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Abstract

A  class  of  time-varying  systems  can  be  quadratically  stabilized  with  satisfactory
performance  by  a  modified  time-invariant-based  observer.  The  modified  observer
driven by the additional adaptation forces with static correction gains is used to estimate
the time-varying system states. Under the frame of quadratic stability, the closed-loop
systems satisfying induced norm bounded performance criterion are exponentially
stabilized while the states are exponentially approaching by the modified observer. This
paper deals with the time-varying systems that can be characterized as the multiplica‐
tive type of time-invariant and time-varying parts. The time-invariant part is then used
to construct the modified observer with additional driving forces, which are ready to
adjust time-varying effect coming from the measured outputs feeding into the modified
observer. The determination of the adaptation forces can be derived from the minimi‐
zation  of  the  cost  of  error  dynamics  with  modified  least-squares  algorithms.  The
synthesis of control and observer static correction gains are also demonstrated. The
developed systems have been tested in a mass-spring-damper system to illustrate the
effectiveness of the design.

Keywords: quadratic stablilization, time-invariant-based observer, error dynamics,
least-squares algorithm, adaptation forces, time-varying parts

1. Introduction

The study of optimal control for time-varying systems involves, in general, the solutions of
Riccati differential equations (RDEs) and computations of the time-varying correction gains [1–
4]. It is noted that the system is typically computer-implemented system, upon which the RDE
and correction gains are calculated. The computations, however, induces unavoidable time
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delay. Although the time-delayed control has been considered, it leads to two disadvantages—
complication of control mechanism and bulk of the control board. For some systems, for example,
hard disk drives (a typically time-varying system) can only tolerate no delayed or very limited
time delay control [5, 6] and use very small compartment. Hence, many literatures have focused
on the static gain control of time-varying systems or the systems with time-varying or nonlin‐
ear uncertainties [7, 8]. It represents the simplest closed-loop control form but still encounters
problems. One should aware that static output control is nonconvex, in which iterative linear
matrix inequality approaches are exploited after it is expressed as a bilinear matrix inequality
formulation( see [9–12]). As a result, it cannot be easily implemented in controlling the time-
varying system and time delay problems remain.

It is a great challenge problem to design a linear continuous time-invariant observer with
constant correction gains that regulate linear continuous time-varying plants. Although the
vast majority of continuous TV control applications are implemented in digital computers [6,
13, 14], there are still opportunities to implement control with Kalman observer in continuous
time (i.e., in analog circuits) [Hug88]. In particular, those control systems requiring fast
response ask no or little delay effects. The difficulties for setting up those boards are because
the algorithm of the design is too complex to implement in board level design, too expensive
which can only be realized in a laboratory, or digital computation time induced unsatisfactory
delay. It should be noticed that to realize the Kalman observer involves the computation of
Riccati differential equations and inversion of matrices, which cause the obstacles of the board
level design. A survey of linear and nonlinear observer design for control systems has been
conducted in the literatures [15–18] and references therein. For controlling an linear time-
invariant (LTI) system, the Lungerber observer [19] design with constant correction gain is
straightforward and can be implemented on a circuit board with ease.

Many practical control systems implement time-invariant controllers with observers in the
feedback loop, which can be easily realized not only in the laboratory but also in the industrial
merchandize [20]. The advantages of realization for the time-invariant controllers and
observers are due to the constant parameters, which can be easily assembled by using resistors
and other analog integrated elements in circuits board. The use of observers is also essential
in industrial controls due to, in some cases, the states can be either not reachable or expensive
to be sensed. Therefore, the use of observers are undoubtedly required to estimate unmeasured
states since not merely full-state feedback control can be easily implemented but unmeasured
states can be monitored [21–25].

With the aforementioned disadvantages and advantages, the control of time-varying systems
is naturally arisen by designing a time-invariant observer-based controller that stabilizes, in
particular exponentially, this time-varying plant. It is believed that this is a great challenge
problem since we found no literatures tackling this problem. In what follows time-varying
system control is first reviewed for laying the foundation of the robust control of the system
with optimality property.

The feedback control of linear time-varying system has been extensively studied [1, 6, 7, 26–
31]. The key observation of early works for exponential stability of time-varying systems
requires that the time-dependent matrix-valued functions be bounded and piecewise contin‐
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uous satisfying Lyapunov quadratic stability [29, 31]. In this regard, many, but not all, of them
can be translated to robust control framework since time-dependent matrices are essentially
bounded and are treated as uncertainties [8, 32]. This gives an opportunity for the control
system design without solving RDEs, although what we pay for the avoiding solving RDEs is
the conservative of control. The conservativeness comes from two reasons—solutions of RDEs
are avoided and admit fast varying parameters. This, however, can be reduced by designing
parameter-dependent type of criterion or introducing slack variables such that reduces the
tightness of dependent variables( see, e.g., [33] and reference therein).

This paper is organized as follows. The following section, Section 2, sets up the time-varying
systems to be tackled, time-invariant observer to be built, feedback control problems to be
solved, and system properties (assumptions) to be with the systems. Section 3 gives the main
results for solving the feedback control problems, in which LMIs characterize the quadratically
stability of the closed-loop system with L2-gain of the closed-loop system is preserved; in
addition, least-squares algorithm is suggested to drive the time-varying observer such that the
time-varying plant states can be estimated asymptotically. Consequently, Section 4 demon‐
strates the synthesis of the static gains of control input and correction gains of observer. To
verify the effectiveness, illustrative applications are to test the overall design of the feedback
closed-loop system. The last section, Section 5, concludes the overall paper.

2. System formulation and problem statement

We consider a nonlinear time-varying system described by a set of equations

(1)

The first equation describes the plant with n-vector of state x and control input u∈ℝm  and is
subject to exogenous input w∈ℝl

, which include disturbances (to be rejected) or references (to be
tracked). The second equation defines the regulated outputs z∈ℝq , which, for example, may
include tracking error, expressed as a linear combination of the plant state x and of the exoge‐
nous input w. The last part is the measured outputs y∈ℝ p . The matrices in (1) are assumed to
have the following system property:

(S1)A(t) denotes the matrix with nonlinear time-varying properties satisfying

(2)

where A is the n ×n constant matrix that extracts from A(t). The n ×n matrix F(t) lumps all time-
varying elements associated with plant matrix A(t), and it is possible to find a vertex set Ψ1

defined as follows
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such that F (t)∈Ψ1 , which is equivalent to saying that F(t) is within the convex set Ψ1  for all
time t ≥  0.

(S2) The matrices B1, B2, D, and D2 are all constant matrices, in which B1 and B2 quantify the
range spaces of control input u and exogenous input w, respectively, and D2 is chosen to be
zero matrix that is D2 =  0 for computational simplicity.

Remark 1. It is highlighted that F(t) in (S1) is not merely to lump all possible time-varying
functions but to include the parametric uncertainties. For the parametric uncertainties, it is
seen by simply observing that F(t) can be multiplicative uncertainties shown in [8]. For
representing time-varying matrix, an example is set as follows. Let

where

It should be aware that another equally good choice is to use additive type of representation,
that is, A(t) =  A +  F1(t), where F1(t) lumps all time-varying factors. As a matter of fact,
multiplicative and additive type of representations are interchangeable. Let F2(t) be such that
F1(t) =  F2(t)A. Thus, A(t)= F (t)A, where F (t) =  I  +  F2(t).

Remark 2. A number of examples are found to show the time-varying bound for F (t), such as
aircraft control systems in which constantly weight decreasing due to fuel consumption, the
switching operations of a power circuit board for voltage and current regulations, and the hard
disk drives with rotational disks induced time-varying dynamic phenomena [6].

The control action to (1) is to design an observer-based output feedback control system, which
processes the measured outputs y(t) in order to determine the plant states and generate an
appropriate control inputs u(t) based on the estimated plant states. The following observer
dynamics is developed for system (1),

(3)

where
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x̂(t) is the observed state of x(t) and the gain L is to be designed for the sake of stability. It
should be noted that the usage of constant matrix A in (3) instead of using time-varying A(t)
is due to the fact that it is not possible or may be too expensive to build the time-varying plant matrix
A(t) for the time-varying observers in a real analog circuit board that controls the system. On the
contrary, we are able to establish a time-invariant observer with ease for constant system
matrix A, B1, and B2 as stated in the Section 2. It is also seen that the observer (3) is Luenberger-
like observer because of the use of observer gain L.

The time-varying vector-valued function ς(t)∈ℝ p  to be determined in the sequel is an
additional degree of freedom for driving observer (3) to estimate the plant state x(t). We should
be aware that the intention of ς(t) is designed and meant to compensate time-varying effects
of F(t) to the system, that is, the effects of the time-varying functions will be adjusted by one
such function ς(t). Therefore, in addition to input u(t), e(t) becomes an additional driving
force to (3) such that x̂(t) tracks x(t) is possible. If F (t) = I  and all elements of the vector ς(t)
being equal to 1, then the system (1) with the observer (3) is a typical textbook example of
Luenberger observer control system [21].

In order to facilitate the closed-loop system, the error dynamics can thus be found by manipu‐
lating (1) and (3) as follows

(4)

or, equivalently, by taking the advantages of polytopic bound of (S1)

(5)

where x̃(t) =  x̂(t)− x(t) and ε(t) =  ς(t)−1, in which 1 denotes the vector with all elements being
equal to 1.

Once the observed state x̂ is available, the control input u is chosen to be a memoryless system
of the form

(6)

where K is the static gain to be designed. The control purpose has twofold: to achieve closed-
loop stability and to attenuate the influence of the exogenous input w on the penalty variable z,
in the sense of rendering the L2 gain of the corresponding closed-loop system less than a
prescribed number γ, in the presence of time-varying plant. The problem of finding controllers
achieving these goals can be formally stated in the following terms.
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Observer-based control via measured feedback. Given a real number γ >0 and
{A(t),  B1,  B2,  C ,  D,  D2} satisfying system properties (S1) and (S2). Find, if possible, two
constant matrices K and L such that

(O1) the matrix

(7)

has all eigenvalues in C−,

(O2) the L2-gain of the closed-loop system

(8)

is strictly less than γ, or equivalently, for each input u(t)= K x̂(t)∈L2 0, ∞), the response z(t) of
(8) from initial state (x(0), x̃(0)) =  (0, 0) is such that the following performance index is satisfied

(9)

for some γ>  0 and every w(t)∈L2  0, ∞).

Remark 3. Here, we will be using the notion of quadratic stability with an L2-gain measure
which was introduced in [32]. This concept is a generalization of that of quadratic stabilization
to handle L2-gain performance constraint to time-varying system attenuation. To this end, the
characterizations of robust performance based on quadratic stability will be given in terms of
LMIs, where if LMIs can be found, then the computations by finite dimensional convex
programming are efficient (see, for example, [32]).

Figure 1. Overall control structure.
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Remark 4. Figure 2 shows the overall feedback control structure of (8) to be designed in the
sequel, where the feedback loop, namely observer–error dynamics, serves as filtering process
with y(t) and w(t) as inputs such that proper control inputs u(t) and additional driving force
of (3) e(t) are produced.

Figure 2. Observer–error dynamics.

3. Analyses and characterizations

Two issues will be addressed in this section. Firstly, the theorem states the sufficiency condition
showing that the problem of observer-based control via measured feedback of time-varying
system is solvable. Secondly, an identification process based on least-squares algorithms for
ς(t) is derived to construct the feedback structure of the closed-loop system (8).

3.1. LMI characterizations

Theorem 1. Consider the time-varying system (1), observer dynamics (3), and error dynamics
(4) satisfying system property (S1) and (S2). Then, (T1) implies (T2), where (T1) and (T2) are
as follows.

(T1) There exist matrices P1≻0, P2≻0, K, and L and positive scalars γ and β such that

(10)

and matrices P3≻0 and Q≻0 with adaptive scheme of �(t) satisfying

(11)

The matrices, Π1 and Π2, defined in (10) are
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(12)

(13)

(T2) (O1) and (O2) hold, that is, the problem of observer-based control via contaminated
measured feedback is solvable.

Proof: the implication between (T1) and (T2) is shown in the Appendix.

Remark 5. It is shown in the Theorem 1 that if the matrix inequality (10) is satisfied and if �(t)
is computationally adjusted according to (11), then the overall closed-loop system is not merely
quadratically stabilizable, but the performance index (9) is fulfilled. It is highlighted that �(t)
in (11) is exponentially approaching zero as t →∞ for any ŷ(t). It is also noticed that there
remains a problem, that is, to compute the observed states x̂(t) in (3), in addition to the input
u(t) and exogenous signal w(t), the time-varying vector function ς(t) is needed in the compu‐
tation. Therefore, the following modified least-squares algorithm is derived for recursive
estimation of time-varying vector-valued function ς(t).

3.2. Modified least-squares algorithms

Prior to stating the modified least-squares scheme for computing ς(t), the following assump‐
tion is made

(14)

where Ii = {t | ti ≤ t < ti + Δt}. This is to say that ς(t) is kept constant within the small time interval
Δt , which, equivalently, is assumed that ς(t) is a piecewise continuous time-varying function.
The problem in this section is to determine an adaptation law for the vector-valued function
ς(t) in such a way that the x̃(t) computed from the model (4) agree as closely as possible to zero
in the sense of least squares. The following least-squares algorithms are developed by
summing the index of each small time interval with cost function defined as follows

(15)

To minimize the cost function ℑ, each index ℑi should be minimized as well and the following
conditions may be obtained for each time interval

Robust Control - Theoretical Models and Case Studies8



(16)

where t∈ I i and

In view of (16), the least-squares estimate for ς(t) is given by

(17)

where Γ(t) is called covariance matrix and is defined as follows

To assure positive definiteness and thus the invertibility, the covariance matrix will be further
polished in the sequel. The covariance matrix plays an important role in the estimation of ς(t)
and is worth noting that

(18)

To find the least-squares estimator with recursive formulations, which parameters are updated
continuously on the basis of available data, we differentiate (17) with respect to time and obtain

(19)

where

(20)

for t∈ I i,  i =  0, 1, 2, ⋯ . The covariance matrix Γ(t) acts in the ς̂(t) update law as a time-varying,
directional adaptation gain. We have to aware that by observing (18), which indicates positive
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semi definite of d
dt Γ −1(t), implies that Γ−1 (t) may go without bound and hence Γ(t) will become

very small in some directions and adaptation in those directions becomes very slow. Therefore,
to avoid slowing adaptive propagation speed and to assure the positive definiteness of
covariance matrix Γ(t) such that invertibility exists, the following covariance resetting propaga‐
tion law is developed. Within each time window, we modify (18) as follows,

(21)

and

(22)

The scalar g >  0 is chosen such that the adaptation maintains suitable rate of propagation. The
covariance resetting propagation is adjusted by (21), in which the initial condition is also reset.
The condition (22) shows that the covariance matrix can also be reset within the time window
if the covariance matrix is close to the singularity. That is, the covariance matrix is reset if its
minimum eigenvalue is less than or equal to k1, that is, λmin(Γ (t))≤k1. The following Lemma
shows that the covariance matrix Γ(t) is bounded and is positive definite based on the
covariance resetting propagation law (21) and (22).

Lemma 1. Assuming that (21) and (22) hold. Then, k0I ≽ Γ(t)≽k1I ≻0 and, thus, k0≥ ∥ Γ(t)∥ ≥k1

for t∈ I i,  i =  0, 1, 2, ⋯ .

Proof: At the resettings, the covariance matrix Γ−1 (t) is reset at t = tr
+, hence Γ (tr

+)=k0I . Then,

followed by d
dt Γ−1 (t)= gW T (t)W (t)≽0, we have Γ−1 (t1)−Γ−1 (t2)≽0 for all t1≥ t2 > tr  between

covariance resettings. The computation will progress until the next resetting time t, if it exists,
on which λmin(Γ (t))≤k1. Hence, we may conclude that k0I ≽ Γ(t)≽k1I ≻0, which says that
k0≥ ∥ Γ(t)∥ ≥k1.

Before presenting the theorem for modified least-squares algorithms of ς̂(t) showing that it is
bounded, the following transition matrix Lemma for the solutions of (19) is essential.

Lemma 2. There exists a positive number k such that the transition matrix, Φ(t , τ), of (19) is
bounded, that is, ∥ Φ(t , τ)∥ ≤k <∞, for t∈ I i,  i =  0, 1, 2, ⋯ .

Proof: The proof is constructive. We first notice that the solution to (19) is given by

where Φ(t , τ) is the transition matrix of ς̇̂(t)= − Γ(t)W T (t)W (t)ς̂(t) or the unique solution of

Robust Control - Theoretical Models and Case Studies10



(23)

A constructive method is suggested by letting a differential equation η̇(t)= −η(t), η(ti)=ηi, where
η(t) is a vector of appropriate dimensions. We may conclude that η(t), η̇(t)∈L2∩L∞..

Let π(t)= Φ (t , ti)η(t) and Lyapunov candidate, Vπ =  π T (t)Γ−1 (t)π(t), where Γ(t) is chosen as
satisfying Lemma 1. Then, computing V̇ π along solutions of π̇(t) =  Φ̇(t , ti)η(t) + Φ(t , ti)η̇(t)
between the covariance resettings is as follows,

Without loss of generality, let g  =  2. Then,

(24)

At the point of resetting, that is, the point of discontinuity of Γ(t), we obtain

(25)

It follows from (24) and (25), we conclude that the Lyapunov candidate along the solution π(t)
has the property, 0≤Vπ(t)≤Vπ(ti). This shows that π(t)∈L∞ , which implies that
∥ Φ (t , ti)∥ ≤k <∞ for some k >0.

Theorem 2. Assuming that the problem of observer-based control via contaminated measured
feedback is solvable. If there exist the identifier structure of least-squares algorithm (19) with
covariance resetting propagation law (21) and (22), then ς̂(t)∈L∞ for all t ≥0.

Proof: To prove the claim is true, we need to show that ∥ ς̂(t)∥∞ =supt ∥ ς̂(t)∥ <∞ for
t∈ I i,  i =  0, 1, 2, ⋯ . We have the solution to (19) is given by

where Φ(t , τ) is the transition matrix shown in (23). In view of Lemma 2, we obtain
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The boundedness of ∫
ti

t

∥ f (τ)∥∞ dτ can be easily seen by observing (20), in which x̂(t), x̃(t), and

W (t)= Ldiag ŷ = Ldiag C x̂  followed by Theorem 1 have bounds and x̂(t), x̃(t), W (t)→0, as
t →∞. The covariance matrix Γ(t) satisfies (21) and, then, is bounded by Lemma 1. Followed
by system property (S1), F(t) is clearly bounded for all t ≥0. The measured signal y =  Cx, by
Theorem 1, is 0 as t →∞. In summary, there exists a positive finite number k3 such that

Therefore,

(26)

which indicates that ς̂(t)∈ L ∞, for t∈ I i. As time evolves, for each small time interval, (26)
always holds. Hence, we may extend t →∞. This completes the proof.

Remark 6. In this section, a modified least-squares algorithm is shown to find the estimated
ς(t), which is intentionally designed to justify the effects of time-varying functions F(t)
produced in the plant (1). Figure 3 depicts the complete structure of observer–error dynamics
that has been shown in Figure 2, in which two filters, namely observer dynamics and error
dynamics, and one lest squares algorithm construct the feedback control. The observer dynam‐
ics produces the estimated state of plant by filtering the signals u(t), w(t), and e(t). It is worth
noting that the signal e(t) from least-squares algorithm plays an additional drive force to the
observer dynamics. The error dynamics is to find the error state x̃(t), which is then injected
into the least-squares algorithms such that the time-varying function ς(t) is estimated.

Figure 3. Mass-damper-spring system.
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4. Control and observer gain synthesis

The synthesis of control and observer gains is addressed in Theorem 1. For the simplicity of
expression, the time argument of matrix-valued function F(t) will be dropped and denoted by
F. A useful and important Lemma will be stated in advance for clarity:

Lemma 3 (Elimination Lemma see [32]). Given H=HT ∈ℜn×n, V∈ℜn×m, and U∈ℜn× p with
Rank(V)<n and Rank(UT )<n. There exists a matrix K such that

if and only if

where V⊥  and U⊥  are orthogonal complement of V and U, respectively, that is V⊥T V=  0 and
V⊥ V  is of maximum rank.

Lemma 4. Given a real number γ>0 and {A(t),  B1,  B2,  C ,  D,  D2} satisfying system properties
(S1) and (S2), the following statements (Q1), (Q2), and (Q3) are equivalent.

(Q1) There exist matrices P1≻0, P2≻0, matrices K and L, and positive scalars β and δ such that
the following inequality holds,

(27)

(Q2) There exist matrices P1≻0,  P2≻0, matrices K and L, and positive scalars β and δ such that
the following inequality hold,

(28)

(29)

(Q3) There exist matrices X ≻0 and P2≻0, matrix W and Y, and the positive scalars γ, δ and β
such that the following two matrix inequalities hold,

(30)

Robust Observer-Based Output Feedback Control of a Nonlinear Time-Varying System
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(31)

Proof: to prove (Q1)⇔(Q2). The inequality (27) may fit into Lemma 3 with

Next, the orthogonal complement of V and U is given by V⊥ and U⊥, respectively, which are

which (B1)⊥ is defined as the orthogonal complement of B1 and is such that (B1)⊥T B1 =0 and

B1(B1)⊥  is of maximum rank. By applying Lemma 3, we may have the following inequalities,

(32)

and

(33)

It is seen that matrix inequalities (28) and (29) hold if and only if (32) is true. Given (32), (33)
is also true. Therefore, by Lemma 3, (Q1)⇔(Q2).

To prove (Q2)⇔(Q3), let X = P1
−1, we find the following iff condition for inequality (28),

(34)

Robust Control - Theoretical Models and Case Studies14



where W = KX . It is noted that the last iff holds is due to Schur complement in that the positive
definiteness of D T D + δ −2A T (I −F )T (I −F )A must ensure. As for the matrix inequality (29), let
Y  =  P2L , we have

(35)

Again, the last iff of (35) is due to Schur complement and β >0 and δ >0 ensure the inequality
holds.

Remark 7. It is seen that δ is the only common scalar for matrix inequalities (34) and (35). In
order to ease of computation and without loss of generality, we may assume that δ is a certain
constant. The advantage of it, in addition to the ease of computation, is that the gains K and L
are solely determined by (34) and (35), respectively. From rigorous point of view, we may not
be able to say that the separation principle is completely valid for this case. But, loosely
speaking, it fits by small modification.

Lemma 5. (Q1) implies (10).

Proof: let (π1, π2)≠ (0, 0). Then

Thus, (Q1) implies (10). This completes the proof.

Theorem 3. Given a real number γ>0 and {A(t),  B1,  B2,  C ,  D,  D2} satisfying system property
(S1) and (S2). Then, (Q3) with scheme (11) implies (T2).

Proof: by Lemma 5, (Q1) implies matrix inequality (10). Moreover, by Lemma 4, we have
(Q1)⇔(Q3). Therefore, (Q3) with scheme (11) is equivalent to (T1). Moreover, by Theorem 1,
the claim is true.
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Remark 8. Theorem 3 states that the problems post in observer-based control via contaminated
measured feedback, that is, (O1) and (O2), are solvable by proving that (T2) holds.

5. Illustrative application

In this application, a simple time-varying mass-damper-spring system is controlled to
demonstrate that the time-varying effects appearing in the system matrix can be transferred
to a force term in the observer structure. Thus, consider the system shown in Figure 3 without
sensor fault. k1 and c1 are linear spring and damping constant, respectively. k2(t), c2(t), and c3(t)
are time-varying spring and viscous damping coefficients. The system is described by the
following equation of motion

(36)

where time-varying functions are c2(t)= c2(sinω2t), k2(t)=  
k1

m e −bt(cosω1t), c3(t)= −
c1

m e −bt(cosω1t),
and the constants are k1 =  k  and c1 = c2 =  c. Define x1(t)= y(t) and x2(t)= ẏ(t), the state space
representation of (36) is

(37)

where

Here, we consider the parameters m =  1, c =  1, k  =  1, b =  0, ω1 =  1, and ω2 =10 (rad / sec). Thus,
the set of vertices of polytope Ψ1  associated with time-varying matrix F(t) is

By applying linear matrix inequalities (30) and (31) of (Q3) in Lemma 4, the control and
observer gain, K and L can be found by implementing Matlab Robust Control Toolbox. It is
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also noted that the computation of two matrix inequalities can be separated by justifying
δ =  0.05. We thus find

The control input is then computed by u = K x̂, where the observed state x̂ is from

(38)

with e(t)=diag ŷ(t) ς(t)− y(t), in which the time-varying vector-valued function ς(t) is estimat‐
ed via the set of recursive formulations (19)–(22).

Figure 4. (a) shows plant state (solid line) x1 and observer state (dash-dot line) x̂1. (b) is the plant state (solid line) x2
and observer state (dash-dot line) x̂2. (c) gives the control input u(t).
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The implementation are coded in Matlab using the initial states: x1(0)=0.5, x2(0)= −0.6, x̂1(0)=0.0,
x̂2(0)=0.1, ς̂(0)=0.1, Γ(0)=k0 =2, and k1 =0.3. The simulation results are depicted in Figures 4 and
5. Figure 4(a) and (b) shows that the observer states x̂ cohere with the plant states x. It is,
therefore, seen that the observer (38) being driven by time-varying term e(t) can actually trace
the plant (37). The control input u(t) to the system is shown in Figure 4(c). The covariance
resetting propagation law Γ(t) and the estimated ς(t), that is, ς̂(t) are shown in Figure 5(a) and
(b). The observer driving force e(t) and 2-norm value of the time-varying matrix function F(t)
are depicted in Figure 5(c) and (d). It is seen clearly that the Γ(t) and ς̂(t) are adjusted to
accommodate the time-varying effects that driving the observer dynamics as the closed-loop
system is approaching equilibrium point. The driving force to the observer dynamics e(t) shows
the same results. Figure 5(c) depicts that the time-varying matrix F(t) is indeed varying with
time.

Figure 5. (a) is the values of Γ(t). (b) demonstrates the least-squares estimated results of ς̂(t). (c) is the driving force
of the observer dynamics e(t). (d) computes the 2-norm value of time-varying matrix function F (t) with b =  0.
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6. Conclusion

This paper has developed the modified time-invariant observer control for a class of time-
varying systems. The control scheme is suitable for the time-varying system that can be
characterized by the multiplicative type of time-invariant and time-varying parts. The time-
invariant observer is constructed directly from the time-invariant part of the system with
additional adaptation forces that are prepared to account for time-varying effects coming from
the measured output feeding into the modified observer. The derivation of adaptation forces
is based on the least squares algorithms in which the minimization of the cost of error dynamics
considers as the criteria. It is seen from the illustrative application that the closed-loop systems
are showing exponentially stable with system states being asymptotically approached by the
modified observer. Finally, the LMI process has been demonstrated for the synthesis of control
and observer gains and their implementation on a mass-spring-damper system proves the
effectiveness of the design.

7. Appendix

It is noted that in this appendix all time arguments of either vector-valued or matrix-valued
time functions will be dropped for the simplicity of expression. They can be easily distin‐
guished by their contents.

Proof: (T1)⇒(T2). We need to show that if the conditions (10) and (11) in (T1) hold, then (O1)
and (O2), which are equivalent to (T2), hold. Let quadratic Lyapunov function be

with P1≻0, P2≻0, and P3≻0. Then, the performance index (9) can be written as

(39)

for all states satisfying (1) and (3) with initial states (x(0), x̃(0))= (0, 0), and �(0)=0. In view of
(8), the first integrand in (39) is

(40)

The second integrand in (39) is
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(41)

The right-hand side of equality (41) can be reorganized by using the closed-loop system (8),
and thus, the first term is

(42)

Completing the square of (42), we have

(43)

Similarly, the second term of (41) is

(44)

Applying completing the square to (44), we obtain

(45)

Robust Control - Theoretical Models and Case Studies20



Substituting (40), (43), and (45) into (39), we have

(46)

where definition of Π1(P1) and Π2(P2) are defined as (12) and (13), respectively. Therefore, by
eliminating the negative terms from (46), the following inequality is drawn,

(47)

Given that diag � ŷ =diag ŷ �, if (11) of (T1) holds, then it concludes that

In view of (10) of (T1), we thus find that the inequality (47) is simply

(48)

Therefore, the inequality (48) satisfies the performance index (9), which completes the proof
(O2).

To prove that (O1) holds, we use the inequality (10) in (T1) and get the equivalent inequality
as follows,

where
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It is concluded, by a standard Lyapunov stability argument, that Ã, that is (7), has all eigen‐
values in C−, which shows that (O1) holds. This completes the proof of Theorem 1.
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