocol/Internet protocol (TCP/IP) model). While those solutions—
especially  the  latter  one,  which became widely adopted in  the  following years—offered
reasonably accurate patterns on what could be obtained from each of the layers (implementa‐
tion details were left to each of the manufacturers, which only had to guarantee that their products
would be compliant with the specifications described in each of the layers),  few holistic
implementations were offered upper than the network layer. This fact implied that despite the
network and lower layers had standardized protocols that would accomplish the expected
functionalities  for  connection‐oriented  and  connectionless  communications,  solving  the
challenges associated with the different formats for data representation in upper levels (as
session or presentation in the OSI model, and most of the application layer in TCP/IP) would
still be a major challenge, as increasingly differing devices were being used in distributed systems.
As far as the Smart Grid is concerned, each of the microgrids that are involved in the larger
deployment might count with appliances that have little to do with the ones that are found in
another one. For example, advanced metering infrastructure may provide different services and
be developed by a different company in one microgrid if compared to another one; even the
same one is likely to have pieces of equipment from different vendors. Advanced end users or
developers with enough know‐how are willing to create their own smart meters by integrat‐
ing hardware and software solutions reliant on open source technologies to provide services,
thus adding a degree on unpredictability in the information formats that are used throughout
the Smart Grid. If some other devices and/or resources are taken into account (RTUs, DERs,
RESs, etc.), the differences among the infrastructures and hardware components grow expo‐
nentially. Clearly, a solution that goes beyond purely network‐based communications, which
are oblivious to the meaning of the information that is interchanged (only network datagrams
are considered, thus leaving the data unprocessed and without knowledge inference), is required
for upper layers.

Fortunately, middleware can be used to solve these issues. Middleware can be defined as a
software‐based layer located between the lower, network‐ and hardware‐based layers and the
higher, application‐based ones, which has as its main functionality the abstraction of the
underlying heterogeneity associated with the different hardware devices participating in a
distributed deployment, in a way that a collection of homogeneous‐looking interfaces (more
specifically, a set of application programming interfaces or APIs) will be offered to the end
users of the application layer. The main functionality of middleware becomes evident in
Figure 1: despite the different data formats used by the devices located in different levels, the
middleware layer still homogenizes the collected data from lower ones, withholding the
underlying heterogeneity of the whole system.

When all is said and done, middleware architectures are used in heterogeneous, noncentral‐
ized systems where data collection is scattered throughout a collection of different pieces of
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equipment responsible for harvesting data, transferring them and either taking decisions or
executing commands made by human beings. When considering how energy production,
transport, and consumption can be managed, it becomes clear that if it is done in a distributed
manner and using the infrastructure of a smart grid, middleware can be very convenient for
a plethora of tasks: 

1. A middleware architecture in a distributed system effectively acts as the “glue” that puts
together many different hardware and software entities. It processes the data in a way
that it will be offered to users and applications (human operators, mobile apps, etc.)
oblivious to the underlying complexity and different appliances used in the distributed
energy generation systems.

2. A middleware architecture can be used to enhance the available services developed for
the system. If, for example, load balance, context awareness, real‐time pricing, security,
semantic capabilities or data aggregation functionalities are desired, they can be added
as part of the middleware architecture in case they cannot be installed either as part of the
hardware or the applications. This is a situation that happens more often than not, as
applications may be too lightweight to be able to perform calculations expected from
different features (statistic information, big data management) and hardware devices
might be either not powerful enough to perform those calculations, or may be proprietary
and/or legacy devices that cannot be reprogrammed, or else they would be regarded as
“hacked” by their vendors.

3. A middleware architecture allows the creation or enhancement of business models, as it
can be used under different kinds of service paradigms, such as Software‐as‐a‐Service or
Platform‐as‐a‐Service. In addition to that, application developers can have a very easy
time connecting to the middleware architecture their own pieces of work, as they only
need to care about the upper level interfaces that the middleware architecture offers them.

Figure 1. Generic middleware architecture for the Smart Grid.
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4. Prosumers can manage the amount of energy in a more flexible manner, as they are able
to use the services that are in the middleware to decide how much or when to pour their
produced electricity into the power grid, they can coordinate with other users to offer a
better price for the energy, etc.

There are several parameters that must be considered when a middleware architecture is to
be developed for a system:

a. How transferred information is going to be homogenized: the data transferred by different
devices located at the last mile of the distributed system may be made by different
manufacturers that use their own proprietary data format. Due to that, it becomes even
more evident that middleware is useful to solve this kind of challenges. However, it has
to be figured out the way that data formats will be the same for all the existing devices.
One of the ways that can be used to solve that issue is by using semantic resources as
common information model or CIM [2]. CIM is a standard somewhat resembling unified
modeling language that can be used as a way to design software in a smart grid‐based
system. In addition to that, CIM can be extended by additions done in a microgrid, so they
will be added to the overall available libraries. An architecture based on CIM relies heavily
on semantics, which can also be used as a way to create or extend existing ontologies that
will not only expand the collection of terms and associations among those terms, but also
add more capabilities to the middleware using them, as the capacity of inferring knowl‐
edge from information or even raw data will be of major importance for taking decisions.

b. Functional and nonfunctional requirements that are to be born in mind when designing
the middleware architecture: functional requirements will be turned into use cases that
represent the functionalities expected from a distributed, energy‐based system. These
requirements are conceived to improve the existing state of the art at micro‐ and macro‐
services level: on the one hand, already present services must be improved in terms of
efficiency (doing the same task faster) and complexity (more complicated tasks can be
performed as well). On the other hand, new services can be included in the middleware
architecture that can be based on purely software capabilities (context awareness,
semantic capabilities, publish/subscribe paradigm, security) or more involved in distrib‐
uted energy generation (load balance, demand side management, tariff calculation).

c. Present and already functioning models must be studied as well. One of the most widely
known is the smart grid architecture model or SGAM [3], where different layers (compo‐
nent, communication, information, function, business) are responsible for different
attributes that model a whole Smart Grid system with a holistic point of view. While there
is a considerable room for improvement and innovation, this and more models and
proposals can be used as a starting point for further studies and developments.

Overall, research activities done to develop the middleware architecture must consider the
current state of the art to have a good grasp of the status of the existing solutions (especially
regarding the open issues and challenges that remain to be dealt with), improving it with
functional and nonfunctional requirements, either being inferred from the state of the art or
motivated by a research project, and obtaining use cases from those requirements, which will
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result in software modules that satisfy them. Special care has also to be taken to how infor‐
mation will become standardized in the system, as well as the possible constrains that are
introduced by nonfunctional requirements. The resulting output will be a middleware
architecture that will be compliant with previously formulated objectives: it will be distributed,
enhanced with several software modules and capable to manage energy generation and
distribution. Typically, it will result in a layered architecture that will handle hardware and
application information at the lower and higher borders, whereas there will be a core area with
all the services required for data management and distributed energy functionalities.

This chapter is devoted to the definition of middleware architectures for distributed systems
and how they can be used in an environment related to distributed generation of energy, such
as the smart grid. The main features of middleware will be displayed, as well as a methodology
to do research on this topic, and a collection of services design that can be used as a templated
for future implementation works.

2. Methodology for middleware design in the Smart Grid

When considering the requirements to build a middleware architecture focused on the
functionalities to be made use of in the Smart Grid, there are some facts that must be observed.
Since research activities should be used here as a tool to build a commercial, usable solution
that will effectively improve the already existing power grid, three lines of work will be
followed, that is to say, the state of the art regarding existing developments, functional and
nonfunctional requirements and the homogenization procedures that will be carried out for
the main functionalities of the middleware. Following each of these, three lines will have
different impacts on the methodology, as each of them deals with a different side of the

Figure 2. Middleware location and main functionality.
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challenges for designing the architecture. For example, the study on the state of the art will
result in acquiring knowledge not only regarding the existing solutions, but also their most
usual strengths and weaknesses. Similarly, functional and nonfunctional requirements will
imply the elaboration of a plethora of use cases that will result in a sequence of actions that
will have their usability established by the nonfunctional requirements defining the system
(more specifically, nonfunctional requirements will describe how the middleware architecture
present in the Smart Grid will be and functional requirements will depict what that middle‐
ware architecture is capable of doing). Finally, homogenization solutions define what kind of
data models are going to be used for information representation once the processed data are
handled to the upper layers of the deployment. The synergy of these three lines of research
will result in a middleware architecture suitable for the Smart Grid, as depicted in Figure 2.

The different software components and features will be a matter to be described in the next
chapter, once the procedures to design a middleware architecture for the Smart Grid are fully
understood.

2.1. Study of the state of the art in middleware architectures

The study of the already available solutions regarding middleware architectures for the Smart
Grid should come as the first step to be done when developing a new one. The logic behind
this reasoning is getting a grasp of the features and possibilities of the already developed
works, as it is more cost‐efficient in terms of monetary and time resources counting with some
previous point to start the actual development, rather than having to “reinvent the wheel”
every time a new architecture has to be designed and implemented. Depending on the needs
of one deployment, the capabilities of one solution might be enough for the requirements of
the project, albeit it should be considered as a symptom of having not so original work or
research objectives. Besides, it has to be taken into account that some of the solutions might
have not been disseminated enough, and in fact they could be only partial implementations
of theoretical proposals, with little to no code available to be reused or at least be employed
as a template for a development done from scratch. The tools that can be used to get a grasp
on the available solutions are as follows:

• Scientific papers: these are one of the most common know‐how resources that can be used
to have an idea of the work carried out in a particular area of knowledge. Typically, it is best
to use a scientific‐themed search engine in order to look for scientific papers, so that a
collection of them will be composed and they can be consulted in search for relevant
information. Relevant search engines with scientific papers to show are Google Scholar [4]
or the IEEE Xplorer Digital Library [5]. It is not rare that some of these search engines have
their full load of content only accessible under a subscription, where a monthly fee has to
be paid to access to all the data. Nevertheless, some institutions (research centers, univer‐
sities, etc.) pay for that service and offer it in a transparent manner to their own members
(research staff, students, etc.). Several academic publishing companies may also have a
scientific search engine in their websites. As far as information collection from other
purposes is concerned, there are two kind of scientific papers that can be taken into account,
which can be categorized as survey‐themed and innovation‐themed papers. Usually,
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survey‐themed papers have already collected the state of the art of a particular topic that
could match with a varying degree of accuracy the one that the researchers are aiming their
efforts to. They can be expected to contain a list of solutions already published and tested
depending on the location of their area of interest (e.g., theoretical proposals may have been
tested in a laboratory or in a research institution, whereas project‐related ones might have
to prove the exploitability of their concepts from a more business‐oriented point of view, or
have to be deployed during a long period of time). Innovation‐themed papers are more
focused on describing a novel idea that implies a step forward in the boundaries of knowl‐
edge on a certain topic. These latter ones often contain a Related Works section where
available solutions (at the time of having the innovation‐themed paper published) are
reviewed to an extent. Experienced readers of scientific papers are usually capable of
distinguishing which content or kind of paper is more interesting for their goals.

• Online and offline literature: One of the most obvious ways to obtain information from a
topic is consulting books on it. These resources might be found both as online (eBooks, online
journals) and offline resources (hardcopy books and journals). Academic publishers and
journals are one of the longest existing sources of relevant information in research for
different areas of knowledge. It is not uncommon to find out that some of them started
publishing scientific works during the nineteenth century [6]. As far as middleware is
concerned, The Complete Book of Middleware [7] or Middleware and Enterprise Application
Integration [8] could be regarded as some of the most popular books due to the accuracy and
detail of their content. The Smart Grid also has its own share of advisable literature, with
journals as IEEE [9] offering profuse data about how the power grid can be made smart.
Special issues from scientific journals can be used as a source of knowledge as well,
especially if they match the topic of interest that is being researched. It must be taken into
account, though, that while there are journals devoted to very specific areas of knowledge
there is no one, to the best of the author’s knowledge, which is fully focused on middleware
architectures. Furthermore, white papers (that can be defined as reports of short length that
attempt to define clear features about a specific issue regarding Information and Commu‐
nication Technologies) can also be used as a source of knowledge. Both the Smart Grid [10]
and some commercial distributions of middleware [11] have several white papers providing
knowledge, which provide a very immediate source of information that can be used by
technicians or staff with a lower degree of interest in research.

• Research Projects: Research projects funded all around the world by public national or
supranational authorities [12, 13], semiprivate or private research institutions or universities
usually offer some public resources, as part of the tasks that have to be done regarding
dissemination and documentation of the very project that is being funded. The easiest way
to obtain material from research projects is checking their own websites [14, 15], although
members of the consortium made by all the partners participating in the project can be
contacted as well, provided that they offer contact details. The available online materials
that can be downloaded from the websites of those projects can be very diverse; the most
usual ones include public deliverables (documents with features of different parts or tasks
from the project that describe the development tasks that have been carried out), an index
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of the publications associated with the project (showing the name of the publication, its
authors and the journal where it was accepted) and the partners that are included in the
consortium responsible for the execution of the project.

• Repositories and hosting services: as far as implementation works are concerned, a possible
starting point to create a new software solution can be obtaining feedback from the online
available code in order to get an idea on how to create a software development, design
software functionalities or even debug some already developed code. The most widely
known repository of these characteristics is GitHub [16], where code that is willingly
uploaded by a large number of developers can be obtained, improved and shared again, as
long as the person interested in obtaining and sharing data creates an account in the site.
Although repositories can be a useful place to get some immediate knowledge on a specific
task, the code that is shown is usually provided “as is,” without any guarantee of it working
flawlessly (in the end, it makes sense that is done like that, as it is obtained cost‐free) or
completely fulfilling the tasks it was expected to perform.

• Social networks: There are some scientific research social networks that can also be used as
a way to collect information from the current state of the art in one area of knowledge, as
the members of those networks can be scientists with a high level of expertise [17] able to
provide some background information. As it happens with repositories and hosting
services, scientific social networks must be approached with a degree of caution, since
reliability of social networks as a way to obtain feedback is usually way lower than the one
obtained from more orthodox sources, as the quantity and quality of the answers relies on
quantity and quality of the peers willing to provide their know‐how in one topic. It is not
uncommon to obtain misleading or plainly wrong answers to a question that will hinder
the undergoing research. Social networks should be used in close cooperation—and
subordination—to other more scientifically sound sources rather than being taken as the
only source of research material.

2.2. Election of functional and nonfunctional requirements

From the resource usage point of view, the requirements for a Smart Grid middleware
architecture may vary from one deployment to another, but in the end, they result similar in
most of the cases. Functional requirements are strongly related to the functionalities that are
expected from a system of these features. They involve a certain number of capabilities that
the system (by system, it is meant the microgrid that is deployed as part of a wider Smart Grid)
offers to some actors, who may or may not be human beings (machinery located outside the
Smart Grid, e.g., may make use of services offered by it, such as tariff policy elaboration and
modification in real time).

On the other hand, nonfunctional requirements are very specific features that are imposed on
the system, which will have an impact in system performance (by setting a minimum level of
certain parameters or limiting the capabilities of the system). Rather than describing or being
related to system functionalities, they set the boundaries for them, so that the functional
requirements will be fulfilled with success within the borders set by the nonfunctional ones.
The reasons for having strict nonfunctional requirements are varied and are usually due to
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technical (hardware capabilities of the devices used in the microgrid, open or proprietary
hardware, location of the required appliances in a deployment) or economical (budget limits,
Service Level Agreements, reutilization of already existing premises and/or equipment)
motivations.

2.2.1. Functional requirements

When actors become engaged to the functional requirements the latter start being referred to
as use cases. According to the principles of software engineering, use cases can be defined as
a group of events and actions performed within the boundaries of a system for the benefit of
some actors out of it, but using the system. In this context, functional requirements define those
events and actions to be made by the power grid once it has been enhanced with a middleware
architecture, so the latter is pivotal to obtain the desired performance from the former. A few
of the most common use cases are as follows:

• Device registration: When one new device is added to the microgrid, its existence must be
acknowledged by the whole system in order to obtain and provide data used to perform
the functionalities described by the functional requirements. The most usual new equipment
to be added are smart meters, as the last mile infrastructure of a microgrid integrated in the
Smart Grid is more likely to change than the core of equipment and technologies (due to
client rotation, more frequent smart meter substitution due to low prices, etc.).

• Data request: As in any distributed system, data will be offered as a service for the end users
at the peripheral zone of the system. For them, data will be of critical importance in order
to make decisions regarding their energy consumption or the services they would like to
obtain from Smart Grid stakeholders such as the transmission system operator (TSO) or
even the distribution system operator (DSO), in case they count with their own supply of
renewable energy systems (RESs). Data can be requested with end user intervention
(information for end‐user mobile apps or web applications in a more general) or without it
(bidirectional data transfers between advanced metering infrastructure and the core of the
Smart Grid).

• Alarm triggering: Alarms might be triggered in the microgrid if an unforeseen event takes
place; they can be related to some kind of economic feature (tariff limits, overspending,
waste of energy) or a physical one (damage in one piece of the installed equipment, software
failures). As it can be guessed, alarms are usually triggered by either the software installed
in the distributed pieces of equipment or by the equipment themselves, rather than by any
end user (unless they have been given the option to do so by means of an application).

These use cases can be expressed in a more formalized manner by means of unified modeling
language (UML). As it is implied by its name, UML is a software modeling language that is
profusely used for software design as a previous step to implementation works [18]. Since one
of its main goals is describing in a graphical and accurate manner the features of one system,
as well as the relationships among its different components, it comes in handy for the repre‐
sentation of the uses cases that will be studied at the middleware architecture level. UML
makes use of many different diagrams to explain the different functionalities and viewpoints
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of one system; for example, computational analysis can be used to have a reference of the
different subsystems that are used in the overall middleware architecture, along with the
relationships that are held among them. Thus, subsystem diagrams are used in order to depict
those relations and subsystems. Additionally, functional analysis is used to describe some
other features of the system related with the functional requirements: it is here where the use
case diagrams that show the defined use cases, along with their links to the actor taking part
of the system as external stakeholders, are represented. Use case diagrams are employed to
describe elements of the Smart Grid (as it is shown in the Figure 3), display the actors involved
in the system, the use cases that have been contemplated, the boundaries of the system
containing those use cases and the relations between use cases and actors. While the content
of the use cases might differ greatly from one are of knowledge from other (a microgrid is very
different from a wireless sensor network or a group of cooperating robots), their representation
varies little among them.

Figure 3. Use case diagram for common use cases.

At the same time, component diagrams depict the different software elements that make a
subsystem and how they obtain resources one from the other by means of component interfaces
that transfer the information among the existing components. Some other diagrams are
advised to be used for functional analysis; for example, sequence diagrams show the set of
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steps that are made for a use case to be completed. Each of those steps is a software instance
that is needed to get through to complete the flow of actions that will end up providing the
service, as each of them provides a significant inner action for the fulfillment of the requirement
defined by the use case. Sequence diagrams must be interpreted in a bi‐dimensional fashion:
the horizontal axis represents the direction of the information exchange (which uses the
software instances and the name given to the actions that communicate one instance with the
other in both directions), whereas the vertical one represents the time that is used by each of
the software entities in the flow of the represented use case. Last but not least, those software
entities and action names are better represented by the usage of class diagrams, which gather
the different actions to be taken as methods or functions within the software instances that
were used in the sequence diagram as instances. Class diagrams are usually very close to the
implementation stage, which is typically carried out after the classes and methods defined by
this diagram become definitive. An example of sequence diagrams for the already studied use
cases is shown in Figure 4.

Figure 4. Sequence diagrams for the previously shown use cases.

Here, it can be seen in the first sequence diagram how a typical device registration procedure
would take place: the interface of the device that is going to be registered keeps the hardware
in touch with the communication services enabled in the Smart Grid. By means of this interface,
a first request message is sent. This message is transferred throughout the communications
system (which will typically involve IP communications at the network level and TCP/UDP
at the transport one) until it reaches the middleware component responsible for receiving
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request messages from devices (hardware abstractor). This component will send the received
message to the software module in charge of formatting the messages delivered from levels
located lower than the middleware layer (standardization). This is the message, formatted
according to what has been defined for the middleware (and containing all the information
regarding the services that can be offered by the device that is going to be registered) that will
be used for registration. Commonly, a registration acknowledgement message will be sent as
a reply to the device that requested the registration and data transfer will be ready to be done,
although depending on the degree of control that is given to the end user, the registration
request may be sent to the application access point to be evaluated by a human operator. The
other two sequence diagrams deal with data interchanges and alarm triggering. Data are
requested from an application connected to the middleware via the application access point
and is sent though the standardization module in order to have it sent according to the format
that is understandable by the hardware device that is being requested. Hardware abstractor
sends the request through the network layer until it is received by the interface at the very
device capable of providing the service. Once the data are collected, they can be sent back to
the middleware architecture by means of the communications network until they are received
again at the application access point, which will interface with the application to deliver the
data. Alarm triggering is a process used to inform the end user about an abnormal situation
that has happened in the grid. Depending on the nature of the alarm, it might be sent by either
the hardware component that has detected the issue or other system entities, such as a
middleware module. When the issue is detected by a hardware device (as depicted in
Figure 4), a message containing information about it will be sent through the communication
system to the middleware components previously depicted (hardware abstractor, standardi‐
zation) until it reaches the application access point, which will send it the application as an
alarm that has been push from the underlying system.

As far as the Smart Grid is concerned, the boundaries of those use cases are frequently defined
by the most hardware‐based elements of the deployment (power grid appliances, smart
meters, etc.) on one side, and the closest software entity possible to an end user (mobile app,
website, etc.). Hence, the sequence diagrams are representing the relations among those border
elements by means of action interchanges among some other, more internal software instances.

Another very accurate representation of the different stages used to design a middleware
architecture can be found in [19]. Here, it is explained how the different functionalities and
software modules are conceived, related and located in the middleware system.

2.2.2. Nonfunctional requirements

The other kind of requirements that was presented is the nonfunctional ones. As it happened
with the former, they are present in almost any imaginable distributed system, although they
can appear in any other system that is not distributed, as long as some boundaries are imposed
to have a system working under realistic circumstances. Nonfunctional requirements are a
group of features that strictly define the main features that establish what a system is. This is
something that must be born in mind, as sometimes they can be loosely interpreted as the
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boundaries of one system. Nonfunctional requirements have been used for quite a while in
the design of both hardware and software products. For example, nonfunctional requirements
established during the design stages of the popular Citroën 2CV where used to devise “a design
brief for a low‐priced, rugged “umbrella on four wheels” that would enable four small farmers / peasants
to drive 50 kg (110 lb) of farm goods to market at 50 km/h (31 mph)” [20]. By defining what that car
would be, the boundaries of that design were implicitly mentioned as well. It is easy to regard
nonfunctional requirements as constrains; however, they usually describe features that are
necessary to understand the system that is being design, rather than imposing mutilating
conditions to the system.

As for the middleware architectures for the Smart Grid, nonfunctional requirements are often
focused on the properties that both distributed systems and the power grid have: on the one
hand, features as scalability, resilience or data security impact the system from a distributed
software development point of view. On the other hand, electricity distribution characteristics
as power consumption or load peak limits have their own impact in the design of the overall
system too.

2.3. Semantics and middleware architectures

As previously stated, the main reason for middleware architecture to exist is its capacity to
homogenize the different information representation formats that are received from lower
layer elements. Among the several software tools that can be used to carry out this function‐
ality, semantics is one of the most effective. In information and communication technologies,
semantics can be defined as the capability of a system to infer knowledge form gathered data
so that the meaning of the transmitted data will be apprehended by it and the system will be
able to use it in the future to optimize its overall performance. The core idea around semantics
is that raw data are not only meant to be transmitted from one remote location to another but
also processed in a way that will make the system able to infer the actual meaning of the
information that is being transmitted throughout the distributed system. For example, should
raw data be transmitted about temperature in an equipment, a semantically enhanced system
will be able to both transfer the data and assess them, so that an educated decision can be taken
with regards of the information transmitted. In a nutshell, a middleware architecture using
semantics will have learnt, or inferred, that a very higher than usual temperature means that
there is some kind of trouble with the appliance or the geographical area the temperature
reading was retrieved from.

Semantics become implemented in a more tangible way by means of ontologies. An ontology
is a collection of terms and definitions of wide use in a software system (which may be
distributed or not, but it is assumed here that it will be so, as the rules of ontologies also apply
to them), along with the relationships between those terms, to the point that it should be
considered more as a graph with interrelated elements rather than a dictionary [21]. In addition
to that, an ontology can be updated to incorporate new elements or even drop deprecated ones,
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so the knowledge that is acquired by the system can be refreshed as it works during its usual
lifespan, thus becoming “wiser” as time goes on.

As described in [19], a semantic module usually consists of several parts:

• An action collector that will retrieve the actions that are being carried out by the system.
The pace for collecting actions data can be adapted to the needs of the system, ranging from
several times during the day to an almost real‐time pace. The smaller of that time span the
work strain is put to the whole module (and by proxy, the middleware architecture), though.

• An inference managing entity that infers knowledge for the system, based on the actions
that have been collected, the rules fixed for the system and another repository for stored
facts.

• A rules repository that stores the norms that have been fixed for the system. They are of
major importance to decide whether an action should be triggered or not.

• A facts repository where the past actions that were gathered by the action collector are kept.

• An action trigger component that will be used to send commands whenever the semantic
module rules it is necessary. This component comes especially in handy for managing
alarms and events.

The most popular semantics element used in the Smart Grid is the CIM [2], which defines its
own ontology for most of the pieces of equipment that can be found in a power grid. The
representation of CIM is identical to what can be expected from a UML one; this can be deemed
as a token of the increasing involvement of software engineering in the power grid.

Figure 5. Waterfall model for software design and development tasks for middleware.

Overall, the methodology used to design a middleware for the Smart Grid may be flexible to
an extent. For example, the traditional waterfall model can be used to complete the interme‐
diation layer until all its expected functionalities have been performed (see Figure 5), even
though it is advisable to have some feedback in each of the stages in the very likely case that
any bug or deviation from the scheduled functionalities has to be dealt with. Usually, when
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tackling the implementation stage, there are five steps that must be taken into account to
successfully complete the development works of the middleware architecture:

• A decision must be made regarding which hardware devices present in the Smart Grid
deployment will be used to have the middleware installed. There might be some appliances
that are proprietary solutions without any possibility to have new software installed.

• The software platform that is going to be used to have all the software components installed
must also be chosen. It should be capable to work in a distributed way, sending messages
from one part of the platform to other ones located remotely. Enterprise service bus
architectures (ESBs) work in a suitable manner to solve this challenge, and they can send
messages among different software components embedded in them.

• The software packages that are developed to implement the services that are going to be
located in the middleware architecture must be codified once the hardware devices and the
software platform have been defined.

• Connectivity among the software modules that have been implemented must be guaranteed
in order to have them all able to send and receive information whenever there are data to
be transmitted through the middleware architecture, either toward the application layer
being used by the last mile clients or the network layer interconnecting the deployed
appliances.

• Connectivity among the different elements outside the middleware must be accomplished
so that there will be a seamless integration of all the subsystems that conform the Smart Grid
(or at least, the microgrid where they have been deployed) and data can be transferred from/
to the applications developed on top of the middleware architecture to/from the hardware
devices present in the system deployment done.

3. Services and components in a layered middleware architecture

The deployments where middleware architectures are used have some important similarities,
as it has already been hinted in several sections. These can be easily obtained by taking into
account the most usual functional requirements that are expected from those deployments,
that is, (a) hardware abstraction for communications between the intermediate software layer
and the pieces of equipment in the Smart Grid, (b) semantic capabilities to make the overall
system smarter, (c) upper‐level access points to the applications that are interconnected to the
middleware, (d) registration of the detected devices, (e) other services as context awareness,
security, etc. Arguably, wherever a middleware architecture becomes deployed, those services
are taken for granted by the end user, who will count on them without noticing which software
or hardware entity is providing them. Taking that fact into account, a generic middleware layer
can be defined that will be matching most of the requirements that have been imposed to the
system. The appearance of the architecture is displayed in Figure 6:
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Figure 6. Waterfall model for software design and development tasks for middleware.

The services that are going to be offered have been divided into four different kinds, each of
them composing groups of services that are located in different places according to their
characteristics. They are as follows:

• Low‐level services: These are the ones that are more closely interacting with the pieces of
equipment where the middleware architecture has been deployed. Basically, they are
responsible for receiving the data that is transferred from the interfaces of the appliances
that are used in a microgrid. Consequently, definition of the behavior of the low‐level
interfaces between middleware and hardware is critical for the correct delivery of the
information. There are several protocols that can be used for that matter. For example, Java
Message Service (JMS) [22] can be used between entities capable of understanding that
programming language. Another protocol suitable for this task is advanced message
queuing protocol (AMQP) [23] which is able to communicate devices by means of message
queuing. The information interchange will be performed by using hardware adaptor
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modules, which will change their codification depending on the nature of the devise that
are interfaced.

• Distributed energy generation services: These are the services that are most closely related
to the Smart Grid capabilities. Furthermore, this is the module that is most prone to changes,
as the services that are required from one microgrid deployment to another one (let alone
a completely different distributed system) may differ greatly. The most usual services that
can be found are for load balance (defining the shared amount of resources that each of the
elements present in the grid is going to cooperate with to deliver energy), making decisions
(regarding both technical and management issues), creating tariffs (with the purpose of
offering them in a dynamic way, as a mobile phone contract or ASDL services), aggregating
data (in order to collect statistical information about the transferred information that will
optimize other services, such as load balance or processes involved in making decisions) or
offering demand side management (as a way to shave the power peaks that happen during
certain time spans).

• Software services: They offer a significant amount of focus in the distributed system nature
of the deployment. They can be found in almost any environment that implies a middleware
architecture used as an intermediation layer among devices. The most important ones are
context awareness (in order to notice any change in the deployed elements and having the
middleware reacting to those changes in cooperation with the semantic operations),
standardization of the transferred information, security (which might be offered as encryp‐
tion services in this group of services or as secure web interfaces in the high‐level services),
registration (so as to have a collection of the available devices and the services they can
provide to the end users or other elements of the Smart Grid) and semantics (working closely
with standardization to use a common data model throughout the whole middleware
architecture).

• High‐level services: The weight of these services in the architecture may vary from one
deployment to the other: in some cases, they behave as if they were applications, and in
some other, they just offer an access point to the actual applications. Among the technologies
that can be used to implement the interfaces for information exchange from/to the applica‐
tions are constrained application protocol (CoAP) [24], useful for lightweight requirements,
and representational state transfer (REST) interfaces [25], which offer an easy way to
establish communications via web services.

The most usual way for them to be using each of the functionalities is expressed in Figure 7.
As it can be seen, the subsystems need functionalities from each other, namely, the high‐level
services subsystem is using the software and distributed energy subsystems to obtain the
services contained in each of those parts of the middleware. At the same time, those two
subsystems are interacting with the low‐level services to collect the information fetched from
outer, lower layers. Interestingly enough, software services are often used by the services that
are more typical of the smart grid, but they are use more as a way to offer support than
providing an actual service to the end user, so software services rarely employ the distributed
energy services (hence the unidirectional arrow in Figure 7). In any case, depending on the
use case that is being dealt with, some components of the middleware architecture may be
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required and some others may not, in the different ways that were described by the sequence
diagrams. The services that have been described here are the ones that are most popular and
useful for a system of the features presented here (distributed systems that enhance the regular
power grid). Nevertheless, there might be some other ones that are more important for
punctual environments or developments.

Figure 7. Software subsystems within the generic middleware architecture for the Smart Grid.

4. A real case study for middleware in the smart grid

The ideas described in this chapter have been put into practice in several application domains.
One of them is regarding a European project called e‐GOTHAM [26] that involved building a
Smart Grid where several pieces of advanced metering infrastructure and power grid‐related
appliances were integrated by means of a semantic middleware architecture. The designed
semantic middleware architecture was published as a scientific research work [27] and an
implementation of it, with all the necessary software components for that specific iteration,
was used in the Finnish city of Ylivieska [28]. The overall structure of the power grid network
(with the middleware architecture installed in a machine) was also reported as a standardi‐
zation and dissemination activity [29] and is presented in Figure 8 in a high‐level manner.

As described, there are several buildings located in the city of Ylivieska (Concert Hall, schools,
a power plant, etc.) using several hardware parts (such as wireless sensor networks) that can
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be regarded as AMI. That infrastructure is interconnected by means of local controllers that,
depending on their capabilities or whether they are proprietary or open solutions, either can
have middleware modules installed, or will rely on the middleware components installed in
the central controller. It is this central controller where most of the software modules of the
middleware are present, in accordance with the referred architecture (device registration,
semantic capabilities, access points to the application layer, etc.). The framework that has been
used to have all the software components contained was an open source Enterprise Service
Bus, currently known as JBoss Fuse [30]. Collection of data was made from those buildings
and presented in a web application with some ancillary functions added (e.g., energy con‐
sumption forecast). Other projects, such as I3RES [31], have used similar ideas in order to build
middleware architectures for the Smart Grid that have been used in living labs such as
Steinkjer, a Norwegian city that often participates in this kind of purposes [32].

5. Conclusions

The usage of middleware architectures for the Smart Grid offer clear benefits on the deploy‐
ments where they are installed: they guarantee that many different pieces of hardware can
cooperate seamlessly (regardless of the manufacturer that makes them or the data represen‐
tation formats that they use), offer different services when applications of devices cannot
deliver them, upgrade the system so that it will be able to infer information from the transferred
data to be used in the future and improve the services that can be used by the power grid,
turning them into a smarter entity capable of providing more information and making smarter
decisions. In addition to that there are several middleware modules (hardware abstraction

Figure 8. Microgrid deployment with the middleware architecture.

The Role of Middleware in Distributed Energy Systems Integrated in the Smart Grid
http://dx.doi.org/10.5772/62870

151



modules, context awareness, data aggregation, decision making modules) that are almost
mandatory if the full potential of middleware is to be obtained. Fortunately, its widespread
usage makes possible that, by collecting information from other proposals or studying the state
of the art, can either have some previously developed modules adapted to the need of the
middleware architecture in one particular system, or develop new ones with a reduced amount
of work, as some guidelines have been offer in this chapter to do so.

The key contribution of this chapter is the summarization of prominent knowledge that has
been noticed throughout distributed systems and software architectures research to come to
the conclusion that, since there is a plethora of services that will almost always be required, a
generic middleware architecture, with a very well defined set of functionalities, can be used
whenever middleware is required. This idea can be used for successive deployments that
might improve the Smart Grid even further, shortening development times and making a more
cost‐efficient use of economic resources.
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