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Abstract

Antimicrobial measures, such as topical antiseptics and local drug delivery, have proven
effective as complements to mechanical control. However, recent investigations have
reported some adverse influences of antimicrobial strategy.

One possible negative reaction is that residual structure may serve as a scaffold for
redevelopment of biofilm. It is reported that no or little biofilm structure was removed
when oral biofilms were treated with chemical compounds and that the secondary
adhesion was promoted in the presence of residual structure.

Second, residual structure may also act as pathogens. It is well known that various
microbial components in the biofilm can play a role in disease pathogenesis, even if the
microorganisms in the biofilm are completely killed.

Third, low-dose antibiotics may promote bacterial biofilm formation. The short-time
exposure of chemical agents will cause gradient of concentration inside biofilm. In this
case, the cells in deeper area may be exposed to subminimal inhibitory concentrations
(sub-MICs) of antimicrobial agents. Recent studies have demonstrated that a variety of
antibiotics or antimicrobial agents at sub-MIC levels can induce biofilm formation in
vitro, interfering with bacterial biofilm virulence expression.

This chapter reviews studies demonstrating adverse influences of antimicrobial strategy
against mature oral biofilm.

Keywords: oral biofilm, antimicrobial agent, residual structure, sub-MIC, stress re‐
sponse
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1. Introduction

Mechanical approach by procedures such as self-performed oral hygiene, scaling and root
planning (SRP), or periodontal surgery is fundamental in the control of mature oral biofilms
[1]. Chemical approaches such as topical antiseptics, local drug delivery, and systemic
antibiotics are used with the expectation of producing an adjunctive effect [2‒5]. In fact, it has
been demonstrated that adjunctive antimicrobials improve clinical parameters, including
plaque index, gingival inflammation, and probing pocket depth [3, 5‒7]. It has also been
reported that antiplaque biocides do not cause the microbial resistance and alterations of
microbial flora [8].

However, recent investigations have demonstrated that antimicrobial compounds do not work
as intended [9‒12. Especially in short-time exposure, the antimicrobials failed to penetrate into
deeper area inside biofilm. Wakamatsu et al. have reported the penetration kinetics of
mouthrinses into in vitro Streptococcus mutans biofilms by direct time-lapse microscopic
analysis. The antimicrobial penetration was critically restricted within 30 s of exposure; the
average penetration velocity was ranging from 4.2 to 30.1 µm/min [13]. This phenomenon can
be explained by retarded penetration due to degradation and/or modification by the biofilm
matrix. Extracellular polymeric substance (EPS) produced by microorganisms make up the
intercellular space of microbial aggregates and form the structure and architecture of the
biofilm matrix that reduces antimicrobial penetration [14,15]. Representative four models of
how these polymer strands might interact are shown in Figure 1 [16]. Panel A is the alginate
paradigm. Calcium forms a complex with negatively charged polymer strands. Panel B shows
tight adhesion of a negatively charged polymer and a positively charged polymer. Panel C
indicates an insoluble polymer. Polymer complex formation is probably driven by hydrogen
bonding or hydrophobic interactions. Panel D indicates that bacteria have surface receptors

Figure 1. Conceptual models of matrix cohesion. (A) Alginate paradigm. Calcium is cross-linked between alginate. (B)
Adhesion of a negatively charged polymer and positively charged polymer. (C) Hydrogen bonding or hydrophobic
interaction. (D) Bacteria are partially cross-linked to the matrix. Reproduced from Takenaka et al. [16] with permission.
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that bind to the EPS strands and partially cross-link them to the matrix. Diffusion limitation
arises readily in these polymer strands because the fluid flow is reduced and the diffusion
distance is increased in the biofilm mode of growth [17]. On the other hand, prolonged
antimicrobial stress causes the biofilms facilitating the spread of antibiotic resistance by
promoting horizontal gene transfer [18]. The existence of tolerant or dormant cells is critical
factor in chronic infection [19, 20] (Figure 2).

Figure 2. Mechanisms of biofilm tolerance. Antimicrobial penetration is retarded in the presence of EPS (yellow). The
some microorganisms in the biofilm change activity in response to antimicrobial stress (green). The microenvironment
in deeper area is altered to resist eradicating (pink). Persister cells are present in higher concentration in biofilm (vio‐
let). This image was modified from CBE Image Library by the Center for Biofilm Engineering at Montana State Univer‐
sity.

This chapter is focusing to the studies demonstrating adverse influences of antimicrobial
strategy against mature oral biofilm.

2. Adverse influences of antimicrobial strategy

2.1. Residual structure

Recent investigations have demonstrated that chemical disinfection for oral biofilm may leave
intact biofilm structures. We performed a direct time-lapse microscopic observation through‐
out continuous exposure of commercial mouthrinses to an oral biofilm model [10]. Conse‐
quently, no removal of biomass was observed in control, ethanol (EtOH), 0.12% chlorhexidine
gluconate (CHG), and Biotene, which contains lysozyme, lactoferrin, lactoperoxidase, glucose
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oxidase, and potassium thiocyanate, even after 20 min exposure. Treatments with CHG and
EtOH resulted in only a slight contraction of the biofilm (Figure 3).

Figure 3. Transmission images of biofilm cluster before (A) and after (B) 0.12% chlorhexidine (CHG) treatment. The
biofilm was exposed to CHG continuously inside glass capillary biofilm reactor for 20 min. Scale bar, 30 µm. Repro‐
duced from Takenaka et al. [10] with permission.

Davison et al. investigated the dynamic antimicrobial action of chlorine, a quaternary
ammonium compound, glutaraldehyde, and nisin within biofilm cell clusters of Staphylococ‐
cus epidermidis using time-lapse confocal scanning laser microscopy [21]. Chlorine among these
chemicals was the only antimicrobial agent that caused any biofilm removal. Yamaguchi et al.
showed that treatment of Porphyromonas gingivalis biofilms with CHG for 5 min does not
degrade their external structure, or reduce the volumes of protein and carbohydrate constit‐
uents [22]. A summary of representative experiments demonstrating that chemical approach
failed to detach the biofilm structure is shown in Table 1.

Bacterium Experimental
design

Incubation
time

Antimicrobial
agent

Exposure
time

Judgment Reference

Multispecies
(Streptococcus oralis,
Streptococcus gordonii,
Actinomycesnaeslundii)

Flow-cell 20h 11.6% EtOH
0.12% CHG
Biotene

20 min Microscopic
observation
(transmission
image)

[10]

Multispecies
(Streptococcus oralis,
Streptococcus gordonii,
Actinomycesnaeslundii)

Flow-cell 20h 40% EtOH
0.1% SLS
0.03% TRN
0.12% CHG
0.05% CPC
0.005% nisin

60 min Microscopic
observation
(transmission
image)

[12]
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Bacterium Experimental
design

Incubation
time

Antimicrobial
agent

Exposure
time

Judgment Reference

Streptococcus mutans Glass-based
dish

24h 0.12% CHG
EO
CPC
IPMP

5 min Microscopic
observation
(transmission
image)

[13]

Staphylococcus
epidermidis

Flow-cell 24h 0.14mM QAC
0.5mM
Glutaraldehyde
14.9µM nisin

60 min Microscopic
observation
(transmission
image)

[21]

Porphyromonasgingivalis Chambered
coverglass

24h 0.05 to 0.2% CHG 5min Microscopic
observation
(transmission
image),
Quantitative
analysis of protein
and carbohydrate
composition

[22]

EtOH: ethanol; CHG: chlorhexidinegluconate; SLS: sodium lauryl sulfate; TRN: triclosan; CPC; cetylpyridinium
chloride; IPMP: isopropyl methyl phenol; QAC: quaternary ammonium compound

Table 1. A summary of representative experiments demonstrating that chemical approach failed to detach the biofilm
structure.

In contrast, there are some reports that the biofilm structure has been successfully degraded
by repeated exposures of mouthrinse [23‒25]. Although it is likely that biofilm reduction may
be enhanced by repeated pulse of a mouthrinse, this approach may not always be effective.
Pratten and Wilson have reported that anaerobic counts in dental plaque biofilm returned to
pretreatment levels with altered bacterial composition after 4 days, despite the continuous
pulsing of CHG [26].

Summarizing the above, these results suggest that chemical approach such as the mouth‐
rinse, especially without repeated use, may not be sufficient to eradicate oral biofilm struc‐
ture. Residual structure may cause adverse effects in oral environment, even if the
microorganisms in the biofilm are completely killed.

2.1.1. Antigen and host inflammatory reaction

As the remaining biofilm matrix contains carbohydrates, proteins, polysaccharide, lipids, and
nucleic acid [27], dead bacteria and biofilm components could work as antigens and induce
inflammatory reactions.

For example, Actinobacillus actinomycetemcomitans, P. gingivalis, Tannerella forsythia, and
Treponema denticola have been implicated in the development of various forms of periodonti‐
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tis. An extensive review of the literature revealed that lipopolysaccharide or outer mem‐
brane lipids, polysaccharide, fimbriae and outer membrane, and secreted proteins are antigens
of all four bacteria that may play a role in disease pathogenesis [28].

In addition, even if the microorganisms in the biofilm are completely eradicated, various
microbial components in the biofilm could play a role in disease pathogenesis. Augustin et al.
reported that injection of dead components of Enterococcus faecalis into rats following mechan‐
ical aortic damage by a catheter produced endocarditic vegetation enriched with polymor‐
phonuclear cells [29]. Bacterial components have also been attracted considerable attention as
an adjuvant. It has been reported that injection of structural components of the outer surface
membrane led a variety of immunopotentiative actions following the activation of phago‐
cytes and leukocytes [30‒32].

2.1.2. Calculus formation

The remaining dental biofilm structure will absorb calcium and phosphate from saliva for the
formation of supragingival calculus and from crevicular fluid for the formation of subgingi‐
val calculus. Calculus formation begins with the deposition of kinetically favored precursor
phases of calcium phosphate, octacalcium phosphate, and dicalcium phosphate dihydrate,
which are gradually hydrolyzed and transformed into less soluble hydroxyapatite and
whitlockite mineral phases [33].

The calculus surface may not in itself induce inflammation in the adjacent periodontal tissue
[34, 35]. Jepsen et al. stated that periodontal healing occurs even in the presence of calculus as
long as the bacteria is removed or disinfected [34]. For example, it has been reported that
autoclaved calculus does not cause pronounced inflammation or abscess formation in
connective tissues [36]. Listgarten et al. have demonstrated that a normal epithelial attach‐
ment can be formed on its structure when microorganisms on calculus surface were com‐
pletely disinfected with CHG [37]. Johnson et al. investigated the clinical outcomes of treatment
with locally delivered controlled-release doxycycline (DH) or SRP in adult periodontitis
patients. Treatment with either DH or SRP resulted in significant statistical and clinical
improvements in clinical attachment levels, pocket depth, and bleeding on probing. These
clinical outcomes were equivalent regardless of the extent of subgingival calculus present at
baseline, suggesting that positive clinical change depend on altering the subgingival biofilm
rather than the removal of calculus [38].

However, calculus is known to be a plaque retention factor as well as a reservoir for toxic
bacterial products and antigens. Histological section of a human tooth root showed that
calculus is covered with viable bacterial plaque [34]. Nichols et al. reported that the dihydro‐
ceramide lipids produced by P. gingivalis were found in subgingival calculus [39]. Hence, the
presence of calculus will be a secondary etiological factor.

2.1.3. Scaffold for secondary bacterial adhesion

Recent investigations revealed that residual structure would promote a secondary bacterial
adhesion and biofilm redevelopment [22, 40]. Yamaguchi et al. compared the volume of P.
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gingivalis adherent with the residual biofilm developed in saliva-coated well following a CHG
treatment for 5 min using a confocal laser microscopy [22]. The volume of P. gingivalis adhering
to the residual structure was greater than that in saliva-coated wells. This result indicates that
the residual biofilm could serve as a scaffold for the secondary biofilm formation. Outer
membrane vesicles produced by P. gingivalis promote autoaggregation and coaggregation of
another bacterial species [41, 42]. In addition, they also enhance the attachment to and invasion
of epithelial cells by T. forsythia [43].

Our research group has demonstrated that residual structure of S. mutans biofilm following
complete disinfection favors secondary bacterial adhesion and biofilm redevelopment [40]. At
first, S. mutans biofilm generated on a resin-composite disc in a rotating disc reactor was
disinfected completely with 70% isopropyl alcohol, and returned to the reactor. The same
bacterial strains in the logarithmic phase were then flowed into the reactor for 4 h. The amount
of secondary adhered cells on the remaining structure was compared with that on a disc
without structure using confocal laser scanning microscopic (CLSM) analysis and quantita‐
tive analysis. Three-dimensional reconstruction revealed that viable bacteria appear to get
caught to upstream edges of disinfected biofilm structure (Figure 4). The cryosectioned sample
demonstrated stratified patterns of viable cells beside the structure. Mean viable count adhered
on the structure was significantly higher than that on plane surface. This result showed that

Figure 4. Three-dimensional reconstructed images of 4-h secondary biofilm (green) on disinfected 72-h biofilm struc‐
ture (red). Fresh planktonic S. mutans cells flowed into the completely disinfected 72-h biofilm structure for 4 h. Viable
bacteria were stained green by calcein fluorescence and appeared to get caught in upstream edges of disinfected bio‐
film structure.
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the residual structure following antimicrobial disinfection promoted bacterial secondary
adhesion and biofilm formation.

The mechanism of S. mutans adhesion on the residual structure can be explained by cell-cell
aggregation and glucan-dependent aggregation. The cell surface protein antigen c (PAc) of S.
mutans is known to correlate with cellular hydrophobicity, sucrose-independent adhesion to
tooth surface and self-aggregation between cells [44, 45]. The glucan-dependent aggregation
is mediated by glucosyltransferase enzymes and glucan-binding proteins [46]. Glucan-binding
protein C, which is a cell-wall anchoring protein and a cell surface glucan receptor, plays an
important role in sucrose-dependent adhesion by binding to soluble glucan synthesized by
glucosyltranseferase D [47, 48].

Thus, since a numerous and diverse range of microorganisms reside in our intraoral environ‐
ment, the residual biofilm will contribute to biofilm redevelopment.

2.2. Antimicrobials-induced biofilm formation

Numerous studies have shown that subminimum inhibitory concentrations (sub-MICs) of
various antibiotics and chemicals can inhibit biofilm formation. A representative example is
the macrolide antibiotics. Although Pseudomonas aeruginosa that contributes to progress
respiratory infection is resistant to azithromycin, low-dose azithromycin has been shown to
inhibit protein synthesis [49] and improve clinical symptom [50, 51]. Sub-MIC concentra‐
tions of azithromycin have also been shown to inhibit quorum sensing and alginate produc‐
tion [52, 53].

In the field of dentistry, it has also been reported that sub-MICs of antimicrobial agents or
compounds can inhibit bacterial attachment [54, 56, 57], biofilm formation [54, 55, 57, 58], and
downregulate virulence genes [54, 56, 59, 60]. Moon et al. reported N-acetyl cysteine (NAC)
that is an antioxidant possessing anti-inflammatory activities, showed a significant decrease
of Prevotella intermedia biofilm formation in the presence of sub-MIC [55]. NAC was demon‐
strated to present the expression of LPS-induced inflammatory mediators in phagocytic cells
and gingival fibroblasts during the inflammatory process. Lee and Tan showed that treat‐
ment of E. faecalis with 1/2 sub-MIC of (–)-epigallocatechin-3-gallate (EGCG) significantly
inhibited the expression of virulence genes related to collagen adhesion, cytolysins activator,
gelatinase, and serine protease compared with the untreated control [60].

In contrast to the inhibitory effects of sub-MIC antimicrobials against biofilm formation, recent
studies have shown that some antibiotics at sub-MIC can significantly induce biofilm
formation in a variety of bacterial species such as S. epidermidis, Staphylococcus aureus,
Staphylococcus lugdunensis, Escherichia coli, and P. aeruginosa [61]. Kaplan et al. demonstrated
that sub-MIC of four different β-lactam antibiotics significantly induce biofilm formation in
some strains of S. aureus [62]. The amount of biofilm induction was 10-fold in maximum and
sub-MIC β-lactamantibiotics induce autolysin-dependent extracellular DNA release.
However, the pattern of biofilm induction was strain and antibiotic dependent, indicating that
biofilm formation by sub-MICs of antimicrobial agents do not always occur in all the strains
of the same species.
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This phenomenon may have clinical relevance because bacteria are exposed to sub-MIC of
antibiotics at the beginning and end of a dosing regimen [63]. In addition, antimicrobials are
retarded to diffuse within the biofilm matrix [14, 15]. In such cases, the bacteria in deeper areas
are exposed to antimicrobials at sub-MICs.

As for oral biofilm, there are a few studies reported that sub-MICs of antimicrobial agents
upregulate the genes related to EPS production and induce biofilm formation. Dong et al.
evaluated the expression of genes related to S. mutans biofilm formation following treatment
with 1/2 MIC of CHG, tea polyphenols, and sodium fluoride (NaF) [64]. The results showed
that expression of gtfB, gtfC, luxS, comD, and comE was significantly upregulated after
treatment with each antimicrobial agent in planktonic cells. Similarly, gtfB, luxS, comD, and
comE were also upregulated in biofilm. Morphological observation using a FE-SEM and CLSM
revealed that the biofilms of S. mutans treated with sub-MICs of NaF or CHG became denser,
containing more EPS and fewer water channels. However, tea polyphenols appear to not
promote S. mutans biofilm formation, as evidenced by SEM and CLSM images. Little EPS was
produced on the surface of teeth after S. mutans was treated with a sub-MIC of tea polyphe‐
nols, although the expressions of gtfB and gtfC genes were upregulated. The inconsistency of
these results can be explained by that sub-MICs of tea polyphenols may prevent from bacterial
adhesion to the surface of teeth in the presence of fluid shear force. Because the gene analy‐
sis was performed using a 24-well plate under a static condition, whereas the biofilm forma‐
tion for morphological analysis was prepared under a controlled flow. It has been reported
that tea polyphenols could decrease the adherence of S. mutans to glass surface [65, 66].

Bedran et al. investigated the effect of triclosan at sub-MICs on S. mutans biofilm formation,
adherence to oral epithelial cells and expression of several genes involved in adherence and
biofilm formation [67]. The authors reported that biofilm formation increased six-fold in the
presence of 1/4 MIC of triclosan. Growth of S. mutans in the presence of triclosan at sub-MICs
also increased its capacity to adhere to a monolayer of gingival epithelial cells. Furthermore,
the expression of comD, gtfC, and LuxS was significantly upregulated in the presence of 1/2
and 1/4 MIC, although the expression of atlA and gtfB was less pronounced.

Even in limited works with regard to oral biofilms, it is likely that short-time exposure of
antimicrobial agents in oral cavity sometimes cause adverse influences because the survived
microorganisms after exposure to the agents will alter gene expressions in a positive and
negative way.

3. Conclusion

Although chemical agents provide some benefits in terms of controlling oral biofilms, they
have the limitation of leaving biofilm structures that may induce adverse reactions such as
biofilm regrowth. Furthermore, sub-MICs of certain antimicrobial agents might induce biofilm
formation and upregulate pathogenic genes. Future strategies for the control of oral biofilms
may therefore shift to the degradation and/or detachment of biofilm matrix.
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