We are IntechOpen, the world's leading publisher of Open Access books Built by scientists, for scientists

186,000

200M

Our authors are among the

TOP 1% most cited scientists

WEB OF SCIENCE

Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com

Assessment of DNA Damage by Comet Assay in Buccal Epithelial Cells: Problems, Achievement, Perspectives

J. Sánchez-Alarcón, M. Milić, S. Gómez-Arroyo, J. M. R. Montiel-González and R. Valencia-Quintana

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/62760

Abstract

DNA damage risk assessment in comet assay by the use of buccal mucosa cells has great advantages in comparison with other cell type sample due to more safely, easier, cheaper, and non-invasive method for in vivo studies. According to the OECD Guidelines, the in vivo mammalian alkaline comet assay is well-established and validated method for measuring DNA strand breaks in single eukaryotic cells. Considering exposure to xenobiotics and endogenous damage inductors, buccal mucosa cells are the first to be in direct contact after exposure and this makes them an ideal biomatrices in evaluation of the level of individual genotoxicity to several compounds already mentioned. Their clinical diagnostic applicability confers a potential use in patients across time. However, the number of publications referring to the human buccal comet assay is low in the last two decades. This low growing interest may be explained by several factors, including its relative technical problems. Different procedures have been used in collecting and processing the samples. In order to have widespread acceptance and credibility in human population studies, the comet assay in buccal cells requires standardization of the protocol, of parameters analyzed, and a better knowledge of critical features affecting the assay outcomes, including the definition of the values of spontaneous DNA damage. There is a need for further collaborative work as in the HUMN (micronucleus assay on lymphocytes) and HUMNxL (micronucleus assay on buccal cells) collaborative projects. The creation of a network of laboratories will allow more focused validation studies, including the design of a classic, historic, prospective cohort study in order to explore the link between measures of genetic instability in the buccal mucosa and the risk of cancer and other chronic-degenerative diseases. One such network connection will start in 2016 as a COST project under the name "hCOMET – The comet assay as a human biomonitoring tool" launched by Prof. Andrew Collins.

Keywords: SCGE assay, buccal mucosa cells, genotoxic risk assays, DNA damage, comet assay

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Human exposure to environmental chemical agents occurs as a result of contaminated air, water, soil, and food. Although many chemical agents are in use for more than two centuries, nowadays, it is known that a number of them can cause genetic damage. Chemicals that can cause this type of damage are specified and identified as mutagens, carcinogens, or teratogens based on the diverse type of investigations. It is estimated that chemicals play a predominant role in the etiology of a majority of human diseases. The possible genetic health hazards associated with chemicals are more difficult to evaluate in the human environment. There are tens of thousands of untested chemicals in the human environment, and some attempt must be made to identify the ones that are potentially hazardous to man. From 1972 when first UN Conference on the Human Environment was organized, World Health Organization and International Agency for Research on Cancer (IARC) have published many monographic editions categorizing dangerous chemicals based on collected in vitro and in vivo results of investigations [1,2]. Also, unique tools (methods) for assessing the potential effects of chemicals on human health, and the environment have been established under the name The OECD Guidelines for the Testing of Chemicals, methods, and guidelines internationally accepted as standard methods for safety testing [3] in which standardized and validated techniques are described that can estimate the level of DNA damage after the exposure.

During the past half century, the focus has been shifted from identification of these compounds in the environment to the risk assessment and minimization or prevention of unnecessary exposure in the first place. For this reason, along with an increasing understanding of mechanisms of action by which these chemicals can cause DNA or cell damage, and also cancer [4], a variety of hazard identification screening models have been developed and established. These models can serve in risk assessment studies. Risk is defined as the probability of a given toxicological hazard producing actual biological harm. This idea involves some form of mathematical relationship between exposure and toxicology. In the field of environmental toxicity assessment, the need for in-time risk management decisions requires setting up a battery of standardized and relatively easy to perform tests, allowing quick answers to pressing questions [5]. The use of diverse genotoxic bioassays is therefore unavoidable. Application of biomarkers in both qualitative and quantitative aspects of risk assessment has been eagerly anticipated for over a decade, since Hattis [6] first proposed their use in this process.

Numerous assays have been developed as screens for genotoxicity, beginning with the Salmonella mutagenicity assay. Genomic damage is probably the most important fundamental cause of developmental and degenerative disease. It is also well established that genomic damage is produced by environmental exposure to genotoxins, medical procedures, micronutrient deficiency, lifestyle, and genetic factors [7]. It is essential to have reliable and relevant minimally invasive biomarkers to improve the implementation of biomonitoring, diagnostics, and treatment of diseases caused by, or associated with, genetic damage.

Since methods in molecular epidemiology have been improved with the use of reliable biomarkers of exposure in analysis, population biomonitoring has become an extremely powerful approach to determine the effect of environmental mutagens on human populations [8]. On this way, early effects may be highlighted in all accessible cell types, such as blood cells, epithelial cells and exfoliated buccal or urothelial cells; thus, genetic biomonitoring allows detecting adverse effects of mutagenic chemicals in human somatic cells [9].

Among different types of cells and especially of epithelial cells, the collection of buccal cells is arguably the least invasive method available for measuring DNA damage in humans, especially in comparison with obtaining blood samples for lymphocyte and erythrocyte assays, or tissue biopsies [7]. Without the need for cell culture establishing (cells do not divide, but just differentiate from basal cells), buccal cells analyzed by other techniques, such as micronucleus assay, have shown good correlation with the level of damage observed on lymphocytes after 72-h cell culture with DNA damage cytogenetic test called cytochalasin B blocked micronucleus (MN) assay [10]. Buccal micronucleus cytome assay can measure frequency of MN (its origin is either from chromosome breakage/loss of entire chromosome), nuclear buds and/or broken egg, binucleated cells, and various forms of cell death phase measured as condensed chromatin, karyorrhectic, pyknotic, or karyolitic cells [11]. Chronic exposure leads to a steady-state elevated expression level of MN regardless of the cell division rate if the period of exposure exceeds the time frame for one nuclear division, that is, 20-30 h. Carcinogens delivered primarily through blood stream influence equally DNA damage measured in buccal cells and lymphocytes. Since collection of buccal cells and their processing is easy, fast and low cost, and they do not divide just differentiate, they have potential to replace the tests that need cell culture establishment in order to estimate DNA damage. HUMNxL group (The HUman MicroNucleus project on eXfoLiated buccal cells group) has collected data from 30 different laboratories on 5424 subjects in order to evaluate the impact of host factors, occupation, lifestyle, disease status, and protocol features on the occurrence of MN in exfoliated buccal cells [12]. The results of this survey have shown high correlation of micronucleus detection in buccal cells with exposure for occupational groups reporting exposure to solvents, polycyclic aromatic hydrocarbons (PAHs) and gasoline, arsenic, and antineoplastic drugs. Also, significant association of higher MN frequency was found for oro-pharyngeal and respiratory cancers, and for all the other cancers pooled together. Although micronucleus assay in buccal cells does not need cell culture, it requires at least 3000 cells examined under the microscope. Since this can also be time consuming, one of the other methods for measuring DNA damage is alkaline comet assay, one of the newest OECD guideline tests (from 2014) for chemical exposure in vivo (No. 489), an easy and low-cost assay that measures primary DNA damage on any type of single-cell suspension sample [13]. The use of comet assay on buccal cells would be a potential new and reliable combination for chemical exposure and DNA damage assessment. The comet assay in buccal cell assay was first reported in 1996 [14]. Like in HUMNxL project, it will be necessary to develop and implement the results of an international collaborative validation group established to identify and quantify the key variables affecting the damage evaluation in buccal mucosa cells using the comet assay. In addition, an interlaboratory slide-scoring exercise could be undertaken to evaluate the intra- and inter-laboratory variability in the scoring of different parameters of comet assay in buccal cells, similar to the approach successfully used by the HUMN project for the MN assay in lymphocytes [15-17] and the HUMNxL project in buccal cells [7,12,17,18]. One such groups with prof. Andrew Collins has started in 2016 a COST networking project under the name "hCOMET — The comet assay as a human biomonitoring tool", in order to give response to the questions discussed in this review.

1.1. Comet assay

The comet assay is a cheap, easy, fast, reliable, and sensitive method for measuring the level of primary DNA damage in single-cell suspension of any type and requires a small sample material. For these reasons, the comet assay in its various modifications (alkaline, neutral, and with lesion-specific enzymes to detect specific types of DNA damage such as 8OHdG, formamidopyrimidine DNA glycosylase, endonuclease III, T4 endonuclease. V.) has few serious competitors. The cells are embedded into agarose, and after lysis, denaturation, electrophoresis, and staining, the amount of DNA damage is measured either visually by dividing the damaged cells into five groups, or by the help of camera and software image program that analyses the image. Measured parameters are usually tail length (measured in micrometers), tail intensity or tail DNA percentage (when there is damage, DNA has a shape of a comet), and tail moment (combination of the first two parameters). It is recommended to use tail intensity parameter since the agents sometimes produce few small breaks that make comet tail long, but in fact, there is not a high percentage of DNA in the damaged part of the comet. When standardized and validated, the comet assay can provide valuable information in the areas of hazard identification and risk assessment of environmental and occupational exposure, diseases linked with oxidative stress (e.g., diabetes and cardiovascular disease), nutrition, monitoring the effectiveness of medical treatment, and investigating individual variation in response to DNA damage that may reflect genetic or environmental influences. The information obtained could lead to individual advice on lifestyle changes to promote health and especially on relative risks of genotoxic exposure to environmental pollution [19].

In human biomonitoring studies, the comet assay can provide crucial information on risk assessment of environmental, occupational, and lifestyle exposures. Earlier reviews have dealt with different aspects of the use of the comet assay in human biomonitoring studies [20–26], but without providing any specific, practical guidance for using the comet assay in human biomonitoring. Several general articles on biomonitoring are available [27–31] that can be helpful when designing biomonitoring studies using the comet assay. To avoid obtaining false-positive and false-negative results, certain basic principles should be respected and followed in study design and performing and these consider first of all matching of exposed and control group according to gender, age, alcohol, and smoking habits and their consumption, and also with other lifestyle and nutritional factors [19].

ComNet project group, established before last COST project that will make an effort in exposure type and DNA damage assessment, has made an effort to pool together data of all available comet assay biomonitoring studies, in order to establish baseline parameters of DNA damage, and to investigate associations between comet assay measurements and factors such as sex, age, smoking status, nutrition, lifestyle. Although this assay has been widely used in human biomonitoring for DNA damage measurement as a marker genotoxic agent's exposure or for investigation of genoprotective effects, single research studies had usually small

numbers of subjects, with sub-optimal design also in other critical respects already mentioned, and also with the use of significantly different comet assay protocols. For these reasons, the ComNet project has recruited almost 100 research groups willing to share datasets. Collins et al. [32] provided a background of the ComNet project, and the history of the comet assay itself, and the most important, he has pointed out important practical issues that can critically affect its performance. The survey pointed out comet assays diverse applications in biomonitoring studies (environmental, occupational exposure to genotoxic agents), genoprotection studies that were controlled by dietary and other factors and DNA damage assessment studies associated with various diseases and intrinsic factors that affect DNA damage levels in humans. The survey also analyzed the quality of data from a random study selection, using epidemiological and statistical point of view. Most of the studies have been done on lymphocytes or whole blood, and they can show damage of DNA caused by long term exposure or also exposure in the past, since lymphocytes circulate through the body and can live for up to 3 years. A new step will be also to established basal levels of DNA damage in relation to different exposure, diseases, and cell types used, and to correlate them with long-term and short-term exposure. Considering the short term or recent exposure, buccal mucosa cell comet assay would be ideal since those cells among epithelial cells are short living cells with no division and DNA damage found in them can demonstrate recent exposure or direct contact exposure with oral mucosa, so the DNA damage measured by comet assay on buccal cells would be indication of recent exposure and severity of that exposure [33].

1.2. Exfoliated oral mucosa cells

Buccal cells form the first barrier for the inhalation or ingestion route and are capable of metabolizing proximate carcinogens to reactive products [34–37]. About 92% of human cancers are derived from the external and internal epithelium, that is, the skin, the bronchial epithelium, and the epithelia lining the alimentary canal [7,38]. Therefore, it could be argued that oral epithelial cells represent a preferred target site for early genotoxic events induced by carcinogenic agents entering the body via inhalation and ingestion [7,39].

In the early studies from the 1980s, exfoliated buccal mucosa cells were used with the MN assay to evaluate the genotoxic effects of multiple factors including environmental and occupational exposures, radiotherapy, chemoprevention, vitamin supplementation trials, lifestyle habits, cancer, and other diseases (see [7] for review), with possibility of cell degeneration in form of condensed/fragmented chromatin, pyknotic nuclei, loss of nuclear material in form of karyolitic or "ghost" cells [18,40,41]. In rare cases, some cells can also demonstrate other forms such as binucleated stage with two nucleus in the same cytoplasm, form of nuclear bud or "broken egg" or form small micronuclei (MN) near nuclei in the same cytoplasm. These biomarkers of genome damage (e.g., MN, nuclear buds) and cell death (e.g., apoptosis, karyolysis) can be observed in both the lymphocyte and buccal cell systems, and thus provide a more comprehensive assessment of genome damage then only MN in the context of cytotoxicity and cytostatic effects [7,39,41].

2. The comet assay in mucosa buccal cells

DNA damage assessment in exfoliated cells (buccal epithelium) may be an innovative promising tool for genotoxicity studies since sampling is easy. Some results indicate that alkaline single-cell gel electrophoresis, using buccal epithelial cells, could be a good biomarker of early effects, and can be utilized for human monitoring, since, in some cases, this kind of cell is the first to interact with xenobiotics [14]. Comet assay can detect DNA single-strand breaks and alkali labile sites at pH 13 (alkaline version) or double-strand breaks under neutral conditions (neutral version) [42–44]. The relevance of SCGE lies in its requirement for very small cell samples, and in its ability to evaluate DNA damage in proliferating or non-proliferating cells [45].

While biomonitoring studies employing cytogenetic techniques are mainly done in lymphocytes, the SCGE technique can be applied to any cell population. Over the last years, exfoliated cells have been used for biomonitoring studies utilizing several genotoxicity endpoints [40]; however, there are few studies which apply SCGE on epithelial cells [14].

Over 90% of cancers are epithelial in their origin [47] and since crucial mechanism in cancer development is the level and amount of DNA damage [48], DNA damage assessment in buccal epithelial cells may prove as a good biomarker of early damage. In their work, Rojas et al. [14] established for first time, the conditions for using the comet assay in buccal epithelial cells.

The use of surrogate cells, other than lymphocytes, such as exfoliated cells from epithelial tissues is of particular interest due to the ability to be collected with non-invasive methods, and the cells are explored with the aim to evaluate their suitability in biomonitoring studies [7,49]. Beside the minimally invasive sample collection from the inner wall of the cheek, the cells have advantage in exposure assessment to inhaled or ingested genotoxic agents, and this all makes them a good model for large biomonitoring studies, and also in pediatric researches.

The application of the comet assay test in uncultured buccal exfoliated cells (since the test does not need cell culture conditions), started in the 1996, when Rojas et al. [14] by comparing DNA damage level between smokers and non-smokers group in exfoliated buccal mucosa cells, found that DNA tail length significantly increased in the smoker group ($89.30 + 16.18 \mu m$) vs. non-smoker group ($52.01 + 10.43 \mu m$), indicating that the SCGE assay could be applied to human monitoring using exfoliated buccal epithelial cells.

In that moment, Rojas et al. [14] indicated that alkaline single-cell gel electrophoresis assay, using buccal epithelial cells could be a good biomarker of early effects, and can be utilized for human monitoring since; in some cases, this kind of cell is the first to interact with xenobiotics. However, 20 years later, <40 articles have been published with this bioassay. **Table 1** represents the list of analyzed studies on buccal cells with comet assay with a point on sampling and preparation of slides for comet assay analysis. This table is extending the data collected in Rojas et al. [33] who only made observations in differences in preparing the slides, giving the highest impact on different lysis solution and enzyme digestion in preparation.

Refer-		[22]	[65]	[81]
Π	Neutralisation, fixation and staining	3 times rinsing in fresh neutraliza- tion buffer (0.4 M Tris, pH 7.5). fixed 5 min ab- solute metanol, 75 µL EtBr (20 µg/mL) 10 min	Slides were then neutralized (0.4 M Tris, pH 7.5), washed in distil- led water, AgNO ₅ staining protocol as described by Nadin et al. [108]	Slides rinsed by dipping several times into detor- ized water, fixa- tion in 70% EtOH 5 min, 50 µL of dilute SYBR green
	Electrophoresis	Electrophoresis was 20 min at 25 V and 300 m.A	20 min at 25 V and 300 mA (0.90 V/cm)	1 V/cm, 1 h
	Pre- electrophoresis	Horizontal elec- trophoresis chamber. Fresh electrophoresis buffer (300 mM NaOH and 1 mM Na,EDTA, pH 13); 20 min	Horizontal elec- trophoresis unit, with fresh alka- line solution (300 mM NaOH, 1 mM EDTA, pH 13.0) 20 min at 4°C	Followed by im- mersion in fresh- ly prepared alkaline solution, pH >13, for 45 minutes at room temperature in the dark
	Lysis	The coverslip re- moved, slides im- mersed in a freshly made ly- sis solution (2.5 M NaCL, 100 mM EDTA, 10 mM Tris, pH 10), 10 % DMSO, and 1 % Triton X-100 for 24 h at 4 °C	Ice-cold lysis sol- ution (25 M NaCl, 10 mM Tris, 100 mM ED- TA, 1% Triton X-100 and 10% DMSO, pH 10.0) at 4°C for 1 week. This procedure removes cell pro- teins and leaves the DNA as 'nu- cleoids'	The slide was im- mersed in pre- chilled lysis solution for 60 minutes
	Enzyme treatment		0.25% trypsin sol- ution was added, 30 min. 37 °C. af- ter, cells were treated with pro- teinase K (1 mg/mL) 10 min.	
	Slides preparation	50 µL of cell pel- let in 50 µL LMP agarose (1% in PBS), sample carefully stirred, dropped on a slide, coverslip precoated with NMP agarose (1 % in PBS), and kept on ice dur- ing the polymeri- zation of each gel layer	10 µL cell sus- pension mixed with 0.75% LMP agarose, 75 µL immediately spread onto a glass microscope slide pre-coated with a layer of 1% NMP agarose. The LMP layer was allowed to set at 4°C for 5 min	Mixing 500 µL of molten LMA with 50 µL of cells specimen at 37°C and imme- diately pipetting 75 µL of 1:10 (v/v) aliquot onto a convet slide, placed flat at 4°C in the dark 10 min
Buccal comet assay technique	Centrifuged	At 1000 rpm 10 min	At 1500 rpm 10 min, resus- pended in 1 mL PBS in Eppendorf tube centri- fuged (1000 rpm, 5 min)	At 2500 rpm I min
Buccal comet a	Followed	According with Singh et al. [100]. Tice et al. [23]. Speit and Hartmann [107]. with some modifi- cations	Thomas et al. [11], Szeto et al. [61]	
Cells Sampling	Collecting	Small sterile spoon, kept in 1 mL of physiologi- cal solution at 37 °C	With a cytologi- cal brush, in a 20 circulare expand- ing rotations, from the center of the cheek, both left and right cheek sampled with separate brushes, cells in 20 ml PBS, 4°C until further process	Scraping the in- ner part of both cheeks 3 times with cytology brush, samples in sealed 1.5 ml Ep- pendorf tube with PBS, room temperature, no direct sunlight
Exfoliated Buccal Cells Sampling	Rinsing	With water	Several times with distilled wa- ter	With water

Refer-	ence	[72]	[53]	[69]	[85]
	Neutralisation, fixation and staining	Slides rinsed by dipping several times in distilled water. Fixation by immersing in 70% EtOH 5 min, then air dried. EtBr staining (50 mg/ml)	Stained with EtBr		
	Electrophoresis	In eectrophoresis buffer (0.01 M NaOH, 1 mM EDTA, pH 9.1), 0.9 V/cm, for 18-20 min	For 15 min under high pH , at 20 V and 400 mA		
	Pre- electrophoresis	Alkaline solution for 20 min at room tempera- ture in the dark			
	Lysis	Cell lysis with proteinase-K (1 mg/ml) for 60 min	Were lysed by detergents and salts at high con- centrations		
	Enzyme treatment	Layered with 50 µL trypsin solu- tion (0.25% tryp- sin, 1 mM EDTA in Hanks bal- anced salt solu- tion) and incubated for 30 min at 37°C, slides washed with PBS.			
	Slides preparation	10 µl. of suspen- sion mixed with 85 µl. of pre- warmed (40°C) LMP agarose 1% (w/v). Cells in LMP agarose were applied to a Trevigen comet slide and incubat- ed at room tem- perature until the gel layer solidi- fied	The cells were embedded in agar on a micro- scope slide		
Buccal comet assay technique	Centrifuged	At 200 X g for 10 min, the cell pellet washed with 500 µL PBS and centri- fuged			
Buccal comet a	Followed protocol	Ostling and Johanson [109]. Szeto et al. [61]	Following the method out- lined by Singh et al. [100]	Eshkoor et al. [66]	Rojas et al. [14], and modified based on standard pro- cedures from cornet assay kit
Cells Sampling	Collecting	Scraping the buc- cal mucosa with a wooden spatula, in a tube contain- ing 1 mL of mini- mal essential media, wrapped in aluminum foil to protect them from light, stored in refrigerator at 4°C and process- ed next day		Scraping the in- ner part of both cheeks with a cy- tology brush, cells kept in 0.9% NaCl and PBS in separate micro- centrifuge tubes, brought to labo- ratory	Exfoliated buccal mucosa cells were collected by gently scraping the mucosa of the inner lining of one or both cheeks
Exfoliated Buccal Cells Sampling	Rinsing	4		Water	

h	reutransation, fixation and staining	Stained with Et- [86] Br	
1	sis		 The slides placed tay, At 1 V/cm for 10 pera-min
1000	electrophoresis		 A freshly pre- pared alkaline sis solution, pH>13, at room tempera- ture in the dark for 45 min
Lysis			The slides im- mersed in the pre-chilled lysis solution for 60 min
- NYUMO	treatment		la norma de la compañía de la
Slides	preparation		Cells + LMP agar- ose at 37°C at the ratio of 1:10, and 75 µL aliquots pi- petted onto the slides and placed flat in a dark place at 4°C for 10 min.
Lentre used		Cell suspen- sions were washed twice with centrifu- gation at room temper- ature	
rollowed	protocol	Cells were processed in alkali condi- tions and un- derwent submarine electrophore- sis accioni [51, 110]	Used the Tre- vigen Comet- AssayTM kit protocol
	Collecting	Parents collected epitelial mucosa cell samples by gently brushing the inside of both cheeks with a cy- tology brush. The brush was then stirred in a PBS (pH 7.4).	Scraping the in- ner part of the cheeks both sides with a cytology brush, cells kept in 0.9% NaCl and PBS in separate microcentrifuge tubes, brought to laboratory
all	Suisury	Washing out the child's mouth with tepid water to remove exfoli- ated dead cells	Water

Assessment of DNA Damage by Comet Assay in Buccal Epithelial Cells: Problems, Achievement, Perspectives 85 http://dx.doi.org/10.5772/62760

Refer-	ence	[26]	[0]	[63]	[99]
	Neutralisation, fixation and staining	After neutraliza- tion step, the slides were dehy- drated with abso- lute tehanol and stored in dry air up to the end of sampling, slides were stained with EtBr (2 µg/mL in H,O)	Silver staining method [108]	Neutralization for 15 min in 400 mM Tris/HCl, pH 7.4 staining with EtBr (20 µg/ml)	Slides stained with 50 µL of di- luted SYBR Green
	Electrophoresis	At 300 mA and 25 V (0.86 V/cm)		At 30 V for 20 min	1 V/ cm (meas- ured from elec- trode to electrode) and applied for 10 min
	Pre- electrophoresis	DNA unwinding and electrophore- sis were per- formed in an alkaline solution (0.3 M NaOH, 1 mM EDTA, pH 13), for 20 min and 40 min, in a horizontal elec- trophoresis tank filled with an ice- cold alkaline sol- ution.		Slides were equi- librated in elec- trophoresis buffer (10 mM NaOH, 1 mM EDTA, pH 9.1) for 10 min	Freshly prepared alkaline solution, pH>13, room the dark for 45 min. After that, the slides were placed flat on a gel tray
	Lysis	After slide preparation, hysis was performed over- night at 4°C in a cold solution (2.5 M NaCL, 100 mM EDTA, 10 mM Tris-HCL, pH 10), where 10 % DMSO and 1 % DMSO and 1 % Triton X-100 we added just before use			Prechilled lysis solution for 60 min
	Enzyme treatment	Under dim, indi- rect light. 8 µL of a 10 mg/mL pro- theinase K solution was added to 20 µL of cell suspen- sions and kept in PBS for 15 min at a 0 °C. Microtubes were centrifuged 800 x g for 1 min. The pellets were washed in PBS and, after centri- fugation at 6,000 k g for 2 min, sus- pended in 10 µL of PBS.		Trypsin-EDTA solution (0.25% trypsin, 1 mM followed by pro- teinase K (1 mg/ml) digestion for 1 h at 37°C	
	Slides preparation	Samples were as- sayed in dupli- cate using 5 µL of the cell suspen- sion for each spot		Cell suspension mixed with 1% LMP agarose in 1.2 ratio and spread on a mi- croscopic slide pre-coated with 1% NPM agarose.	The cells were combined with LMP agarose at 37°C at the ratio of 1:10, and 75 µL aliquots were im- mediately pipet- ted onto the slides. The slides were prepared in duplicate and duplicate and durk place at 4°C for 10 min
Buccal comet assay technique	Centrifuged	Within 1 h, exfoliated cells were processed by washing twice in PBS. After centri- fugation at 800 x g for 3 min, the pel- lets were sus- pended in 40 µL PBS.			
Buccal cornet a	Followed protocol		According to the alkaline single-cell gel electrophore- sis method [100, 111]	Using a standard pro- standard pro- tocol with some modifi- cations [61]	Used the Tre- vigen Comet Assay ¹³⁸ kit protocol
Cells Sampling	Collecting	Samples were ob- taired by scrap- ing cells from both cheeks with a moist wooden spatula. The spat- ula was then vig- crously shaken in a dark plastic tube condarings tube condarings pH 7.4, and im- mediately refri- gerated		Brushing in the morning before taking any tobac- co or tea. Collect- ted samples were taken in PBS	Scraping the in- ner part of both sides of the checks with a cy- tology brush. The cells were them gently mixed with 1.5 mL of 0.9 % NaCl and PBS with 1.5 mL of 0.9 % NaCl and PBS in a micro-centri- fuge tubes, taken to the laboratory
Exfoliated Buccal Cells Sampling	Rinsing	Subjects rinsed their mouth thor- oughly with sal- ine solution to remove excess debris		Mouth washed with normal sal- ine (0.9% NaCl) solution	Water

Refer-	ence	[23]	[24]
	Neutralisation, fixation and staining	Rinsed with Tris solution. The cells were stained with 75 µL of a 20 µg/ml solution of BrEi	The slides were stained using 50 µL EtBr (20 µg/mL)
	Electrophoresis	Electrophoresis was run at 25 V and 300 mA for 20 min	Slides were elec- trophoresed in the alkali butfer at room bempera- tura at 20 V for 40 minutes, level of the buffer was adjusted until 300 mA
	Pre- electrophoresis	Using an hori- zontal gel electro- phoresis tank containing fresh- ly prepared cold (4°C) electropho- resis buffer (1 mM Na ₂ EDTA and 10 mM NiAOH, pH 9) where the slides were submerged side by side in the gel tray and left for 20 min to produce single stranded DNA (unwinding).	Unwinding for 40 minutes in elec- trophoresis buf- fer with the pH above 13
	Lysis	The slides were rinsed, immersed in lysis solution (2.5 MNaCl; 0.1 M EDTA; 10 mM Tris Base; 1% Tri- ton X-100; and 10% DMSO; pH 10) for another hour at 4°C and washed again with 0.4 M Tris Base solution.	
	Enzyme treatment	The cells were subjected to a ly- sis with 0.25%. Trypsin in PBS (15 min, 37°C), Washed with 0.4 M Tris Base solu- tion and subse- quently treated with proteinase K (1 mg/ml) for 30 min.	The lysis step in- cluded an addi- tional step of 100 mL of 1 mg/mL of proteinase K for 45 min to en- hance the lysis step as recom- mended by Szeto et al. [61]
	Slides preparation	Conventional mi- croscope slides were treated with two layers of agarose. The bot- tom layer was prepared by dip- ping the slides in- to 1.0% of NMP agarose to agarose to solidity at 4°C for a minimum of 5 min. Then, the top or cell-con- top or cell-con- taining layer con- sisted of 100 µL of a buccal cell suspensión pre- pared in LMP agarose at 0.5%, (15 µL of cell sus- pensión and 85 µL agarose. After covering, the slide was kept at 4°C for 5 min	
Buccal comet assay technique	Centrifuged	The tooth- beush was vigorously agitated in 5 ml of cold PBS in a 15 ml plastic tube and the resulting buc- cal cell sus- pension centrifuged at 15°C for 10 min.	
Buccal comet a	Followed protocol		According with Tice and Vasquez [113]
Cells Sampling	Collecting	A soft interproxi- mal toothbrush was used to col- lect buccal cells by gently scrap- ing the inside check (right and left) of the mouth	The cells harvest- ed, according to Besaratinia et al. [112] by gentle scraping of the internal part of the right and left cheeks with a wooden tongue depresor was stirred in a 2 mL tube prefiled with 1,5 mL of ice-cold PBS pH 74
Exfoliated Buccal Cells Sampling	Rinsing	Rinsing the mouth with tem- perate water to remove the exfo- liated death cells.	Before the start of the study, all sub- jects were in- structed to continue brush- ing but not to use toothpastes and mouthwashes containing fluo- ride or chlorhexi- dine

Refer-		[62]	[08]
	Neutralisation, fixation and staining	Slides were washed three traitization buffer (0.4 M Tris; pH 7.5) for 5 min, rinsed 3 times in distilled water, and left to dry overnight at room temperatur- ež Slides were stained with sil- ver nitrate	Stained with EtBr
	Electrophoresis	20 min at 25 V (0.90 V/cm) and 300 mA	
	Pre- electrophoresis	To allow DNA umwinding, slides were incu- bated in a freshly made alkaline electrophoresis buffer (0.3 M NaOH and 1 mM EDTA; pH> 13) for 20 min in a horizontal elec- trophoresis tank	
	Lysis	When the agarose solidified the slides were placed in lysis buffer (2.5 M NaCJ, 100 mM EDTA and 10 mM Tris; pH 10.0-10.5] con- taining freshly added 1% (v/v) Triton X-100 and 10% (v/v) DMSO for a minimum of 1 h and a maxi- mum of 2 weeks	Were immersed in freshly pre- pared ice cold hy- sis solution for 1 hour
	Enzyme treatment		
	Slides preparation	Then, 20 µL of the pellet was re- suspended in 80 µL of 0.75% LMP agarose	The pellet ob- tained was mixed with 0.7% LMP agarose and placed on fully frosted rough- ened slides previ- ously coated with 1% NMP agarose. I third agarose, a third layer of 0.1% LMA was ap- plied
Buccal comet assay technique	Centrifuged	The cells were washed with PBS and centrifuged at 800 rpm for 10 min	The buccal cell suspen- sion was cen- trifuged
Buccal comet	Followed		
Cells Sampling	Collecting	Buccal mucosa cells were ob- tained by scrap- ing the left inner cheek with a cer- vical brush	Genthy rubbing the inside of both cheeks with an extra soft tooth- brush for 1 min each. The partici- pant then rinsed the mouth with 20 ml of 0.9% sal- ine and expecto- rated into a 50 ml conical-based tube. The tooth- brush rinsed in the tube and 30 ml saline was added before the cells were pellet- ed. The cells washed with PBS (pH 7.4)
Exfoliated Buccal Cells Sampling	Rinsing		Rinse their mouth thorough- ly with water to remove unwant- ed debris

Refer-	ence	[84]	[35]
	Neutralisation, fixation and staining	Slides were then stained with EtBr (50 µL of a 20 g/ml aqueous sol- ution)	Neutralization (0.4 M Tris-HCl, pH 7.5) staining with EtBr (20 µg/mL) was per- formed
	Electrophoresis	18 min at 12 V constant voltage, after which slides were removed and neutralized by immersing in three changes (3×5 min) with 0.4 M Tris at pH 7.5	Electrophoresis was performed at 0.66 V/cm, 300 mA for 16 min
	Pre- electrophoresis	Then the slides were transferred to a Coplin jar containing elec- trophoresis solu- tion (0.01 M NAOH and 1 mM EDTA, pH 9.1) and left for 20 min (2 × 10 min) at 4°C	
	Lysis	Slides were then immersed in lysis solution (2.5 M TA, 10 mM Tris and 1% Triton X-100, pH 10) for 1 h at 4 °C	Cells were lyzed (25 M NaCl, 100 mM Na ₂ EDTA, 10 mM Tris-HCl, 1% Na-lauroyl- sarcosinate, 1% Triton X-100, and 10% DMSO, pH 100 for 72h at 4°C and denatured (300 mM Na ₂ EDTA, pH 13.0) for 10 min
	Enzyme treatment	50 µL trypsin sol- ution (0.25% EDTA in Hanks balanced salt sol- ution was layered onto the gel and left for 30 min at 37°C. the slides were washed with PBS, 50 µl of proteinase K sol- ution (1 mg/ml of PBS) applied to each slide 1 h at 4°C.	
	Slides preparation	The supernatant was discarded and the cell pellet was resuspended in 100 µL of PBS. 10 µL cell sus- pension was mixed with 85 µl of pre-warmed (at 40°C) 1% (w/v) LMP agar- ose in PBS, and immediately ap- plied to a micro- scopic slide immediately ap- plied to a micro- scopic slide already precoat- ed with 85 µl of 1% (w/v) stand- ard agarose in PBS. The slides were placed at room tempera- ture until the gel layer solidified	8 µl of cell sus- pension was mixed with 100 µl of LMP agar- ose and added to a microscope at microscope slide pre-coated with 1.0% of NMP agarose.
Buccal comet assay technique	Centrifuged	Buccal cell suspensions was centri- fuged at 2500 rpm at 4°C for 10 min	3 min/3.200 rpm; resus- pended in PBS (pH 7.4)
Buccal comet a	Followed protocol	Sæto et al. [61]	According with Singh et al. [100]
Cells Sampling	Collecting	Exfoliated buccal epithelial cells (BECs) were col- lected by scrap- ing the inside of both sides of the check with a soft brush was then agitated in 30 ml cold PBS in a 50 ml plastic tube	Buccal swab tak- en by gentle brushing of the internal part of right and left right and left robrush. The brushes were stir- tobrush. The brushes were stir- red in 5 ml of RPMI 1640, liq- uid (with L-gluta- mine, 25 mM HEPES), fetal bo- vine serum, and penicillin-strepto- mycin solution and transported within 30 min to the laboratory
Exfoliated Buccal Cells Sampling	Rinsing	Women rinse their mouth with saline water to re- move extraneous materials	Washed out the mouth three times with tepid water to remove dead exfoliated cells

Refer-	ence	[65]	[26]
	Neutralisation, fixation and staining	Stained with EtBr	Slides were then washed three times with 0.4 M Tris HCI for 5 with 50 µL EtBr (10 µg/mL)
	Electrophoresis		Alkaline buffer (1 mM Na,EDTA and 300 mM Na,OH, pH 13) at 20 V and 300 mA for 20 min
	Pre- electrophoresis		The slides were removed from the hysis solution, placed in a hori- zontal gel electro- phoresis tank filled with fresh and 300 mM NaOH, pH 13) for 20 min at 4°C
	Lysis	To the solidified agarose, a third layer of 0.1% LMA was ap- plied and were immersed in freshly prepared ice cold lysis sol- ution for 1 hour	The coverslips were taken off, the films were layered onto galass slides, and bathed in freshly prepared lysis solution (2.5 M Na2(1,100 mM Na2(1,100 mM Na2(1,00 mM 10%, DMSO add- ed fresh) in the dark for 1 hr at 4°C.
	Enzyme treatment		
	Slides preparation	The pellet ob- tained was mixed with 0.7% LMP agarose and placed on fully frosted rough- ened slides previ- ously coated with 1% NMP agarose.	90 µl of 0.5% NMP agarose in PBS at 50°C lay- ered onto bond gel film, immedi- ately covered with a coverslip, and allowed to solidify at 4°C for 5 min. The cover- slip was then re- moved, and about 40 µL of lymphocytes sus- pension or 80 µL of 0.7% LMP agarose in PBS at 37°C, and layered on top of the film. A coverslip was added and left to solidify at 4°C for 5 min. The cover- slip was then re- moved, and a second layer of oldify at 4°C for 5 min. The cover- slip was then re- slip was then re- solidify at 4°C for 5 min. The cover- slip was then re- solidify at 4°C for 5 min. The cover- slip was then re- solidify at 4°C for 5 min. The cover- solidify at 4°C for 5 min. The solidify at 4
Buccal comet assay technique	Centrifuged	The buccal cell suspen- sion was cen- trifuged	Cells were washed twice in the buffer solution and thon sus- pended in about 100 µL of the same buffer, imme- diately before performing the cornet as- say
Buccal comet.	Followed protocol		According with Singh et al. [100]
Cells Sampling	Collecting	11	The interior sur- faces of right and left cheeks gently scraped with a scraped with a scraped with a colls suspended in 25 ml of Then- ko-Holland buf- fer solution [114] and transferred within 2.8 hr, at 4°C and in the dark, to the labo- ratory
Exfoliated Buccal Cells Sampling	Rinsing		Water

ence	[54]	[28]	[23]				
Neutralisation, fixation and staining	Neutralizing buf- fer (0.4 M Tris buffer, pH 7.5). The slides were then washed with distilled water and air dried. Sil- ver staining	Neutralized 3 times with 0.4 M Tris at PH 7.5. The slides were then stained with EtBr (50 µL of 20 µg/ml)	The slides were neutralized, fixed, and stained with silver nitrate [108]				
Electrophoresis	30 min at 300 mA, 0.67 V/cm	At 12 V for 18 min	For 20 min at 25 V (0.86 V/cm) and 300 mA, at room bempera- ture				
Pre- electrophoresis	Immersed in freshly prepared alkalire electro- phoretic buffer (1 mM Na,EDTA and 300 mM NaOH, pH 13) for 30 min	The slides were kept in electro- phoresis tank fil- led with buffer (0.01M buffer (0.01M NAOH and 1 mM EDTA, pH 9.1) for 20 min	Cells were placed in a electrophore- sis chamber, ex- posed to alkali, pH 13, for 25 min				
Lysis	The slides were incubated in cold lysis buffer (2.5 M NaCL 100 mM Na_EDTA_10 mM Tris 1% so- dium lauryl sar- cosinabe 1% Triton X-100 and 10% DMSO add- torsh) at 4°C overnight	Immersion in ly- sis solution (2.5 M NaCl 0.1 M EDTA, 10 mM Tris, 1% Tribon X-100, pH 10) for 1 h at 4°C	Lysis was per- formed overnight ii at pH 10				
Enzyme treatment		A 50 µL of tryp- sin solution was layered onto the gel and left for 30 min at 37°C fol- lowed by wash- ing with PBS buffer, proteimase K (1 mg/ml) treat- ment for 1 h at 37°C					
Slides preparation	On a clean, dry, plain side 100 µL agrose prepared in PBS was lay- ered. These pre- coated sides were dried at 37°C. On top of this layer, 30 µL of PBL and buc- cal PBL, and buc- cal PBL, and buc- cal epithelial cells with 110 µL of 0.5% LMP agar- ose in PBS was layered. The third layer consisted of 100 µL of LMP agarose.	10 µL of the buc- cal cell suspen- with S5 µL of pre-warmed (40°C) 1% (w/v) LMP agarose in PBS (0.137 M NaCL 2.68 mM NaCL	Briefly, 10 µL cell suspension was mixed with 75 µL. LMP agarose (0.7%) and added to a slide precoat- ed with 100 µL. agarose (1%)				
Followed Centrifuged	The buccal epithelial cell samples were washed with PBS, centri- fuged and re- covered from the pellet	The suspen- sion was cmr tritinged at 4°C for 10 min. The cell pellet was re- suspended in 100 µL PBS buffer	Cells were washed twice, with contrifuga- tion at 1300 rpm for 10 min at room and resus- pended in PBS				
Followed	According with Singh et al. [100]	Cornet assay was per- formed as de- formed as de- Szero et al. [61]	The alkaline version of the CA was em- ployed in this study [51, 115]				
Collecting	Buccal epithelial cells were collect- ed by gently scraping the oral mucosa with a mote spatula. Suspended in phosphate buf- lered saline (PBS) and was process- and was process- assay	The buccal cells were collected brush by scrap- prush py scrap- prodet of the check of the mouth. The toothbrushwas agitated in 30 ml cold PBS buffer	Buccal cells were each individual by gentle brush- ing of the inwide part of the lower logical brush. The brushes were stri- red in 50 ml plas- tic tubes containing 20 ml of PBS				
Rinsing Collecting		The buccal cells were collected three times from each subject at 3 alternate days af- ter the work shift. Workers rinseed the mouth with distilled water	Washing out the mouth several times with tepid distilled water				

Refer-	ence	[62]	[2]
	Neutralisation, fixation and staining	The slides were neutralized for -60 min in 0.4 M Tris/HCI, pH 7.5 on ice and stain- ing in cice and stain- ing in distilled water)	The slides wash- ed three times for 5 min each with 0.4 M Tris-HCL. Slides were stained with 50 µl of 10 µg/mL EtBr
	Electrophoresis	At 25 V and 300 mA for 40 min	20 V and 300 mA for 20 min
	Pre- electrophoresis	The slides were then placed on the horizontal electrophoresis unit filled with fresh alkaline electrophoresis buffer (300 mM NaOH, 1 mM EDTA, pH 13) for 30 min	Placed in a hori- zontal gel electro- phoresis tank filled with fresh mM Na ₂ EDTA and 300 mM NaOH, pH 13) for 20 min at 4°C to allow denatur- ing of du unwind- ing and unwind- ing of alkali-la- bile sites bile sites
	Lysis	After solidifica- tion of gel the slide was sub- merged into cool lysis solution [2.5 M NaCI, 100 mM EDTA, 10 mM Tris (pH 10.0), 1% LSS lauryl sarco- sine sodium salt to which 10% DMSO, 1% Triton N-100 were firsh- ly added] and kept overnight at 4°C	The coversitys were taken off and the films were layered on- to glass slides and bathed in freshly prepared lysis solution (2.5 M NaCI, 100 mM Na, DTA, 100 mM Na, DMSO add- ed fresh) in the dark for 1 h at 4°C.
Active Section	Enzyme treatment		
	Slides preparation	Cells were em- bedded in LMP agarose on glass slide precoated with 1% NMP agarose	90 µL of 0.5% NMIP agarose in PBS at 50°C were bond film, imme- diately covered with a coverslip, and allowed to solidify at 4°C for 5 min. The cover- 5 min. The cover- 5 min. The cover- solution of exfoliat- ed cell suspen- sion were mixed with 70 µL of 0.7% LMP agar- ose in PBS at 37 °C, and layered on top of the film. A coverslip was added and the film was left to solidify at 4°C for 5 min. After this, the coverslip was removed layer of 0.7% LMP agar- ose was added and he film.
Buccal comet assay technique	Centrifuged		The exfoliat- ed buccal cells were washed twice in PES and then sus- pended in about 100 µL of the same buffer
Buccal comet a	Followed protocol	Cornet assay was per- formed under alkaline con- alkaline con- difications with some modifications	The proce- dure of Singh et al. [100] was used, with minor modifications
Cells Sampling	Collecting	Buccal squamous cells were collect- ed from subjects by oral brushing	The interior sur- faces of the right and left cheeks were gently scraped with a toothbrush. The cells were sus- pended in 25 ml of a buffer solu- tion containing 0.01 M Tris-HCL 0.1 M EDTA and 0.02 M NaCI (pH 7.0), and immedi- ately sent to the laboratory where the cornet assay was performed. The exfoliated buccal cells were washed twice in PBS and then sus- pended in about 100 µL of the same buffer
Exfoliated Buccal Cells Sampling	Rinsing	Prior to brushing subjects wash their mouth with 0.9% NaCI solu- tion	Wash their mouth with wa- ter

Neutralisation, ence	ing ing	Sur		The slides were [75]		-																	NO. TODA - REPORT	NO TODIC REPORT	NO TIME REAL							
Constant and	fixation and staining	1	Ì																													
			In the same buf-		fer at 25 V and	fer at 25 V and 300 mA for 30	fer at 25 V and 300 mA for 30 min	fer at 25 V and 300 mA for 30 min	fer at 25 V and 300 mA for 30 min	fer at 25 V and 300 mA for 30 min	fer at 25 V and 300 mA for 30 min	fer at 25 V and 300 mA for 30 min	fer at 25 V and 300 mA for 30 min	fer at 25 V and 300 mA for 30 min	fer at 25 V and 300 mA for 30 min	fer at 25 V and 300 mA for 30 min	fer at 25 V and 300 mA for 30 min	fer at 25 V and 300 mA for 30 min	fer at 25 V and 300 mA for 30 min	fer at 25 V and 300 mA for 30 min	fer at 25 V and 300 mA for 30 min	fer at 25 V and 300 mA for 30 min	fer at 25 V and 300 mA for 30 min	fer at 25 V and 300 mA for 30 min	fer at 25 V and 300 mA for 30 min	fer at 25 V and 300 mA for 30 min	fer at 25 V and 300 mA for 30 min	fer at 25 V and 300 mA for 30 min	fer at 25 V and 300 mA for 30 min	fer at 25 V and 300 mA for 30 min	fer at 25 V and 300 mA for 30 min	fer at 25 V and 300 mA for 30 min
all a descella a secolar	electrophoresis	+	The slides were In			t.					s be			s fer ov PB																		
		Ť	Then they were			_				. 8			28		28 - 1	28 mm /	2	2	2 - 1	2	2 - 1	20	2	2	2 - 1	28 mm /	2	2	al en a	al en e	2 - 1	2
inclusion in the second	treatment		T			<u>s</u> <u>a</u>	<u>552</u>	2280	A X X E	T I V V E H	T I N N N H H	A N N N N N N N N N N N N N N N N N N N	T 2 X X E H = 5 X	T 2 X X E H H G 3 G	T 2 X X F H H H Z Z	T I X X E H = 0 2 2	2 8 Z Z B H = 5 2 Z	V & X X E H = 0.2 Z	T 2 X Z E H = 6 2 Z	T & X X E H H & 5 2 2	T 2 X 2 H H 4 6 2 2	T 2 X 2 H H H 2 X 2	T I N N H H H H H H H H H H H H H H H H H	T I X X H H H I Y Z	T 2 X 2 H H 4 6 2 G	T 2 X Z E H = 6 X G	T 2 X 2 H H 6 2 Z	T 2 X Z E H H 6 2 Z	2 2 Z E H = 5 2 Z	2 2 Z E H = 5 2 2	2 2 Z E H = 5 2 Z	2 2 Z Z E H = 5 2 2
	preparation to		Turn and hourd	Prince Cold Courts	films were pre-	films were pre-	films were pre- pared for each case (one to be	films were pre- pared for each case (one to be treated with Fpg	films were pre- pared for each case (one to be treated with Fpg and the other left	three generation films were pre- pared for each case (one to be treated with Fpg and the other left untreated) allow-	three generations films were pre- pared for each case (one to be treated with Fpg and the other left untreated) allow- iner the detection	three generations films were pre- pared for each case (one to be treated with Fpg and the other left untreated) allow- ing the detection of oxicitative DNA	two get bond films were pre- pared for each case (one to be treated with Fpg and the other left untreated) allow- ing the detection of oxidative DNA and direct DNA	Two get conta films were pre- pared for each case (one to be treated with Fpg and the other left untreated) allow- ing the detection of oxidative DNA and direct DNA	rwo geo tomos films were pre- pared for each case (one to be treated with Fpg and the other left untreated) allow- ing the detection of oxidative DNA and direct DNA lesions (single- doubt accord	tillins were pre- pared for each case (one to be treated with Fpg and the other left untreated) allow- ing the detection of oxidative DNA and direct DNA lesions (single- double strand	times were pre- pared for each case (one to be case (one to be untreated) allow- ing the detection of oxidative DNA and direct DNA lesions (single- double strand breaks and alkali-	three generations are pre- pared for each case (one to be treated with Fpg and the other left untreated) allow- ing the detection of oxidative DNA and direct DNA lesions (single- double strand breaks and alkali- labile sites), re-	through the second films were pre- pared for each case (one to be treated with Fpg and the other left untreated) allow- ing the detection of oxidative DNA and direct DNA lesions (single- double strand breaks and alkali- labile sites), re- spectively [116].	through the second pared for each case (one to be treated with Fpg and the other left untreated) allow- ing the detection of oxidative DNA and direct DNA lesions (single- double strand breaks and alkali- labile sites), re- spectively [116].	two geo tomos films were pre- pared for each case (one to be treated with Fpg and the other left untreated) allow- ing the detection of oxidative DNA and direct DNA and direct DNA lesions (single- double strand breaks and alkali- labile sites), re- spectively [116]. About 80 µL of ecfoliated cell	two geo tomos films were pre- pared for each case (one to be treated with Fpg and the other left untreated) allow- ing the detection of oxidative DNA and direct DNA and direct DNA lesions (single- double stread, re- spectively [116]. About 80 µL of exfoliated cell suspension were	Two geo tomos films were pre- pared for each case (one to be treated with Fpg and the other left untreated) allow- ing the detection of oxidative DNA and direct DNA lesions (single- double strand breaks and alkali- labile sites), re- spectively [116]. About 80 µL of exclolated cell suspereion were mixed with 70 uL	Two geo toons films were pre- pared for each case (one to be treated with Fpg and the other left untreated) allow- ing the detection of oxidative DNA and direct DNA lesions (single- double strand breaks and alkali- labile sites), re- spectively [116]. About 80 µL of exclolated cell susperation were mixed with 70 µL. of 0.7% LMP	Two geo tomos films were pre- pared for each case (one to be treated with Fpg and the other left untreated) allow- ing the detection of oxidative DNA and direct DNA lesions (single- double strand breaks and alkali- labie sites), re- spectively [116]. About 80 µL of exclolated cell suspension were mixed with 70 µL of 0.7% LMP agarose in PBS at	Two geo tomos films were pre- pared for each case (one to be treated with Fpg and the other left untreated) allow- ing the detection of oxidative DNA and direct DNA lesions (single- double strand breaks and alkali- labie sites), re- spectively [116]. About 80 µL of exfoliated cell suspension were mixed with 70 µL of 0.7% LMP agarose in PBS at 37°C and layered	through the pared for each case (one to be treated with Fpg and the other left untreated) allow- ing the detection of oxidative DNA and direct DNA and direct DNA lesions (single- double strand breaks and alkali- labile sites), re- spectively [116]. About 80 µL of exfoliated cell suspension were mixed with 70 µL of 0.7% LMP agarose in PBS at agarose in PBS at on top of each	through the second pared for each case (one to be treated with Fpg and the other left untreated) allow- ing the detection of oxidative DNA and direct DNA and direct DNA lesions (single- double strand breaks and alkali- labile sites), re- spectively [116]. About 80 µL of exfoliated cell suspension were mixed with 70 µL of 0.7% LMP agarose in PBS at agarose in PBS at film	Proopsor bound films were pre- pared for each case (one to be treated with Fpg and the other left untreated) allow- ing the detection of oxidative DNA and direct DNA lesions (single- double strand breaks and alkali- labile sites), re- spectively [116]. About 80 µL of exclolated cell suspension were mixed with 70 µL of 0.7% LMP agarose in PBS at 37°C and layered on top of each film	Two get to be pared for each case (one to be treated with Fpg and the other left untreated) allow- ing the detection of oxidative DNA and direct DNA lesions (single- double strand breaks and alkali- labie sites), re- spectively [116]. About 80 µL of exclolated cell suspension were mixed with 70 µL of 0.7% LMP agarose in PBS at 37°C and layered on top of each film	Proof So to consider the sector of the sector case (one to be pared for each case (one to be treated with Fpg and the other left untreated) allow- ing the detection of oxidative DNA and direct DNA lesions (single-double strand breaks and alkali- labile sites), respectively [116]. About 80 µL of exclolated cell suppervision were mixed with 70 µL of 0.7% LMP agarose in PBS at 37°C and layered on top of each film.	three generations were pre- pared for each case (one to be treated with Fpg and the other left untreated) allow- ing the detection of oxidative DNA and direct DNA and direct DNA lesions (single- double strand breaks and alkali- labile sites), re- spectively [116]. About 80 µL of exfoliated cell suspension were mixed with 70 µL of 0.7% LMP agarose in PBS at 37°C and layered on top of each film
	d	t	The exfoliate T				rice	, ice	rice I	L vice		E L Sice																				
	protocol	÷	Procedure of	-	-		-	Collins et al. [116], with minor modi- fications	Collins et al. [116], with minor modi- fications	Collins et al. [116], with minor modi- fications	Collins et al. [116], with minor modi- fications	Collins et al. [116], with minor modi- fications	Collins et al. [116], with minor modi- fications	Collines et al. [116], with minor modi- fications	Colline et al. [116], with minor modi- fications	Collins et al. [116], with minor modi- fications	Colline et al. [116], with minor modi- fications	Collins et al. [116], with minor modi- fications	Collins et al. [116], with minor modi- fications	Collins et al. [116], with minor modi- fications	Collins et al. [116], with minor modi- fications	Collins et al. [116], with minor modi- fications	Collins et al. [116], with minor modi- fications	Collins et al. [116], with minor modi- fications	Collins et al. [116], with minor modi- fications	Collins et al. [116], with minor modi- fications	Collins et al. [116], with minor modi- fications	Collins et al. [116], with minor modi- fications	Collins et al. [116] with minor modi- fications	Collins et al. [116], with minor modi- fications	Collins et al. [116] with minor modi- fications	Collins et al. [116], with minor modi- fications
- Guiner	-	+	To collect exfoli-							5																						
		Ť	Rinsed their To		mouths with wa- ate	-	uths with wa-	uths with wa-	uths with wa-	uths with wa-	uths with wa-	uths with wa-	uths with wa-	uths with wa-	uths with wa-	uths with wa-	uths with wa-	uths with wa-	uths with wa-	uths with wa-	uths with wa-	uths with wa-	uths with wa-	uths with wa-	uths with wa-	uths with wa-	uths with wa-	uths with wa-	uths with wa-	uths with wa-	uths with wa-	uths with wa-

Exfoliated Buccal Cells Sampling	Cells Sampling	Buccal comet assay tech	assay technique							Refer-
Rinsing	Collecting	Followed	Centrifuged	Slides preparation	Enzyme treatment	Lysis	Pre- electrophoresis	Electrophoresis	Neutralisation, fixation and staining	ence
Volunteers rinse their mouth thor- oughly with fil- tered tap water	Cell suspensions were obtained by scraping the in- ner check with a wooden stick or with a disposable brush moisbened with PBS. The first scraping the check was discarded. The cells from each side of the next four scrapings were rinsed into ice- cold PBS using individual coded centrifuge tubes, and were kept on ice until process- ed (within 30 min).	According with Singh et al. [100] and Valverde et al. [83], with modifications	The cells were centri- fuged at 89 x g, for 5 min. 10 µL were form the SCGE assay	Briefly, aliquots of cell suspen- sions were sus- pended in 100 µL. DMP agarose in PBS (cooled to 37°C). This mix- ture was layered onto a coded onto a coded onto a coded onto a coded of an argurose [117]. The agar- ose layer was coverslip and left for 5 min at 4°C to solidify	Cell suspension was diluted into 150–300 µL PBS, and treated 1:1 with an enzyme "cocktail" (final concentration: 0.05 mg/ml DNAse I, 0.15 mg/ml trypsin in 0.01% EDTA, pH 7.4) for 30 min at 37 (adapted from 0.01% EDTA, pH 7.5) for 1 he at 37°C, by layering 100 µL of 1 mg/ml PK in PBS (pH 7.4) onto the slide and adding a cover slide ad adding a cover slide ad adding a cover slide ad adding a cover slide ad adding a cover slide and adding a cover slide and adding a cover slide ad adding a cover slide and adding a cover slide ad be adding a cover slide ad the slide and the slide ad adding a cover slide at a d adding a cover slide at a ad a distribution of solution. After verek innersed in 400 mM Tris- HCI (pH 7.5) for secores salt	Slides were im- mersed into ei- ther lysis solution mM Na ₂ EDTA, 100 mM Na ₂ EDTA, 100 mM Tris (pH 10), and 1% so- dium sarcosin°C ate, with 1% Tri- tor X-100 and 10% DMSO add- ed just before use Or Lysis Sol- ution II (1% SDS and 30 mM Na ₂ EDTA, pH 8) for at least 1 hr at 4°C	Different alkaline (pH > 13) un- winding times (5-40 min) and electrophoresis times (0.66 V/cm, 300 mA, for 5-40 min) were tested in the prelimina- ry experiments. For the cross-sec- tional experi- ment, both pre- and postenrichment slides were sides were sides were sides were sides were bectrophore- sis box and by different runs.	Unwinding and electrophoresis for 20 and 10 min. respectively, In some experi- ments, the elec- trophoresis was performed with- out an unwind- ing step and under neutral conditions (300 mM sodium ace- tate, 100 mM Tris, adjusted to pH 9 with glacial acetic adjusted to the numer of alkali- labile sites on the migration of com- ets from cell sam- ples	Slides were neu- tralized in Tris- HCI (pH 7.5) for 5 min, fixed with absolute ethanol, and stored. The slides were stained with 20 µg/ml EtBr	[92]
								n		

Refer	ence	[60]
	Neutralisation, fixation and staining	The slides were stained with 50 µL of propidium indide (200 µm/mL in 50 ml PBS) for 10 min
	Electrophoresis	20 min, 25 V, 300 mA (0.8 V/cm)
1. Sec. 1. Sec	Pre- electrophoresis	2 washings with distilled water for 10 min, in a hori- zontal gel electro- phoresis unit containing fresh buffer (300 mM NaOH, 1 mM NaOH, 1 mM NaOH, 1 mM so a level of 0.25 cm above the slides for 20 min.
Sector Sect	Lysis	Once the top lay- er had solidified, the cover slips were removed and the slides gently immersed in cold hysing sol- ution (2.5M Na_LDTA, 1% N lawy accosine, 10 mM tris-HCI [pH 10], to which 1% Triton X-100 and 10% DMSO had been freshly added)
	Enzyme treatment	The slides with buccal epitelial and sublingual cells were treated at 4°C for 25 min in the lysis solution µL proteinase K (10 mg/ml) in 100 ml lysis solution ml lysis solution
	Slides preparation	Slides were pre- pared in dupli- cate as follows: 120 µL NMP agarose (1% in PBS) were lay- ered on to pre- ered on to pre- cleaned frosted microscope slides, immedi- ately covered microscope and allowed to solidify. Then, 20 µL of cell suspen- sion was mixed with 75 µL 0.5% LMP agarose in PBS at 37°C, the cover slips were ed to the slides. The cover slips were replaced and the slides were put on ice for 5 min. After solidification of the agarose, the cover slips were gently removed. Another top layer of 75 µL LMP agarose was add- ed, the cover slips were replaced and the slides were garose was add- ed. Another top layer of 75 µL LMP agarose or sigs were again placed on ice were again
an boundary a finder a second reasons	Centrifuged	
A REAL PROPERTY AND INCOME.	Followed protocol	
Grandward anno	Collecting	Collect buccal ep- itelial cells direct- ly from the inner check and sublin- gual region using a soft tooth brush. The cells collected on the tootthbrush were transferred to a sterile PBS solu- tion (pH 7), Cells were washed twice in PBS and twice in PBS and twice in RPMI-1640 me- dium
Guidman any myna wanner	Rinsing	Volunteers were required first to rinse their mouthwash ter, then to dis- ter the water used in the mouthwash

P	g buf- [50]	ris-	5) was		pwise	pwise s 3	pwise s 3 n each	pwise s 3 n each s	pwise s 3 n each s	pwise s 3 n each s 50 µl	pwise s 3 n each s 50 µl g'ml)	pwise s 3 n each h 50 µl g/ml)	pwise s 3 n each s fi 50 µl g/ml)	pwise s 3 n each h 50 µl g/ml)	pwise s 3 n each h 50 µl g/ml)	pwise s 3 n each s g/ml)	pwise s 3 n each h 50 µl g'ml)	pwise s 3 n each s frul) g/ml)	pwise s 3 n each s g/ml)	pwise s 3 n each s g/ml)	pwise s 3 n each h 50 µl g'ml)	pwise s 3 n each h 50 µl g'ml)	pwise s 3 n each s 50 µl g/ml)	provise s 3 n each s g/ml) g/ml)	pwise s 3 n each s g/ml) g/ml)	pwise s 3 n each g/ml) g/ml)	pwise s 3 h 50 µl g/ml)	pwise s 3 h 50 µl g/ml)	pwise s 3 h 50 µl g/ml)	pwise s 3 h 50 µl g/ml)	provise s 3 h 50 µl g/ml)	provise s 3 h 50 µl g/ml)	provise s 3 h 50 µl g/ml)	provise s 3 h 50 µl g/ml)	provise s 3 h 50 µl g/ml)	provise s 3 h 50 µl g/ml)	provise s 3 h 50 µl g/ml)	provise s 3 h 50 µl g/ml)	provise s 3 h 50 µl g/ml)	provise s 3 h 50 µl g/ml)
fixation and staining	-	for ID.4 M bein.	THE ACON LOSS	HCl, pH 7.5) was	HCl, pH 7.5) was added dropwise	HCL, pH 7.5) v added dropwi to the slides 3	HCL, pH 7.5) was added dropwise to the slides 3 times, 5 min each	HCL, pH 7 added dro to the slide times, 5 m time. Slide	HCL, pH 7.5, added drop to the slides times, 5 min time. Slides stained with	HCL, pH 755) was added dropwise to the slides 3 times, 5 min each time. Slides stained with 50 µl	HCU, pH 7.5) was added dropwise to the slides 3 times, 5 min eac time. Slides stained with 50. EtBr (40 mg/ml)	HCL, pH 7. added drop to the slide times, 5 m times, 5 m time. Slide stained wi EtBr (40 m	HCL, pH 7. added dro to the slide times, 5 m times, 5 m times, 5 lide stained wi EtBr (40 m	HCL, pH 7. added drop to the slidd times, 5 m times, 5 staneed with stained with EBBr (40 m)	HCL pH 7. added dro to the slide times, 5 mi times, 5 stained wi EtBr (40 m	HCL, pH 7. added drop to the slided dro times. 5 m times. Slide stained wi EtBr (40 m	HCL, pH 7. added drop to the slide times, 5 m times, 5 m time. Slide stained wi EtBr (40 m	HCL, pH 7. added drop to the slide times. 5 ide times. 5 ide stained wi EtBr (40 m	HCL, pH 7. added drop to the slide times, 5 mi times, 5 mi times. Slide statned wi EtBr (40 m	HCL, pH 7. added drop to the slide times, 5 mi times Slide stained wi EtBr (40 m	HCL, pH 7. added drop to the slide times. 5 m time. Slide stained wi EtBr (40 m	HCL, pH 7. added drop to the slide time. Slide stained wi EtBr (40 m	HCL, pH 7. added dro to the slide times, 5 m times, 5 m time. Slide stained wi EtBr (40 m	HCL, pH 7. added dro to the slide times, 5 m times. 5 m times Side stained wid EBF (40 m	HCL, pH 7. added dro to the slide times, 5 mi times. Side statned wi EtBr (40 m	HCL, pH 7. added dro to the slide times, 5 m times Slide statned wi EtBr (40 m	HCL, pH 7. added dro to the slide times. 5 mi times. Side stained wi EtBr (40 m	HCL, pH 7. added dro to the slide times. 5 mi times Slide statned wi EtBr (40 m	HCL, pH 7. added dro to the slide times. 5 mi times Slide stained wi EtBr (40 m	HCL, pH 7. added dro to the slide times. 5 mi times. Slide stained wi EtBr (40 m	HCL, pH 7. added dro to the slide time. Slide stained wi EtBr (40 m	HCL, pH 7. added dro to the slide times. 5 mi times. Slide stained wi EtBr (40 m	HCL, pH 7. added dro to the slide times. 5 mi times. Slide stained wi EtBr (40 m	HCL, pH 7. added dro to the slide time. Slide stained wi EtBr (40 m	HCL, pH 7. added dro to the slide times. 5 me stained wi EtBr (40 m	HCL, pH 7. added dro to the slide times. 5 im times. 5 ide stained wi EtBr (40 m	HCL, pH 7. added dro to the slide times. 5 be stained wi EtBr (40 m	HCL, pH 7. added dro to the slide times. 5 m times. 5 do stained wit EBF (40 m	HCL, pH 7. added dro to the slide times. 5 m times. 5 m stained wid EBF (40 m	HCL, pH 7. added dro to the slide statined wide EBF (40 m
	t					1. C.	12.5.7. State	1200 C	1211.02			2.5.2	NO	2012 N. 24	2022 DECEMBER 2022AU DE		2012 DELTE VOZA DELETA																A CONTRACTOR AND A CONT							
electrophoresis		The slides placed	The slides placed close together in	The slides placed close together in a horizontal gel	The slides placed close together in a horizontal gel electrophoresis	The slides placed close together in a horizontal gel electrophoresis tank near the	The slides placed dose together in a horizontal gel electrophoresis tank near the anode. This was	The slides placed dose together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh	The slides placed dose together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis	The slides placed dose together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis builder of on any	The slides placed dose together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis buffer (300 mM NGOH 1 mM	The slides placed close together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis buffer (300 mM NaOH, 1 mM	The slides placed dose together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis butfer (300 mM NaOH, 1 mM EDTA, pH 13) to	The slides placed dose together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis buffer (300 mM NaOH, 1 mM EDTA, pH 13) to a level of 0.25 cm	The slides placed dose together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis buffer (300 mM NaOH, 1 mM EDTA, pH 13) to a level of 0.25 cm above the slides,	The slides placed dose together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis buffer (300 mM NaOH, 1 mM EDTA, pH 13) to a level of 0.25 cm above the slides, which were then	The slides placed close together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis buffer (300 mM NaOH, 1 mM EDTA, pH 13) to a level of 0.25 cm above the slides, which were then hen	The slides placed dose together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis buffer (300 mM NaOH, 1 mM EDTA, pH 13) to a level of 0.25 cm above the slides, which were then left to soak for 40	The slides placed dose together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis buffer (300 mM NaOH, 1 mM EDTA, pH 13) to a level of 0.25 cm above the slides, which were then left to soak for 40 min in the alkali	The slides placed dose together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis buffer (300 mM NaOH, 1 mM EDTA, pH 13) to a level of 0.25 cm above the slides, which were then left to soak for 40 min in the alkali	The slides placed close together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis buffer (300 mM NaOH, 1 mM EDTA, pH 13) to a level of 0.25 cm above the slides, which were then left to soak for 40 min in the alkali	The slides placed close together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis buffer (300 mM NaOH, 1 mM EDTA, pH 13) to a level of 0.25 cm above the slides, which were then left to soak for 40 min in the alkali	The slides placed close together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis buffer (300 mM NaOH, 1 mM EDTA, pH 13) to a level of 0.25 cm above the slides, which were then left to soak for 40 min in the alkali	The slides placed dose together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis buffer (300 mM NaOH, 1 mM EDTA, pH 13) to a level of 0.25 cm above the slides, which were then left to soak for 40 min in the alkali	The slides placed dose together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis buffer (300 mM NaOH, 1 mM EDTA, pH 13) to a level of 0.25 cm above the slides, which were then left to soak for 40 min in the alkali	The slides placed dose together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis buffer (300 mM NaOH, 1 mM EDTA, pH 13) to a level of 0.25 cm above the slides, which were then left to soak for 40 min in the alkali	The slides placed dose together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis buffer (300 mM NaOH, 1 mM EDTA, pH 13) to a level of 0.25 cm above the slides, which were then left to soak for 40 min in the alkali	The slides placed dose together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis buffer (300 mM NaOH, 1 mM EDTA, pH 13) to a level of 0.25 cm above the slides, which were then left to soak for 40 min in the alkali	The slides placed close together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis buffer (300 mM NaOH, 1 mM EDTA, pH 13) to a level of 0.25 cm above the slides, which were then left to soak for 40 min in the alkali	The slides placed close together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis buffer (300 mM NaOH, 1 mM EDTA, pH 13) to a level of 0.25 cm above the slides, which were then left to soak for 40 min in the alkali	The slides placed close together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis buffer (300 mM NaOH, 1 mM EDTA, pH 13) to a level of 0.25 cm above the slides, which were then left to soak for 40 min in the alkali	The slides placed close together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis buffer (300 mM NaOH, 1 mM EDTA, pH 13) to a level of 0.25 cm which were then which were then left to soak for 40 min in the alkali	The slides placed close together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis buffer (300 mM NaOH, 1 mM EDTA, pH 13) to a level of 0.25 cm which were then which were then left to soak for 40 min in the alkali	The slides placed close together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis buffer (300 mM NaOH, 1 mM EDTA, pH 13) to a level of 0.25 cm above the slides, which were then left to soak for 40 min in the alkali	The slides placed close together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis buffer (300 mM NaOH, 1 mM EDTA, pH 13) to a level of 0.25 cm above the slides, which were then left to soak for 40 min in the alkali	The slides placed dose together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis buffer (300 mM NaOH, 1 mM EDTA, pH 13) to a level of 0.25 cm above the slides, which were then left to soak for 40 min in the alkali	The slides placed dose together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis buffer (300 mM NaOH, 1 mM EDTA, pH 13) to a level of 0.25 cm above the slides, which were then left to soak for 40 min in the alkali	The slides placed dose together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis buffer (300 mM NaOH, 1 mM EDTA, pH 13) to a level of 0.25 cm above the slides, which were then left to soak for 40 min in the alkali	The slides placed dose together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis butfer (300 mM NaOH, 1 mM EDTA, pH 13) to a level of 0.25 cm above the slides, which were then left to soak for 40 min in the alkali	The slides placed dose together in a horizontal gel electrophoresis tank near the anode. This was filled with fresh electrophoresis butfer (300 mM NaOH, 1 mM EDTA, pH 13) to a level of 0.25 cm above the slides, which were then left to soak for 40 min in the alkali
enela		Once the top lay-	Once the top lay- er had solidified,	Once the top lay- er had solidified, the coverslips	Once the top lay- er had solidified, the coverslips were removed	Once the top lay- er had solidified, the coverslips were removed and the slides	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol-	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M NaCl, 100 mM FDTA 16.0 mM	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M NaCl, 100 mM EDTA, 1% N	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M NaCl, 100 mM EDTA, 1% N lauryl sarcosine,	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M NaCL 100 mM EDTA, 1% N lauryl sarcosine, 10 mM tris-HCl	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M NaCL 100 mM EDTA, 1% N lauryl sarcosine, 10 mM tris-HCl fpH 101, to which	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M NaCl, 100 mM EDTA, 1% N Lauryl sarcosine, 10 mM tris-HCl [pH 10], to which 12% Triton X,100	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M NaCl, 100 mM EDTA, 1% N lauryl sarcosine, 10 mM tris-HCl [pH 10], to which 1% Trion X-100	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M NaCI, 100 mM EDTA, 1% N lauryl sarcosine, 10 mM tris-HCI [pH 10], to which 1% Triton X-100 and 10% DMSO	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M NaCL 100 mM EDTA, 1% N lauryl sarcosine, 10 mM tris-HCl [pH 10], to which 1% Triton X-100 and 10% DMSO had been freshly	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M NaCL 100 mM EDTA, 1% N lauryl sarrosine, 10 mM tris-HCI [pH 10], to which 1% Triton X-100 and 10% DMSO had been freshly added). The	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M NaCl, 100 mM EDTA, 1% N Lauryl sarcosine, 10 mM tris-HCl [pH 10], to which 1% Triton X-100 and 10% DM50 had been freshly added). The	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M NaCl, 100 mM EDTA, 1% N lauryl sarcosine, 10 mM tris-HCI [pH 10], to which 1% Triton X-100 and 10% DMSO had been freshly added). The slides were left at 4°C for at loss 1	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M NaCl, 100 mM EDTA, 1% N lauryl sarcosine, 10 mM tris-HCl [pH 10], to which 1% Triton X-100 and 10% DM50 had been freshly added). The slides were left at 4°C for at least 1	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M NaCL 100 mM EDTA, 1% N lauryl sarcosine, 10 mM tris-HCl [pH 10], to which 13% Triton X-100 and 10% DMSO had been freshly added). The slides were left at 4°C for at least 1 h	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M NaCL 100 mM EDTA, 1% N lauryl sarcosine, 10 mM tris-HCI [pH 10], to which 1% Triton X-100 and 10% DMSO had been freshly added). The slides were left at 4°C for at least 1 h	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M NaCL 100 mM EDTA, 1% N lauryl sarcosine, 10 mM tris-HCI [pH 10], to which 1% Triton X-100 and 10% DMSO had been freshly added). The slides were left at 4°C for at least 1 h	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M NaCL 100 mM EDTA, 1% N lauryl sarcosine, 10 mM tris-HCI [pH 10], to which 1% Triton X-100 and 10% DMSO had been freshly added). The slides were left at 4°C for at least 1 h	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M NaCL 100 mM EDTA, 1% N lauryl sarcosine, 10 mM tris-HCI [pH 10], to which 1% Triton X-100 and 10% DMSO had been freshly added). The slides were left at 4°C for at least 1 h	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M NaCL 100 mM EDTA, 1% N lauryl sarcosine, 10 mM tris-HCI [pH 10], to which 1% Triton X-100 and 10% DMSO had been freshly added). The slides were left at 4°C for at least 1 h	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M NaCl, 100 mM EDTA, 1% N lauryl sarcosine, 10 mM tris-HCI [pH 10], to which 1% Triton X-100 and 10% DMSO had been freshly added). The slides were left at t ⁴ °C for at least 1 h	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M NaCl, 100 mM EDTA, 1% N lauryl sarcosine, 10 mM tris-HCI [pH 10], to which 1% Triton X-100 and 10% DMSO had been freshly added). The added The	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M NaCl, 100 mM EDTA, 1% N lauryl sarcosine, 10 mM tris-HCI [pH 10], to which 1% Triton X-100 and 10% DMSO had been freshly added). The added). The slides were left at th	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M NaCl, 100 mM EDTA, 1% N lauryl sarcosine, 10 mM tris-HCl [pH 10], to which 1% Triton X-100 and 10% DMSO had been freshly added). The slides were left at 4°C for at least 1 h	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M NaCl, 100 mM EDTA, 1% N lauryl sarcosine, 10 mM tris-HCl [pH 10], to which 10 mM tris-HCl [pH 10], to which 1% Triton X-100 and 10% DMSO had been freshly added). The slides were left at 4°C for at least 1 h	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M NaCl, 100 mM EDTA, 1% N lauryl sarcosine, 10 mM tris-HCl [pH 10], to which 1% Triton X-100 and 10% DM50 had been freshly added). The slides were left at 4°C for at least 1 h	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M NaCl, 100 mM EDTA, 1% N lauryl sarcosine, 10 mM tris-HCl [pH 10], to which 1% Triton X-100 and 10% DM50 had been freshly added). The slides were left at 4°C for at least 1 h	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M NaCl, 100 mM EDTA, 1% N lauryl sarcosine, 10 mM tris-HCl [pH 10], to which 1% Triton X-100 and 10% DM50 had been freshly added). The slides were left at 4°C for at least 1 h	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M NaCl, 100 mM EDTA, 1% N lauryl sarcosine, 10 mM tris-HCl [pH 10], to which 1% Triton X-100 and 10% DM50 had been freshly added). The slides were left at 4°C for at least 1 h	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M NaCI, 100 mM EDTA, 1% N lauryl sarcosine, 10 mM tris-HCI [pH 10], to which 1% Triton X-100 and 10% DM50 had been freshly added). The slides were left at 4°C for at least 1 h	Once the top lay- er had solidified, the coverslips were removed and the slides gently immersed in cold lysing sol- ution (2.5 M NaCI, 100 mM EDTA, 1% N lauryl sarcosine, 10 mM tris-HCI [pH 10], to which 1% Triton X-100 and 10% DMSO had been freshly added). The slides were left at 4°C for at least 1 h
treatment		After lysis, buccal	After lysis, buccal cells were treated	After lysis, buccal cells were treated with 140 µl of	After lysis, buccal cells were treated with 140 µl of proteinase K (10	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal cells were treated with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h	After lysis, buccal with 140 µl of proteinase K (10 mg/ml) at 37°C for 2 h
preparation		Slides were pre-	Slides were pre- pared in dupli-	Slides were pre- pared in dupli- cate, and 120 µl	Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose	Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was		Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was layered on to pre- cleared micro-	Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was layered on to pre- cleaned micro- score slides.	Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was layvered on to pre- cleaned micro- scope slides,	Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was layered on to pre- cleaned micro- scope slides, immediately cov- prod with covver-	Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was layvered on to pre- cleaned micro- scope slides, immediately cov- ered with cover-	Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was layvered on to pre- cleaned micro- scope slides, immediately cov- ered with cover- slips, and	Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was layvered on to pre- cleaned micro- scope slides, immediately cov- ered with cover- slips, and allowed to solidi-	Slides were pre- pared in dupli- cete, and 120 µl of NMP agarose 0.5%, in PBS was layered on to pre- cleaned micro- scope slides, immediately cov- ered with cover- slips, and allowed to solidi- fy. Then, cells	Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was layered on to pre- cleaned micro- scope slides, scope slides, immediately cov- ered with cover- slips, and allowed to solidi- fy. Then, cells wore mixed with	Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was layered on to pre- cleaned micro- scope slides, immediately cov- ered with cover- slips, and allowed to solidi- fy. Then, cells	Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was layvered on to pre- cleaned micro- scope slides, immediately cov- ered with cover- slips, and allowed to solidi- fy. Then, cells were mixed with 75 µl of 0.5%	Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was layvered on to pre- cleaned micro- scope slides, immediately cov- ered with cover- slips, and allowed to solidi- fy. Then, cells were mixed with 75 µl of 0.5% LMP agarose in	Slides were pre- pared in dupli- cete, and 120 µl of NMP agarose 0.5%, in PBS was layvered on to pre- cleaned micro- scope slides, immediately cov- ered with cover- slips, and allowed to solidi- fy. Then, cells were mixed with 75 µl of 0.5% LMP agarose in PBS at 37°C, the	Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was layvered on to pre- cleaned micro- scope slides, immediately cov- ered with cover- slips, and allowed to solidi- fy. Then, cells were mixed with 75 µl 0.5% TMP agarose in PBS at 37°C, the coveredires were	Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was layvered on to pre- cleaned micro- scope slides, immediately cov- ered with cover- slips, and allowed to solidi- fy. Then, cells were mixed with 75 µl 0.5% LMP agarose in PBS at 37°C, the coverslips were percoverslips were percoverslips were	Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was layvered on to pre- cleaned micro- scope slides, immediately cov- ered with cover- slips, and allowed to solidi- fy. Then, cells were mixed with 75 µl of 0.5% LMP agarose in PBS at 37°C, the coverslips were removed, and the	Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was layvered on to pre- cleaned micro- scope slides, immediately cov- ered with cover- slips, and allowed to solidi- fy. Then, cells were mixed with 75 µl of 0.5% LMP agarose in PBS at 37°C, the coverslips were removed, and the mixture was add-	Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was layvered on to pre- cleaned micro- scope slides, immediately cov- ered with cover- slips, and allowed to solidi- fy. Then, cells were mixed with 75 µl of 0.5% LMP agarose in PBS at 37°C, the coverslips were removed, and the mixture was add- ed to the slides.	Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was layvered on to pre- cleaned micro- scope slides, immediately cov- ered with cover- slips, and allowed to solidi- fy. Then, cells were mixed with 75 µl of 0.5% LMP agarose in PBS at 37°C, the coverslips were mixture was add- ed to the slides. The coverslips	Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was layvered on to pre- cleaned micro- scope slides, immediately cov- ered with cover- slips, and allowed to solidi- fy. Then, cells were mixed with 75 µl of 0.5% LMP agarose in PBS at 37°C, the coverslips were removed, and the mixture was add- ed to the slides. The coverslips were replaced	Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was layvered on to pre- cleaned micro- scope slides, immediately cov- ered with cover- slips, and allowed to solidi- fy. Then, cells were mixed with 75 µl of 0.5% LMP agarose in PBS at 37°C, the coverslips were removed, and the mixture was add- ed to the slides. The coverslips were replaced and the slides	Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was layvered on to pre- cleaned micro- scope slides, immediately cov- ered with cover- slips, and allowed to solidi- fy. Then, cells were mixed with 75 µl of 0.5% LMP agarose in PBS at 37°C, the coverslips were removed, and the mixture was add- ed to the slides. The coverslips were replaced and the slides were put on ice	Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was layered on to pre- cleaned micro- scope slides, immediately cov- ered with cover- slips, and allowed to solidi- fy. Then, cells were mixed with 75 µl 0.5% LMP agarose in PBS at 37°C, the coverslips were removed, and the mixture was add- ed to the slides. The coverslips were put on ice for 5 min. After	Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was layered on to pre- cleaned micro- scope slides, immediately cov- ered with cover- slips, and allowed to solidi- fy. Then, cells were mixed with 75 µl 0.5% LMP agarose in PBS at 37°C, the coverslips were removed, and the mixture was add- ed to the slides. The coverslips were put on ice for 5 min. After solidification of	Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was layered on to pre- cleaned micro- scope slides, immediately cov- ered with cover- slips, and allowed to solidi- fy. Then, cells were mixed with 75 µl 0.5% LMP agarose in PBS at 37°C, the coverslips were removed, and the mixture was add- ed to the slides. The coverslips were put on ice for 5 min. After solidification of the agarose, the	Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was layered on to pre- cleaned micro- scope slides, immediately cov- ered with cover- slips, and allowed to solidi- fy. Then, cells were mixed with 75 µl 0.5% The add 75 µl 0.5% The adds were replaced and the slides. The coverslips were put on ice for 5 min. After solidification of the agarose, the coverslips were for 5 min. After solidification of the agarose, the	Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was layered on to pre- cleaned micro- scope slides, immediately cov- ered with cover- slips, and allowed to solidi- fy. Then, cells were mixed with 75 µl of 0.5% LMP agarose in PBS at 37°C, the coverslips were removed, and the mixture was add- ed to the slides. The coverslips were put on ice for 5 min. After solidification of the agarose, the coverslips were gorthy removed.	Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was layered on to pre- cleaned micro- scope slides, immediately onv- ered with cover- slips, and allowed to solidi- fy. Then, cells were mixed with 75 µl of 0.5% LMP agarose in PBS at 37°C, the coverslips were removed, and the mixture was add- ed to the slides. The coverslips were put on ice for 5 min. After solidification of the agarose, the coverslips were gently removed. A top layer of 75-	Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was layvered on to pre- cleaned micro- scope slides, immediately cov- ered with cover- slips, and allowed to solidi- fy. Then, cells were mixed with 75 µl of 0.5% Then, cells were in parose in PBS at 37°C, the coverslips were ed to the slides. The coverslips were put on ice for 5 min. After solidification of the agarose, the coverslips were gently removed. A top layer of 75- µl LMP agarose	Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was layvered on to pre- cleaned micro- scope slides, immediately cov- ered with cover- slips, and allowed to solidi- fy. Then, cells were mixed with 75 µl of 0.5% LMP agarose in PBS at 37°C, the coverslips were removed, and the mixture was add- ed to the slides. The coverslips were gently removed. A top layer of 75- µl LMP agarose was added, the was added, the	Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was layvered on to pre- cleaned micro- scope slides, immediately cov- ered with cover- slips, and allowed to solidi- fy. Then, cells were mixed with 75 µl of 0.5% Then, cells were in parase in PBS at 37°C, the coverslips were removed, and the mixture was add- ed to the slides. The coverslips were put on ice for 5 mit. After solidification of the agarose, the coverslips were gently removed. A top layver of 75- µl LMP agarose was added, the coverslips were gently removed.	Slides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was layvered on to pre- cleaned micro- scope slides, immediately cov- ered with cover- slips, and allowed to solidi- fy. Then, cells were mixed with 75 µl of 0.5% LMP agarose in PBS at 37°C, the coverslips were removed, and the mixture was add- ed to the slides. The coverslips were put on ice for 5 min. After solidification of the agarose, the coverslips were gently removed. A top layer of 75- µl LMP agarose was added, the coverslips were replaced, and the replaced, and the	Siides were pre- pared in dupli- cate, and 120 µl of NMP agarose 0.5%, in PBS was layvered on to pre- cleaned micro- scope slides, immediately cov- ered with cover- slips, and allowed to solidi- fy. Then, cells were mixed with 75 µl of 0.5% LMP agarose in PBS at 37°C, the coverslips were removed, and the mixture was add- ed to the slides. The coverslips were gently removed. A top layer of 75- µl LMP agarose, the coverslips were gently removed, and the gently removed, and the slides were arain slides were replaced, and the slides were replaced, and the
0		-	T						- 6.5		- 0.5																													
protocol																																								
9		Buccal epitelial	Buccal epitelial cells were ob-	Buccal epitelial cells were ob- tained by scrap-	Baccal epitelial cells were ob- tained by scrap- ing the cheeks	Baccal epitelial cells were ob- tained by scrap- ing the cheeks with a plastic	Baccal epitelial cells were ob- tained by scrap- ing the cheeks with a plastic spatula. The cells	Baccal epitelial cells were ob- tained by scrap- ing the cheeks with a plastic spatula. The cells were added to 2	Baccal epitelial cells were ob- tained by scrap- ing the cheeks with a plastic spatula. The cells were added to 2 ml of RPMI-1640	Buccal epitelial cells were ob- tained by scrap- ing the checks with a plastic spatula. The cells were added to 2 mul of RPMI-1640	Buccal epitelial cells were ob- tained by scrap- ing the checks with a plastic spatula. The cells were added to 2 ml of RPMI-1640 medium	Buccal epitelial cells were ob- tained by scrap- ing the cheeks with a plastic spatula. The cells were added to 2 ml of RPMI-1640 medium	Buccal epitelial cells were ob- tained by scrap- ing the cheeks with a plastic spatula. The cells were added to 2 ml of RPMI-1640 medium	Buccal epitelial cells were ob- tained by scrap- ing the cheeks with a plastic spatula. The cells were added to 2 ml of RPMI-1640 medium	Buccal epitelial cells were ob- tained by scrap- ing the cheeks with a plastic spatula. The cells were added to 2 ml of RPMI-1640 medium	Buccal epitelial cells were ob- tained by scrap- ing the cheeks with a plastic spatula. The cells were added to 2 ml of RPMI-1640 medium	Buccal epitelial cells were ob- ing the cheeks with a plastic spatula. The cells were added to 2 ml of RPMI-1640 medium	Buccal epitelial cells were ob- tained by scrap- ing the cheeks with a plastic spatula. The cells were added to 2 ml of RPMI-1640 medium	Buccal epitelial cells were ob- tained by scrap- ing the cheeks with a plastic spatula. The cells were added to 2 ml of RPMI-1640 medium	Buccal epitelial cells were ob- tained by scrap- ing the cheeks with a plastic spatula. The cells were added to 2 ml of RPMI-1640 medium	Buccal epitelial cells were ob- tained by scrap- ing the cheeks with a plastic spatula. The cells were added to 2 ml of RPMI-1640 medium	Buccal epitelial cells were ob- tained by scrap- ing the cheeks with a plastic spatula. The cells were added to 2 ml of RPMI-1640 medium	Buccal epitelial cells were ob- ing the cheeks with a plastic spatula. The cells were added to 2 ml of RPMI-1640 medium	Buccal epitelial cells were ob- ing the cheeks with a plastic spatula. The cells were added to 2 ml of RPMI-1640 medium	Buccal epitelial cells were ob- tained by scrap- ing the cheeks with a plastic spatula. The cells were added to 2 ml of RPMI-1640 medium	Buccal epitelial cells were ob- tained by scrap- ing the cheeks with a plastic spatula. The cells were added to 2 ml of RPMI-1640 medium	Buccal epitelial cells were ob- tained by scrap- ing the cheeks with a plastic spatula. The cells were added to 2 ml of RPMI-1640 medium	Buccal epitelial cells were ob- tained by scrap- ing the cheeks with a plastic spatula. The cells were added to 2 ml of RPMI-1640 medium	Buccal epitelial cells were ob- tained by scrap- ing the cheeks with a plastic spatula. The cells were added to 2 ml of RPMI-1640 medium	Buccal epitelial cells were ob- tained by scrap- ing the cheeks with a plastic spatula. The cells were added to 2 ml of RPMI-1640 medium	Buccal epitelial cells were ob- tained by scrap- ing the cheeks with a plastic spatula. The cells were added to 2 ml of RPMI-1640 medium	Buccal epitefial cells were ob- tained by scrap- ing the cheeks with a plastic spatula. The cells were added to 2 ml of RPMI-1640 medium	Buccal epitelial cells were ob- tained by scrap- ing the cheeks with a plastic spatula. The cells were added to 2 ml of RPMI-1640 medium	Buccal epitelial cells were ob- tained by scrap- ing the cheeks with a plastic spatula. The cells were added to 2 ml of RPMI-1640 medium	Buccal epitefial cells were ob- tained by scrap- ing the cheeks with a plastic spatula. The cells were added to 2 ml of RPMI-1640 medium	Buccal epitelial cells were ob- tained by scrap- ing the cheeks with a plastic spatula. The cells were added to 2 ml of RPMI-1640 medium	Buccal epitelial cells were ob- tained by scrap- ing the cheeks with a plastic spatula. The cells were added to 2 ml of RPMI-1640 medium	Buccal epitefial cells were ob- tained by scrap- ing the cheeks with a plastic spatula. The cells were added to 2 ml of RPMI-1640 medium	Buccal epitefial cells were ob- tained by scrap- ing the checks with a plastic spatula. The cells were added to 2 ml of RPMI-1640 medium	Buccal epitefial cells were ob- tained by scrap- ing the cheeks with a plastic spatula. The cells were added to 2 ml of RPMI-1640 medium
Quantum		-	their is with tap		their is with tap	their is with tap	their is with tap	their is with tap	their is with tap	their is with tap	their is with tap	their is with tap	their is with tap	their is with tap	their is with tap	their is with tap	their is with tap	their is with tap	is with tap	is with tap	is with tap	is with tap	their is with tap	is with tap	is with tap	is with tap	is with tap	is with tap	is with tap	is with tap	is with tap	is with tap	is with tap	is with tap	is with tap	is with tap	is with tap	is with tap	is with tap	is with tap

Assessment of DNA Damage by Comet Assay in Buccal Epithelial Cells: Problems, Achievement, Perspectives 97 http://dx.doi.org/10.5772/62760

Refer-	ence	[83]	[14]
	Neutralisation, fixation and staining	Neutralized with 0.4 M Tris, pH 7.5; dehydrated in 2 steps with absolute ethanol for 10 min each, staining with 75 ml EtBr (20 mg/ml) with cov- erglass	Neutralization with 0.4 M Tris- HCL, pH 7.5. staining with EBE (75 µL of a 20 mg/ml solu- tion) was added to each slide
	Electrophoresis	20 min at 25 V and 300 m.A. Af- ter, the slides gently removed	For 20 min at 25 V and 300 mA
	Pre- electrophoresis	Slides were placed on a hori- zontal electro- phoresis unit. The DNA was al- lowed to unwind for 20 min, in electrophoresis running buffer solution (30 mM Na/H and 1 mM Na,EDTA, pH 13).	Slides were placed on a hori- zontal electro- phoresis unit. The DNA was al- lowed to unwind for 20 min, in electrophoresis running buffer solution (300 mM Na,EDTA, pH 13).
	Lysis		
	Enzyme treatment	After lysis (2.5 M NaCL, 100 mM Na ₂ EDTA, 10 mM Tris-hydro- chloride and 1% Nasarcosinate, pH 10) at 4°C for Nasarcosinate, 24 hr, the cells were treated with 100 µL proteinase K (10 mg/ml) at 37°C for 1h	After lysis (2.5 M NaCL, 100 mM EDTA, 10 mM Tris and 1% so- dium sarcosinate, pH 10) at 4°C for pH 10) at 4°C for pH 10) at 4°C for pH 10) at 4°C for to a new lysis sol- ution with 140 µL of proteinase K (10 mg/ml) at 37°C for 2 h
	Slides preparation		
Buccal comet assay technique	Centrifuged		The cells were added into 2 mL of RPMI-1640 medium and centrifuged at 6000 rpm for 1 min, ap- proded in 75 µL LMP agar- cse
Buccal comet a	Followed protocol	Rojas et al. [14], with some modifi- cations	Thee et al. [120] with some modifi- cations
Cells Sampling	Collecting	Buccal epithelial cells were ob- tained by scrap- ping the internal part of the check with a wood stick and were added to 1 ml of cold RPMI-1640 medi- um.	Scrapping the in- ternal part of the cheek with a wood stick
Exfoliated Buccal Cells Sampling	Rinsing		

Table 1. List of the articles and detailed methodology for sampling, slide preparation, lysis step, enzymatic digestion, electrophoresis, neutralization, fixation and stain ing.

3. Use of comet assay in buccal cells

The comet assay in buccal cells has been used to evaluate DNA damage induced by different materials such as mouthrinses [50], metals released from orthodontic appliances [51–59], ionizing radiation [60], as well as assessment of DNA damage, and its modulation by life-style, dietary, genetic and healthy factors [61–74], occupational exposure [66–69,75–82], and environmental exposure [83–86]. Different procedures have been used in collecting and processing the samples that are presented and discussed in Rojas et al. [33]. The **Table 2** represents classification according to the type of population study based on exposure and lifestyle factors with the results of comet assay.

3.1. Mouthrinses and metal released from orthodontic appliances

The genotoxic properties of mouthrinses and metals from orthodontic appliances are essential for determining the biological safety of those materials in patients. Current in vivo human studies are aimed at representing the real condition of the oral cavity by sampling buccal cells, which are directly exposed to the appliances [51,52].

Eren et al. [50] evaluated the stability of buccal epithelial cells for SCGE assay after the use of chlorhexidine digluconate (CHX), a mouthrinse used by dentists as disinfecting agent for operation sites washing and for disinfection of root canals. A statistical increase was observed in the DNA damage after the CHX application. Considering orthodontic appliances, the first in vivo study was performed by Faccioni et al. [51], who conducted the alkaline comet assay in orthodontic patients. They reported genotoxic damage and found positive correlations between the concentrations of released cobalt and nickel and the number of comets as well as correlations between Co levels and comet tails. However, Westphalen et al. [52] did not find genetic damage after the placement of the orthodontic appliances.

According to Fernández-Miñano et al. [53], genotoxicity induced in buccal cells could be related to the composition of orthodontic appliances. Orthodontic apparatus made with titanium was not genotoxic for oral mucosa cells, whereas the stainless steel alloy and nickel-free alloy induced DNA damage in buccal mucosa cells. In contrast, Hafez et al. [54] observed that stainless steel brackets with stainless steel archwires produce the least damage, whereas titanium brackets with nickel-titanium archwires produced the highest amount of genotoxic-ity, assessed with the comet assay. Baričević et al. [55] assessed subjects with Co–Cr–Mo alloy and Ni–Cr alloy showed significantly higher comet assay parameters when compared with controls. Gonçalves et al. [59] showed the genotoxic effects of Hyrax auxiliary orthodontic appliances containing silver-soldered joints.

On the other hand, Hafez et al. [54] reported damage to the DNA in mucosa cells at 3 months of orthodontic treatment but not at 6 months. Thus, the difference in exposure period of prosthodontic and orthodontic appliances in oral cavity might explain discrepancies observed between results obtained by Faccioni et al. [51], and those of Westphalen et al. [52] and Baričević et al. [55].

Visalli et al. [56] found that both amalgams and resin-based composite fillings can induce genotoxic damage in human oral mucosa cells. They also report that lifestyle variables, including alcohol intake and smoking habits, did not affect the genotoxic response and did not act as confounding factors. Martín-Cameán et al. [57] observed induction of genotoxicity in buccal cells of subjects with orthodontic appliances and orthodontic appliances with microscrews when compared with controls. In addition they found that damage was higher in women.

3.2. Radiation

Only one work that analyses and compares the DNA damage and repair following radiation challenge in buccal cells and lymphocytes using SCGE assay was found. The results suggested that baseline DNA damage in oral epithelial cells is greater than that in lymphocytes [60].

3.3. Life style, dietary, genetic and healthy factors

As mentioned above in the first work of this type, Rojas et al. [14] found a significantly increased tail length in a smoker group compared with a non-smoker group. Differences between genders either in the smoker or non-smoker group were not observed and were neither related to age or number of cigarettes smoked. Waterpipe smoking (a type of tobacco smoking) and its condensate have been examined for the genotoxic effects on buccal cells. The tail moment in buccal cells of smokers was found to be 186 ± 26 , which is 371.9% higher than the tail moment in buccal cells of non-smokers. The other comet parameters such as tail length, % tail DNA, and fragmented DNA were 456 ± 71 , 97.0 ± 19 , and 32.0 ± 3.3 , respectively, in buccal cells of smokers, whereas in control group (non-smokers), the values of tail length, % tail DNA, and fragmented DNA were extremely low [72].

Oral habits have also been associated with DNA damage. Khanna et al. [70] reported a case of a tobacco chewer in which the percentage of damaged cells was significantly higher than in the control. Also the effect of gutkha (a preparation of crushed areca nut, tobacco, catechu, paraffin wax, slaked lime, and sweet or savory flavorings) and pan masala (an herb, nut, and seed mixture that is commonly served in the Middle East countries) chewing along with and without smoking was studied in buccal epithelial cells using single-cell gel electrophoresis [71]. The increase in the mean comet tail length was observed as follows: non users < smokers < pan masala chewers < gutkha chewers < pan masala + smoking < gutkha + smoking. Like Rojas et al. [14], they conclude that these bioassay and biomarker are easier and safe methods to detect DNA damage among humans.

Assessment of DNA damage and its modulation by dietary and genetic factors in smokers using the comet assay has also been developed [87]. Pal et al. [62,63] analyzed the influence of regular black tea consumption on tobacco-associated DNA damage and human papilloma virus (HPV) prevalence in human oral mucosa. The increase in DNA damage was significantly associated with increase in age and tenure of tobacco habit. Reduced DNA damage was found to be significantly associated with increase in tea intake. In case of oral cancer patients, comparatively high frequency of DNA damage was observed. The frequency of DNA damage

and HPV infection was comparatively high in oral cancer patients than in the normal subjects. These studies indicated a chemopreventive role of black tea against reducing DNA damage risk of buccal cells due to tobacco exposure. Authors concluded that buccal cells could be used as cytological markers for detection of risk and risk reduction in normal population. Since, as mentioned above, more than 90% of human cancers arise from epithelial cells, it has been postulated that experiments with these cells may have particular relevance for the detection of cancer preventive effects [47].

On the other side, several polymorphisms in DNA repair genes have been reported to be associated with cancer risk [88]. The repair of DNA damage has a key role in protecting the genome from the insults of genotoxic agents. Tobacco-related compounds cause a variety of DNA damage, and DNA repair capacity plays an important role in agent-induced damage genotoxic. Several polymorphisms in genes that participate in different DNA repair pathways, such as XRCC1 399, hOGG1 326 [65], GSTP1 [66], CYP2E1 [67], CYP1A2 [68], and CYP1A1 [69], have been evaluated for their effects on different biomarkers [89], including comet tail length in buccal cells.

DNA damage effects of the used substances were confirmed in mechanical workshops workers, but with no confirmation of the influence of GSTP1 [66] or CYP1A1 [69] gene polymorphism on DNA damage, considering the comet assay performed on buccal cells. Conversely, workers with the wild genotype for CYP2E1 showed statistically significant higher comet tail length at the occupational exposure, while the mutated genotype did not have influence on this biomarker [67]. With CYP1A2 gene, the results showed that DNA damage in cells of workers carrying the mutated genotype was higher than workers carrying the wild genotype [68].

Sellappa et al. [65] found significant differences in the comet scores between smokeless tobacco users and control subjects when XRCC1399 and hOGG1326 polymorphisms and the frequencies of genetic damage among tobacco chewers were studied.

These findings provided evidence for the view that polymorphisms in DNA repair genes may modify individual susceptibility to genotoxic agents and justify additional studies to investigate their potential role in development of genetic damage.

4. The use of the comet assay in buccal cells in biomonitoring the effect of pollution

4.1. Occupational exposure

Cavallo et al. [75] suggested the use of comet assay on exfoliated buccal cells to assess the occupational exposure to mixtures of inhalable pollutants at low doses since these cells represent the target tissue for this exposure and are obtained by non-invasive procedure. In their study, tail moment values from Fpg-enzyme-treated cells (TMenz) and from untreated cells (TM) were used as parameters of oxidative and direct DNA damage, respectively, and

found in the exposed group a higher value in respect to controls of mean TM and TMenz. An oxidative DNA damage was found, for exfoliated buccal cells in the 9.7% of exposed in respect to the absence in controls. On the other side, in healthcare workers in oncology hospital regularly handling antineoplastic drug mixtures, comet assay showed an increase on exfoliated buccal cells, also when it was not statistically significant, of mean TM with respect to controls in day hospital nurses (the group handling the highest amount of drugs during the administration process), while ward nurses and pharmacy technicians did not show the differences [77]. Increased levels of DNA damage were also found among jewellery workers occupationally exposed to nitric oxide using buccal cell comet assay, and also a synergistic effect of DNA damage with the cigarette smoking habit was found among the jewellery workers [78]. On the other hand, Cavallo et al. [76] evaluated two groups of workers, one exposed to antineoplastic drugs and the other exposed to PAHs, but the comet assay on exfoliated buccal cells did not show significant differences between exposed and control groups for comet percentages, whereas the TM value was higher in workers exposed to PAHs. Occupational risk assessment of paint industry workers with the comet assay in epithelial buccal cells showed that the damage index and damage frequency observed in the exposed group were significantly higher relative to the control group [79]. In other study on biomonitoring of genotoxic effects among shielded manual metal arc welders, Sudha et al. [80] showed a significantly larger mean comet tail length values. Among paddy farm workers exposed to mixtures of organophosphates was observed that the tail length formation showed significant increase of tail length differences between farmers compared with the matched control group [81]. Age, smoking status, duration of smoking, and secondhand smoker factors pointed out the significant intragroup variations, among the study population. Smokers and secondhand smokers generally showed higher levels of DNA damage, with increase connected with age and smoking duration increase. The last finding in this study leads again to the hypothesis that occupational risk factors contribute to the main effect on DNA damage. However, Carbajal-López et al. [82] did not find significant effect on genetic damage as a result of age, smoking, and alcohol consumption when genotoxic effect of pesticides in exfoliated buccal cells of workers occupationally exposed in Guerrero, Mexico was evaluated. The study revealed that the tail migration of DNA increased significantly in the exposed group.

4.2. Environmental exposure

After the first publication with comet assay in buccal cells by Rojas et al. [14], the same group [83] with this bioassay investigated differences in the level of DNA damage between young adults from the southern and northern areas of Mexico City and compared its effects with the damage induced in leukocytes and nasal epithelial cells. They found an increased DNA damage in leukocytes and nasal cells from individuals who lived in the northern part; however, no differences were observed for buccal epithelial cells, highlighting that it is important to study the genotoxic effects in other cells besides lymphocytes, as well as in cells of those tissues which are the first sites of contact with toxic pollutants. Although in their first work DNA damage in smokers was reported, in this work, they reported that smoking habit did not significantly increase DNA migration when compared with the non-smoker group.

A study of indoor air pollution from biomass burning was performed on Indian women engaged in biomass cooking (wood, dung, crop residues), and the group was compared with age-matched control women cooking with cleaner fuel liquefied petroleum gas. DNA damage was assessed on buccal epithelial cells (BEC) by comet assay and fast halo assay (FHA). Compared with control, BEC of biomass users showed higher comet tail % DNA, higher values for comet tail length, and olive tail moment, suggesting marked increase in DNA damage [84].

5. Clinical application of the comet assay in buccal cells

Significant stepwise increase in the DNA damage (basal/MNNG-treated/post-repair) was observed in buccal epithelial cells from control to pre-cancer patients and from pre-cancer to cancer patients. Considerable inter-individual and intercellular variability in DNA damage was observed, which also increased from control to pre-cancer patients and from pre-cancer to cancer patients [64]. Similar results were found in patients with oral squamous cell carcinoma (OSCC) and control group and suggested that comet assay may be used effectively to assess the prognosis of OSCC [73].

Among population studies regarding the health effects of air pollution, special attention should be given to children as a high-risk group, since some studies have shown significant correlation between early childhood exposure and development of chronic diseases in adulthood. Genotoxic biomarkers have been studied largely in adult population, but few studies so far have investigated children exposed to air pollution. Children are a high-risk group as regards the health effects of air pollution, and some studies suggest that early exposure during childhood can play an important role in the development of chronic diseases in adulthood. Genotoxic effects among farm children assessed with comet assay in buccal cells showed a significant increase in chromosome breakage and DNA strand breaks [85]. In other similar study, the exposure to pollutants was associated with markers of genotoxicity in exfoliated buccal cells of children living in a region with chipboard industries. The increase of outdoor formaldehyde was associated with a higher comet tail intensity and a higher tail moment [86].

6. Confounding factors in studies with the comet assay in buccal cells

A systematic and adequately powered investigation of key variables such as age, gender, genotype, season, diet, oral hygiene and dental health, life-style, smoking, alcohol, and other recreational drugs needs to be performed to identify the variables that have to be controlled [7].

Author				[05]	[15]		[52]
Results				Before CHX treatment Undamaged 93.77 ± 7.65 Inhermediate nu- clei 5.62 ± 6.91 Tailed nuclei 0.62 ± 1.50/fter CHX Treatment Un- damaged 82.62 ± 8.35 Inhermediate nuclei 11.31 ± 7.93 Tailed nuclei 6.08 ± 4.44	Apoptosis: 3.15 ± 4.93 vs 1.00 ± 2.26.Viabili- by%: 50.40 ± 13.55 vs 73.43 ± 12.29,		MN frequency (p = 0.0213)
Other methods	nsed			DNA damage in peripheral blood cells	Apoptosis, viabil- ity		Micronucleus as- say
Statistics				Wilcoxon's test	Mann-Whitney U test		The one-tailed t- test with Welch's correction was used
Parameters measured	arbitrary units, TL,	TI, TM		Determine the degree of damage by grad- ing the cells as un- damaged, intermediate, and tailed.	% DNA, tail length, TM		Damage was visually scored according to five classes, based on tail size (from un- damaged - 0, to maxi- mally damaged - 4). Damage index (D1) was thus assigned to each individual, ac- cording to Hartmann et al. [121]. The D1 is is a well-validated evaluation method as it is highly correlated with computer-based image analysis [122]
Results BCA	Exposure group	vs control group	s	Before CHX treat- meret Undamaged 91.54 \pm 6.75 Inteer- mediate nuclei 6.00 \pm 4.85 Tailed nuclei 2.46 \pm 3.73 15.77 \pm 4.64 fter CHX Treatment Undamaged 71.15 \pm 7.12 Inteer- mediate nuclei 13.08 \pm 4.94 Tailed nuclei 15.77 \pm 4.6	TL: 10.54 ± 2.41 vs 15.56 ± 6.78TM: 0.46 ± 0.21 vs. 0.30 ± 0.09TI: 5.44 ± 1.89	vs. 4.72 ± 1.51	2.5±3.08 vs 1.5± 1.05
Interview			MOUTHRINSES AND METAL RELEASED FROM ORTHODONTIC APPLIANCES	Subjects filled in de- tailed questionnaires regarding confound- ing factors for DNA damage such as smoking, viral diseas- es, recent vaccina- tions, and radiodiagnostic ev- aminations.	Smoking, drinking		Smoking or drinking or illnesses related to any genetic damage increase were not re- ported by any pa- tient.
ation	Males (n),	age	FROM ORTHO	4	estorations	17 12-35	616+25
Control population	Females (n),	age	L RELEASED	6	30, no dental restorations	13 12-33	14 16 + 2.5
ation	Males (n),	age	ES AND META	7	patients with s in both arch- um alloy, r chromium- ioy	32 12-35	616+2.5
Exposed population	Females (n),	age	MOUTHRINS	σ.	55 orthodontic patients with fixed appliances in both arch es: nickel-titanium alloy, stainless steel or chromium- cobalt-nickel alloy	33 12-35	14 16+25

Author		[53]	[24]
Results			
Other methods	nsed		
Statistics		ANOVA, Tukey postboc	Normally distrib- uted variables (composite score and damage fre- quency) were tested with paired t tests.
Parameters measured	arbitrary units, TL, TI, TM	Ollive moment	Only nucleoids of the same size were chos- en subjectively for scoring. A grade was given to each nucle- oid according to DNA fragmentation in the cornet tail. Also the damage frequen- cy was calculated; the damage trequen- cy was calculated; the number of cornets per 100 examined nu- cleoids.
Results BCA	Exposure group vs control group	Stainless steel 69.35 ± 11.68; Nickel-free 68.41 ± 26.63; H ₂ O ₂ 71.10 ± 5.15Titani- um alloy and controlsOlive moment was sim- ilar	DNA damage value, decreased from 125.6 ± 46.05 to 98.8 ± 33.70 at 6 months
Interview		The inclusion criteria were: absence of sys- temic diseases, need of orthodontic treat- ments in both dental arches, absence of cavities or any re- paired treatment in the oral cavity, with good oral health and absence of any disa- polity to impede a correct oral hygiene, and that the treat- ant that the treat- ant psychological al- teration or difficulties in their everyday re- lationships.	Subjects were initially screened with a ques- tionnaire to check whether they fit the criteria of the study. The eligibility criteria for subject selection included nonsmok- ers, no oral diseases, or arspections or a prosthetics; clinically healthy oral mucosa; no previous ortho- dontic treatment; no dontic treatment; no cocupations or the dontic treatment; no dontic any medications or sup- plements: no radio- graphic examination during the previous 6 months; and no known allergy to cos- tume jewelry, watches, or sources of nickel and chromi-
Control population	Females (n), Males (n), age	15 12-16 the same patients be- fore treatment	1021.5±3.3 821.5±3.3
Exposed population	Females (n), Males (n), 1 age	15 patients 12-16 after treat- ment with metal apparatus for orthodontic treatment: 4 tubes and 20 brackets for 30 days: 5 with stainless steel, 5 with titanium, 5 with nickel- free	22 20 2 ± 4.4 6 20 2 ± 4.4

Assessment of DNA Damage by Comet Assay in Buccal Epithelial Cells: Problems, Achievement, Perspectives 105 http://dx.doi.org/10.5772/62760

Author		[55]	[95]	[57]
Results		None of demograph- ic or lifestyle factors tested as possible predictors have ex- hibited significant in- fluence on values of comet assay parame- ters	MN frequency higher in subjects with re- storative fillings than in filling-free subjects	
Other methods	pəsn	Evaluate influ- ence of general characteristics of the subjects (age, gender, dietary habits, pH of sali- va, alcobol and drug intake) on parameters of cornet assay.	Morphological markers of cell death, including pyknosis (cor- densed chroma- tin), karyorhexis, and karyolysis, were evaluated at the microscopic analysis of the same slides used for the MN test.	
Statistics		ANOVA vMann- Whitney U test <i>t</i> Test Newman- Keuls test	Mann-Whiney test and Poisson regression analy- sis	*
Parameters measured Statistics	arbitrary units, TL, TI, TM	DNA damage was evaluated as percent- age DNA in the tail (% DNA) and tail length	The results were ex- pressed as percentage of DNA %), measured by the automated im- age analysis system CASP (comet assay soft- ware project) (http://sp. source- forge.net).	% DNA in tail
Results BCA	Exposure group vs control group	Significantly in- creased tail length and per- centage DNA in the tail values in subjects wearing metal appliances	The DNA % was dose-dependent- ly higher in sub- jects carrying dental fillings as compared with filling-free sub- jects. In subjects carrying at least two fillings	% DNA in tail significantly dif- ferent between all fours groups, fe- males with ortho- dontic appliances
Interview		Exhaustive medical history was docu- mented for all sub- jects. A prestructured questiornaire on di- etary and smoking habits, alcohol and drug intake, as well as on systemic diseas- es and verified aller- gy to known alkergens and medi- cations has been fil- led for each subject.	Collect information on age, gender, smoking, drinking, dietary habits, and previous drug intake. Moreover, chewing gum habits, tooth- brushings per day, consumption of hot food and drinks, and bruxism behavior that could promote the release of restora- tive compounds	
ation	Males (n), age		8 20.0 ± 0.55	
Control population	Females (n), age	25 72.68	12 20.0 ± 0.55	20
ation	Males (n), age		1721.1±0.30	oositive control tients with or- ment,20 pa- todontic microscrews
Exposed population	Females (n), age	30.69.56	26 21.1 ± 0.30	20 persons as positive control (smokers)20 patients with or- thodontic treatment,20 pa- tients with orthodontic appliances and microscrews

Author		[65]		[60]
Results		No significant differ- ences were observed		There is no difference between the baseline DNA damage rate of C0 and C1 lymphor cytes; For all cell types there is a signif- icant difference in baseline DNA dam- age rate between in- dividuals.
Other methods	nsed	BMCyt		Damage in lym- phocytes
Statistics		Wilcoxot's test		ANOVA Tukey's multiple compar- ison test Stu- dent's t-test Pearson correla- tion factor be- tween parameters
Parameters measured Statistics	arbitrary units, TL, TL, TM	Cells were scored vis- ually according to tail length into five classes: class 0: um- damaged, without a tail; class 1: with a tail shorter than the di- ameter of the head (nucleus); class 2: with a tail 1 to 2X the diameter of the head class 3: with a tail longer than 2X the di- ameter of the head and class 4: comets with no heads.		A slide's visual score was converted to an arbitrary DNA dam- age score. The muclei showing comets were categorized as fol- lows: 1° (>80%, DNA in comet head), 2° (50-79%, DNA in comet head), 2° (50-80%, DNA in comet head), 3° (20- 49%, DNA in comet head) and 4° (<20% DNA in comet head) and ar (<20% in category 0 in category 0
Results BCA	Exposure group vs control group	Damage frequency 53.25 % vs 35.94 %Damage indice 75.69 vs 50.31		DNA damage in oral epithelial cells is greater that in lympho- cytes; There is no difference be- tween the base- line DNA damage rate of buccal epithelial cells and sublin- gual cells;
Interview				Participants were non-smokers, did not ever smoke and their weekly alcohol intake was less than 10 ml. Were healthy and had not received any medication for chron- ic/acute diseases were included in the study
ation	Males (n), age	patient acted control		3 (34-45)
Control population	Females (n), age	16 (7-14). Each patient acted as his/her own control		3 (34-45)
ulation	Males (n), age			3 (34-45)
Exposed population	Females (n), age	16 (7-14)	RADIATION	3 (34-45)

Author		1	[14]	[07]	[12]	[22]
Results				CA 24±0.69 vs12± 0.41 MN1,5±0.5 % vs0.05%		Jirraf smole Cowlea- safe Tail moment 12.61 \pm 7.41 vs 0.01 Tail length 160.74 \pm 47.66 vs 2.0 % tail DNA 223 \pm 8.87 vs 0.31 Fragmented DNA 229 \pm 1.41 vs 2.8 Mussel smole cou- dresute Tail moment 21.86 \pm 13.33 vs 0.01 Tail length 213.10 \pm 75.22 vs 2.0 % tail DNA 22.03 \pm 9.77 vs 0.31 Fragmented DNA 5.23 \pm 1.43 vs 0.31 Fragmented DNA 5.23 \pm 1.43 vs 0.31 Fragmented DNA 5.23 \pm 1.43 vs 2.78
Other methods	pəsn			Chromosomal aberrations MN		Comet assay in human peripher- al blood leuko- cytes
Statistics			Student's t-test		Student's 't' test	
Parameters measured Statistics	arbitrary units, TL, TI, TM		DNA migration was measured with a scaled ocular as the total image length (including head and tail length).	DNA damage was quantified by visual classification of cells into categories of comets correspond- ing to the DNA dam- age [123, 124]	TL, using comet score 1.5 software	Analyzed for comet parameters using LAI Cornet analysis sys- tem
Results BCA	Exposure group vs control group		89.30 ± 16.18 µm vs52.01 ± 10.43 µm	59.16±2.84 vs14 ±1.87	36.9 ± 3.6033.6 ± 3.5921.6 ± 3.5229.3 ± 3.5229.3 ± 3.4114.9 ± 0.79vs control:3.41 ± 0.41	Tail moment 186 ± 26 vs 0.05 ± 0.001 Tail length 456 ± 71 vs 9 ± 1.3 % tail DNA 97 ± 19 vs 1.12 ± 0.02 Frag- mented DNA 32 ± 3.3 vs 3.4 ± 0.03
Interview		DRS		Chewing tobacco since the last 17 years	Age, smoking hab- bit.consumation of guthka and pan ma- sala	
ation	Males (n), age	ALTHY FACTO	3 (25-34)		liction (29.7 ±	8
Control population	Females (n), age	ETIC AND HE	6 (19-43)		50 with no addiction (29.7 ± 1.41)	
lation	Males (n), age	LIFE STYLE, DIETARY, GENETIC AND HEALTHY FACTORS	5 (32-63)	1 (28)	vers smokens pan masala trs (32.2 ± chewers (32.5 uasala chewers uasala chewers emokers (40.1	20.37.55
Exposed population	Females (n), age	LIFE STYLE, D	6 (24-43)		50 gutkha chewers smokers (37.7 ± 1.30)50 pan masala chewers smokers (32.2 ± 1.18)50 gutkha chewers (32.5 ± 1.63)50 pan masala chewers (30.0 ± 1.42)50 smokers (40.1 ± 1.71)	

Author		[62]	[63]	[65]
Results		The evaluation of various confounding factors like age, tem- ure of tobacco habit and tea habit showed significant associa- tions with DNA dam- age	In the <65 y age group percentage of apoptotic cells was low in the control subjects as well as in the subjects with/ without tobacco and/or tea habit (7– 9%). In case of >65 y age group, percent- age of apoptotic cells was comparatively higher in the control subjects (17 \pm 2.8%) and slight increase in apoptosis was ob- served in rest of the subgroups.	MN Tobacco cheavers Male 2.2 ± 0.67 Fe- male 2.0 ± 0.47 vs Control Male 0.86 ± 0.52 Fernale 1.2 ± 0.91 Total Chrounssonni Aberratious (CA) To- hacco cheavers 2.18 ± 1.31 vs Control 1.21 ± 0.91
Other methods	used	Confounding fac- tors	Intracellular ROS levels Apoptosis rate	MN chromoso- mal aberration assays
Statistics		T-trest of unequal variance, Chi- square test Multi- variate analysis,	Student or to the study all rest One way AN- OVA	Student's t-test
Parameters measured	arbitrary units, TL, TI, TM	DNA damage is rep- resented as percent- age data	Tail DNA percentage (TD%) Olive tail mo- ment (OTM) The Mean TD% and OTM for each group were compared with mean values of control sub- jects of respective age groups.	Tail length (TL) and tail moment (TM) were evaluated, with Cornet Assay II
Results BCA	Exposure group vs control group	%. DNA damage Oral cancer pa- themts 19.1 ± 9.14 Tobacco Users 7.10 ± 3.65 Non-tobacco Users 4.56 ± 2.68	TD% <65 59.58 ± 4.18 >65 61 86 ± 4.64 Cantrol <65 40.46 ± 6.34 >65 46.09 ± 3.8	Tail Length) <45 years 34.3 ± 1.12 vs 32.1 ± 1.14 ≥45 years 34.3 ± 1.21 vs 32.5 1.01
Interview		Prior to the study all subjects gave in- formed consent in project participation. Oral cancer patients who had medical treatment or radio- therapy were exclud- ed. Studied subjects were interviewed us- ing a questionnaire to survey possible con- founding factors.	Were screened using a questionnaire to find out the posible factors (age, tobacco habit, tea habit) that could affect ROS gen- eration and DNA damage	Questionnaires were completed to obtain detailed occupation- al, smoking, and medical histories.
ation	Males (n), age	Tobacco users 84 No users 31	69	52 50.4 ± 8.7
Control population	Females (n), age	Tobacco users 2 No users 14	56	18 50.4 ± 8.7
lation	Males (n), age	Cancer pa- tions 31	125	10.2 10.2
Exposed population	Females (n), age	Cancer pa- tients 6	21	52 45,4 ± 10.2

Assessment of DNA Damage by Comet Assay in Buccal Epithelial Cells: Problems, Achievement, Perspectives 109 http://dx.doi.org/10.5772/62760

Author		[66]	[67]	[68]	
Results		Workers with the mutated genotype (Ile-Val, Val-Val) had a significantly higher MN frequency, short- er telomere length than controls. The same is true for workers with the wild genotype Ile-Ile,	Workers with the wild genotype showed statistically significant higher MN frequency, and shorter telomere length at the occupa- tional exposure. The mutated genotype in- fluenced significantly MN frequency in the workers, while the in- fluence was not sig- nificant in relative telomere length	Difference in MN fre- quency between workers and controls was statistically sig- mificant in both wild and mutated geno- types. In addition, the results showed that the mutated gen- otype significantly af- fected the relative telomere length in workers.	
Other methods used		MN PCR Restric- tion fragment length polymor- phism (RFLP). Telomero length	MN PCR RFLP Telomero length	MNPCRRFLPTe- lomero length	
Statistics		ANOVA Non- parametric Mann-Whitney U-test. Independ- ent t-test, Chi- square test	Non-parametric Mann-Whitney U-test.	Non parametric Mann-Whitney U-test.	
Parameters measured	arbitrary units, TL, TI, TM	Tail leegth. The cells were analysed using commercial TriTek Comet Score (version 1.5) software.	Tail length	Tail length	
Results BCA	Exposure group vs control group	Workers with the mutated geno- type (lle-Val, Val- Val) had a significantly greater cornet tail length than con- trols. The same is true for workers with the wild genotype lle-lle,	clcl genotype 25,64 ± 9.35 vs 18,02 ± 8,40 clc2 and c2c2 geno- types 24,09 ± 7.86 Men 15,42 ± 5,97 Mutated geno- type (clc2 and c2c2) not influ- enced significant- ly comet tail length	WW genotype 23.70 ± 8.59 vs 17.14 ± 7.81 MW and MM geno- types 26.46 + 9.01 vs 17.82 + 8.24 No statistically sig- nificant effect was found in wild (WW) or mutabed geno- types (MW, MM)	
Interview		The subjects were in- terviewed to evaluate their health status and lifestyles. None of the occupationally exposed subjects wore gloves. None of the workshops had proper ventilation	The subjects were in- terviewed to deter- mine their health status and lifestyles.	Subjects were inter- viewed about their health status, educa- tional level, smoking habits, alcohol con- sumption, work his- tory, duration of working at one occu- pation and other as- pects relevant to the study	
Control population	Males (n), age	66 wild genotype 54 mutant genotypes	95 wild genotype 25 mutant genotypes	genotypes	
	Females (n), age	66 wild geno	95 wild geno genotypes	genotypes	
Exposed population	Males (n), age	pe 42 mutant	pe 40 mutant	pe 62 mutant	
	Females (n), age	78 wild genotype 42 mutant genotypes	80 wild genotype 40 mutant genotypes	58 wild genotype 62 mutant genotypes	

Author		[69]	[64]	[73]	
Results		The workers carrying wild or mutated gen- otypes showed a sig- nificantly higher MN frequency and short- er telomere length compared to controls	% MN Caucer 0.48 ± 0.33 Pre-cancer 0.31 ± 0.24 Controls 0.21 ± 0.18 There was a sig- nificant stepwise in- rificant stepwise in- crease in comet tail length from control to patients with pre- cancer and then to cancer and then to cancer patients.	Stage I 2.312 ± 0.366 Stage II 3.171 ± 1.439 Stage III 3.490 ± 1.971 Stage IV 6.890 ± 3.710	
Other methods used		MNPCRFLPTe- lomero length	MN conducted on the buccal epi- thelial cells; Com- et assay on peripheral blood leukocytes; The challenge comet assay on periph- eral blood leuko- cytes.	To analize DNA damage, patients having OSCC were divided into four stages, namely stage I, II, III, and IV	
Statistics		Non parametric Mann-Whitney U test,	Student's t-test (paired and un- paired compari- sons) and analysis of var- iance were car- ried out to evaluate various differences.	Students' test, One way AN- OVA "F"	
Parameters measured Statistics	arbitrary units, TL, TI, TM	Tail length	Tail length was meas- ured with an ocular micrometer fitted in the eyepiece	Total length and the diameter was measured.	
Results BCA	Exposure group vs control group	24.99 ± 9.14 vs 17.47 ± 8.40 Nei- ther genotype showed any stat- istically signifi- cant effects	Comet tail length Cancer 28.64 ± 4.97 Pre-cancer 20.93 ± 5.58 Con- trol 9.15 ± 3.83	OSCC 3.874 ± 2.5205 µm vs Normal subjects 0.8616 ± 0.8142 µm	
Interview		Subjects were inter- viewed about their health status, educar- tional level, smoking habits, alcohol coer- sumption, work his- tory, duration of employment, and other aspects relevant to the study. In addi- tion, duration of em- ployment was assessed, and subjects were divided into 2 groups of more or less than 5 years of employment.	Case history and per- sonal details were collected. Data in- cluded age and gen- der with similar smoking and tobacco use (chewing), diet- ary habits and socio- economic status.	Patients who were di- agnosed as having OSCC formed the study group	
ation	Males (n), age	8	141 healthy 30.80 (16-67)	8	
Control population	Females (n), age	22	35 healthy 30.80 (16-67)	30 without OSCC	
lation	Males (n), age	19	79 untreated patients with cineer 90.42 (20-72) 118 untreated pa- tisents at pre- cancer stage. 29.55 (17-50)	h oral squa- noma (OSCC)	
Exposed population	Females (n), age	8	\$0 untreated patients with cinner 50.42 (20-72) 20 un- treated pa- tients at pre- cancer stage. 29.55 (17-50)	30 patients with oral squar- mous cell carcinoma (OSCC)	

Assessment of DNA Damage by Comet Assay in Buccal Epithelial Cells: Problems, Achievement, Perspectives 111 http://dx.doi.org/10.5772/62760

Author	[22]	[22]
Results	2 . 2 .	versus 36.01; TMenz 55.86 versus 43.98. Pharmacy helmicians 1 20.8 ± 10.1 Day haspi- tal mirses 15.5 ± 9 Ward nurses 14.7 ± 7.9 Controls 16.1 ± 8.1
Other methods used	MN and Fpg- modified comet assay on lympho- cytes and exfoli- ated buccal cells, and by chromo- somal aberrations (CA) and sister dromatid ex- change (SCE) analyses	Cornet assay in lymphocytes cells
Statistics	Student's t-test	ANOVA Chi square Student t best Kolmogorov- Smirnov non- parametric best Levene test
Parameters measured arbitrary units, TL, TL, TM	Tail moment from Epg-treated cells (Thfenz) and Epg-un- treated cells (TM). Values TMenz and fromTM were used as parameters of oxida- tive and direct DNA damage. respectively. TMenz/TM ratio higher than 2.0 was used to indicate the presence of oxidative damage.	TM
Results BCA Exposure group vs control group	TM 118.87 vs 68.20 TMoriz 146.11 vs 78.32	Pharmacy techni- ciuns 32.6 ± 18.2 Day hospital marses 43.2 ± 36 Ward nurses 27.4 ± 13.9 Controls 28.6 ± 12.4
Interview	All subjects gave in- formed consent. Ana- graphic, clinical, working information and lifestyle habits (smoking, dietary habit, alcohol con- sumption) were ob- tained from a questiornaire admin- istered by specialized medical personnel.	Data collection was by a questionnaire which included infor- mation on age, gen- der, life style, and habits (diet, smoking, alcohol consumption, chronic drug use), the types of antineoplas- tic drugs handled, and the number of mixtures prepared and administered
ation Males (n), age		534.9±8.5
Control population Females (n), Mab age	B1 43.35 ± 9.4	25 34.9 ± 8.5
lation Males (n), age	41 43.0 ± 8.3 3	Pharmacy technicians 3 35.8 ± 9.9 Day hospital Nurses 2 37.6 ± 5.5 Ward nurses 2 32.7 ± 7.7
Exposed population Females (n), Male age	41 43.0 ± 8.3	Pharmacy technicians 2 35.8 ± 9.9 Day hospital nurses 10 37.6 ± 5.5 Ward nurses 11 32.7 ± 7.7

Author [78]		[78]	[76]			
Results			The MN assay on lymphocytes did not show significant dif- ferences between ex- posed and controls, while the MN assay on exfoliabed buccal cells showed higher values in workers ex- posed to antineoplas- tices as compared with controls (0.85 vs. 0.48). The comet as- say on lymphocytes showed a higher controls and mean tail moment (TM) value (21.84 vs. 16.72 in controls) and mean tail moment (TM) value (21.84 vs. 16.72 in controls) and mean tail moment (TM) value (21.84 vs. 16.72 in controls) in indi- viduals exposed to PAHs as compared with controls in o sig- were found in ex- posed to antineoplas- tics.			
Other methods used			Comet and MN tests were per- formed on lym- phocytes and exfoliated buccal cells.			
		Student's t-test	Students' t-test, Mann-Whitney U-test, ANOVA Kruskal-Wallis, and Bonferroni test			
Parameters measured Statistics	arbitrary units, TL, TI, TM	The comets were ana- hyzed by visual classi- dianage was assigned damage was assigned to 5 classes [125]. The percentage of tail DNA was calculated according with Zhao et al. [126]	The percentage of comets on total cells was calculated. Meas- urements of comet parameters were: % DNA in the tail, tail length, tail moment length, tail moment			
Results BCA	Exposure group vs control group	The significant differences in the cornet class be- tween the con- trols and jewellery workers shows that the later group has increased DNA damage who are occupationally exposed to nitric oxide.	% Connets 13.74 ± 10.9 vs 13.78 ± 9.80 Tail moment 48.01 ± 30.1 vs 32.31 ± 12.79			
Interview		A questionnaire was used to collect the in- formation on sex, age, duration of ex- posure, use of protec- tive masks, general health status, smok- ing habits and expo- sure to drugs for each exposed and control subject.	Personal data, clinical and working infor- mation, and lifestyle ary habit, and alcohol consumption) were obtained from a ques- tionnaire adminis- tered by specialized medical personnel,			
ation	Males (n), age					
Control population	Females (n), age		76 (39.72 6			
ation	Males (n), age					
Exposed population	Females (n), age		87 (39,49 6 9.11) 30 (35.17 ± 7.4) work- ers exposed to antineo- plastic drugs and 57 work- ers exposed to PAHs in- cluded 41 air- cluded 41 air- ga ± 8.3) and 16 paving workers (38.62 ± 10.6.			

Author		tri differ- bected be- trol and seaved as seaved howed and DF) cuthy that for proup	fold in- [84] iA diffu- of ss. imphy- NNA h that of F	
Results		No significant differ- ence was detected be tween the ontrol and paint industry work- ers. Cornet assay data in peripheral Blood hut both analysis pa- trameters (D1 and DF) were signifi canthy greater than that for the control group	There was 5-fold in- crease in DNA diffu- sion in BEC of biomass users, imply ing greater DNA damage than that of control. NDF	
Other methods	nsed	In peripheral blood lympho- cytes and oral muccea cells of paint industry workers	Fast Halo Assay (FHA) Nuclear difusión factor (NDF)	
Statistics		Non-parametric Marn-Whitney U-test	Student's t-test Mann-Whitney U-test	
Parameters measured Statistics Parameters measured Statistics arbitrary units, TL, TL, TM Non-para Non-para aroually into five classes, Mann-W according to tail size and shape (from un- damaged - 0, to max- imally damaged - 0, to max- imally damaged - 0, to max- signed to each Comet according to its class index (DI)) was as signed to each Comet according to its class [128]. DI thus ranged [128]. DI th				
Results BCA	Exposure group vs control group		Counst kni % DNA 32.23 ± 8.51 vs 12.41 ± 3.87 Counst the length (µm) 37.81 ± 3.89 Other thai length (µm) 14.22 ± 3.89 Other tail meanerst in ar- bitrary amit 7.08 ± 2.11 vs 3.15 ± 0.97	
Interview		According to the pro- tocol published by the International Commission for Pro- bection against Envi- ronmental Mutagens and Carcinogens and Carcinogens in a face-to-face ques- tionnaire which in- cluded standard demographic data (age, gender,) as well as questions relating to medical issues (ev- posure to X-rays, vac- cinations, life style (smoking, cof- fee, alcohol, diet,) and their occupation number of hours worked per day, time exposed to organic solvents, use of pro- bective measures).	During personal in- berview, each partici- pant was requested to furnish informa- tion about age, edu- cation, family size and income, babit vears of cooking, fuel and oven type, loca- tion and ventiation of kitchen, health problems in past 3 moths and last one	
ation	Males (n), age	30.28.24 ±		
Control population	Females (n), age		76.34 (21-41)	
lation	Males (n), age	± £0,95 99.9		
Exposed population	Females (n), age		85 35 (20-42)	

Author		[80]	[81]	
Results		Welders showed a significant increase in micronucleated cells compared to controls	Age, smoker, smok- ing duration, and sec- ordhand smoker highlighted the sig- nificant difference within groups, among the study population. Overall, smoker and second- hand smokers report- ed with higher levels of DNA damage, and this impairment in- creased with age and smoking duration.	
er methods		NW	The effect of indi- vidual factors and levels of DNA damage by examining the significant differ- ences in age, body mass index (BMI), smoker and secondhand smoker, smoking duration, and number of ciga- rette per day (smoking fre- quency) among the study popula- tion	
Slatistics		Students 't' test.		
Parameters measured Statistics	arbitrary units, TL, TI, TM	Tail length	The cells were then analyzed by using the TriTek Cornet Score (version 1.5) software. The tail length was measured (µm)	
Results BCA	Exposure group vs control group	Welders showed a significant larg- er mean comet barl length.com- pared to controls. In exposed group, a signifi- cant difference was observed be- tween senokers and non-senokers and between al- cohol drinkers and never drink- ers in relation to DNA migration. DNA damage was further found to be sig- nificantly higher in subjects with a longer duration of work.	11. 24.35 µm vs 12.8 µm	
Interview		The selection criteria for the subjects were based on a question- naire according to the protocol published by the International Commission for Pro- tection against Envi- ronmental Mutagens and Carcinogens [127]	Personal lifestyle, oc- cupational, and resi- dential information	
ation	Males (n), age		9.79	
Control population	Females (n), age	6038.7 ± 8.21		
ation	Males (n), age		160 40.13 ± 10.60	
Exposed population	Females (n), age	66 37 3 ± 7.45		

Author		[82]		[83]	[85]
Results		Showed muclear anomalies associated with cytotoxic or gen- otoxic effect. No sig- nificant effect on genetic damage was observed as a result of age, smoking, and alcohol consumption		Leukogtes South 13.97 ± 9.32 vs North 8.76 ± 3.80 Nasal South 40.07 ± 21.07 vs North 23.12 ± 10.36	5.05±2.45 vs 2.92± 1.54
Other methods	used	MN assay and other nuclear anomalies such as nuclear buds, karyolysis, kar- yorrhexis, and bi- nucleate cells were also evalu- ated		Alkaline SCG as- say using leuko- cytes and nasal cells	NW
Statistics		Kruskal-Wallis non-parametric test. ANOVA test. Tukey- Kranner multiple comparison test.		U Manu-Whitney test	1 statistic
Parameters measured	arbitrary units, TL,	(DNA distance		DNA migration (tail image length) Rela- tive DNA damage in- dex	The level of DNA damage was meas- ured using comet as- say following the method described previously [14] and modified based on standard procedures from the comet assay kit
Results BCA	Exposure group			South 137.59 ± 55-88 vs. North 121.96 ± 58.72	8.45±3.89 vs 4.38 ±1.66
Interview		Complete a standar- dized questionnaire with personal data related to age; time of exposure, habits such as smoking and alco- hol consumption, drugs, and diets; the type of work per- type and protec- tive measures used. The questionnaire al- so included a history of recent illness and medical treatment, as well as of their knowledge about the pesticides used in these agricultural areas.		Each student an- swered a self-applied questionnaire trans- lated and validated from the American Thoracic Society (ATS) for respiratory tract symptoms	
ation	Males (n),	- A			42 10.02 ± 0.80
Control population	Females (n),	60 37.55 ± 0.2	JRE	North 16 19	43 10 ± 0.82
lation	Males (n),	- Q	ENVIRONMENTAL EXPOSURE		41 10.02 ± 0.80
Exposed population	Females (n),	35 35	ENVIRONME	South 32 19	54 10 ± 0.82

Author		[98]	[92]
Results			PK digestion in- creased the DNA mi- gration and head diameter of leuko- cytes, regardless if they were untreabed or treated with MMS. Therefore, PK diges- tion did not affect the ability of the assay to detect MMS induced DNA damage
Other methods	nsed		DNA damage in peripheral leuko- cytes
		Analysis of var- iance for quanti- tative variables and Pearson's chi-square test for categorical varia- bles	Normality was tested by the Sha- piro-Wilks W test. Student's t- test, pared and unpaired McNe- mar Chi ² test
Parameters measured Statistics	arbitrary units, TL, TI, TM	With Cornet Assay II. DNA damage was quantified as: Tail in- tensity Tail length Tail moment The me- dian of each parame- ter was used as the representative value for each subject [130]	% Tail DNA Tail mo- ment
Results BCA	Exposure group vs control group	Tail intensity (%) 3.25 ± 0.88 Tail length (µm) 11.69 ± 2.11 Tail moment 0.20 ± 0.05	Preenvictment % Tail DNA 638 ± 70.2 vs 65.3 ± 13.9 Tail moment 25.8 ± 5.3 vs 23.1 ± 5.5 Pesterrictment % Tail DNA 42.4 ± 20.4 vs 31.9 ± 10.5 Tail moment 15.4 ± 11-6 vs 9.1 ± 4.4
Interview		The follow-up ques- tionnaire is a short version of the base- line questionnaire on children's health and risk factors [129], with some additional items on oral hygiene	Samples were ob- tained from volum- teers among the laboratory staff
ation	Males (n), age		
Control population	Females (n), age		10
lation	Males (n), age	182.9.5 ± 1.6	
Exposed population	Females (n), age	231 94 ± 1.6	5

BMCyt: Micronucleus Cytome Assays BCA: Buccal Comet Assay

Table 2. Information about exposure type, population studied, results, and statistics in observed articles with buccal comet assay.

None of demographic or lifestyle factors tested as possible confounding factors (age, gender, dietary habits, pH of saliva, alcohol, smoking habits, drug intake, and others have exhibited significant influence on values of comet assay parameters in buccal cells [55,56,64,66,67,76,82, 83,85]. On contrary, Pal et al. [62] in their evaluation of various confounding factors like age, tenure of tobacco habit, and tea habit showed significant associations with DNA damage. In the same line, Sudha et al. [80] showed that the combined exposure to cigarette smoke and Cr(VI) increased basal DNA damage in buccal epithelial cells of welders. How et al. [81] characterized potential risk factors that influence levels of DNA damage from exposure to mixtures of organophosphates, among all, age, smoking habit, smoking duration, number of cigarettes (per day); and secondhand smokers highlighted the significant differences between subjects and within groups. Martín-Cameán et al. [57] observed that DNA damage in buccal cells induced for orthodontic appliances was higher in women, and Jayakumar and Sasikala [78] found a synergistic effect of the habit of cigarette smoking among the jewellery workers.

7. Perspectives

The assessment of genotoxic risk in exfoliated buccal cells is a potentially useful and minimally invasive cytogenetic technique for measuring DNA damage in humans [7,12,17,18,46].

The comet assay is a widely used biomonitoring tool for DNA damage. The most commonly used cells in human studies are peripheral lymphocytes, harvested from venous or capillary blood. However, there is an urgent need to find an alternative target human cell that can be collected from normal subjects with minimal invasion [61].

Buccal cells are becoming an increasingly popular tissue source in human biomonitoring after exposure to occupational and environmental genotoxicants, particularly because they can be obtained non-invasively [50,61,90,91]. However, the number of publications referring to the human buccal comet assay is low in the last two decades. This low growing interest may be explained by several factors, including its relative technical problems.

A priority in this field should be to develop a protocol that could enable buccal cell lysis and DNA damage testing in the comet assay and to use the model to evaluate the potential of the buccal cells in human biomonitoring study [61].

Specialized cellular membranes, which make cell lysis difficult, contribute to making buccal mucosa cells a more complicated cell to SCGE assay [92]. As firstly mentioned in the review of Rojas et al. [33], there are studies that use proteinase K together with the lysis step in order to gain free nucleoids, and there are studies that do not use this enrichment, but only lysis solution, and it has been shown that results depend on this step. Szeto et al. [61] described the development of an improved protocol in which agarose embedded cells of epithelial origin from the mouth were digested with trypsin and proteinase K. Their early trials with buccal cells following the published protocol by Rojas et al. [14] were completely unsuccessful. They found that buccal cells sustained massive damage and disintegration at the high pH used, while at lower pH values, the cells were extremely resistant to lysis. According to these authors,

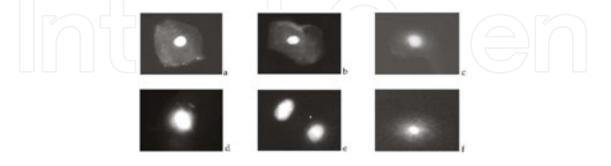
it is not possible to use earlier protocol developed as it leads to extremely high background levels. The adequate experimental design of SCGE trials in buccal cells is still a matter of debate, and the evaluation of the available data shows that there is an urgent need to develop guidelines [93].

Proper collection and storage of human (buccal) cells is essential step in order to preserve their integrity for later analysis by the comet assay [26,27]. After collection, more than 90% of the cells in a buccal sample are epithelial cells, a cell type with well-known low viability (10%) [91]. Although a prerequisite for using any cell type in the comet assay is that those cells must be viable [92,94], most of the reported studies did not consider this important factor. Failure in controlling of these confounding variables can lead to an over/under estimation of the DNA damage caused by exposure on work-place or in assessment of exposure to environmental genotoxicants [86]. Cell viability is expected to be low in epithelial tissue with terminally differentiated cell populations and a high renewal rate as buccal cells [95]. Dead or dying cells are extensively damaged (e.g., DNA fragmentation), and therefore, subjecting them to the alkaline conditions of the comet assay only increases DNA loss. Comet assay studies on epithelial buccal cell samples have reported high percentage of DNA "clouds" (>95%) [96]. Those clouds are excluded from the final quantitative analysis and that generally results in very low numbers of counted comets. Higher percentage of these atypical comets demonstrates that epithelial cells are not suitable for measuring DNA damage by the comet assay. Also enzymatic digestion such as proteinase K treatment is an essential step to enrich the number of epithelial viable cells, thus promoting necrotic cells destruction that are very numerous in the mucosa epithelium and have a very fast turnover. Enzymatic treatment with proteinase K caused degradation of leukocytes, mainly polymorphonuclear, which represent a great fraction of cells in the oral mucosa, due to migration from the blood through the gingival crevice [91].

Another problem in cell collection is that final cell suspension usually consists of mixture of epithelial cells and leukocytes with well-known fact that leukocyte fraction is more viable than epithelial cell fraction [91]. Pinhal et al. [92] investigated whether human buccal mucosa cells are suitable for use in the SCGE assay. After comparison of smoker/non-smoker group, there was no correlation of long-term smoking with the number of buccal cells that formed comets and represented damaged cells. They have also concluded that the cells that formed comets are probably leukocytes, and not buccal cells, and that the SCGE assay, used on a commonly performed way, without modifications, may not be useful for genotoxicity monitoring in human epithelial buccal mucosa cells. Similar conclusions were cited by Ribeiro [97].

In contrast, the uniform distribution of DNA within the heads of oral leukocytes and their greater viability indicates that this cell type is more suitable for assessing DNA damage in buccal samples [86]. Thus, recently McCauley et al. [98] and Kisby et al. [99] examined oral leukocytes of agricultural workers by the comet assay and demonstrated that DNA damage is greater in farmworkers who were exposed to pesticides.

As mentioned above, other alternative is to isolate lymphocytes from cells suspensions collected from the mouth and develop a technique for SCGE analyses, like it was followed by


Osswald et al. [91], and later, it was successfully implemented in an intervention trial with supplemented bread by Glei et al. [87].

The use of buccal epithelial cells to determine genotoxicity using the comet assay according to the procedure outlined by Singh et al. [100] was limited by the inability to obtain free nucleoids. In a recent review, Rojas et al. [33] showed that a broad variety of different protocols has been used in earlier investigations. No effort has been made so far to establish an international consortium which could develop and validate appropriate strategies for the use of SCGE assay in buccal cells. More information is required concerning the time and design of different phases, the duration of wash-out periods, the calibration of enzymes and other important factors which may influence the outcome of the experiments as has been proposed by Hoelzl et al. [93] for the use of SCGE assays for the detection of DNA-protective effects of dietary factors in humans.

8. Considerations

According to Rojas et al. [33], the use of alternative biomatrices to assess DNA damage in human populations has advantages and shortcomings focusing on the methodological characteristics of buccal mucosa cells and taking into consideration the sampling protocol, preprocessing, and post-sampling storage, as well as the possibilities of sample freezing and the need to adapt the classical alkaline comet assay protocol.

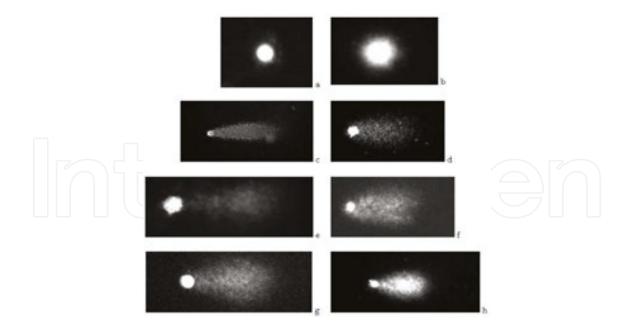

The use of buccal mucosa cells by comet assay in order to estimate DNA damage levels gives the possibility to obtain samples on cheap, safe, and non-invasive way in order to perform in vivo studies. Direct contact with xenobiotics and endogenous damage inductors makes this type of sample an attractive biomatrice for individual genotoxicity evaluation. Their applicability in clinical diagnostic confers a potential use in patients across time.

Figure 1. Picture of single buccal mucosa cells: (a) immediately stained after the solidification of agarose gel layer with sample cells, (b) the appearance of cells with cytoplasm after 1 h of classical lysis solution, (c) the appearance of the cells with cytoplasm after the combined treatment of lysis solution and proteinase K (1 mg/ml) for 1 h at 37°C, (d) the appearance of cells after 24 h of normal lysis, (e) the appearance of cells after 24 h of normal lysis and treatment with proteinase K 10 mg/ml for 1 h at 37°C, (f) 0.25% trypsin 30 min plus proteinase K 1 mg/ml 1 h, 37°C.

The comet assay in exfoliated buccal cells has been used since the 1990s to demonstrate cytogenetic effects of environmental and occupational exposures, lifestyle factors, dietary deficiencies, and different diseases.

The general guideline to perform comet assay in epithelial cells requires the correct sampling procedure, to follow the alkaline version proposed by Singh et al. [100]. In this sense, Rojas et al. [33] proposed protocols specific to sampling protocol and sample storage and comet assay sample preparation for buccal mucosa cells. We have also performed the protocols suggested by Rojas, but there have been some confusing factors. Rojas recommendation did not give free DNA neither in first case of lysis treatment for 1 h or lysis treatment with proteinase K for 1 h (pictures represented in Figure 1). We have also tried the protocols that Szeto et al. [61] have done in order to established the best one, but in our case, we have demonstrated that although cells are embedded on agarose gel, treatment with 0.25% trypsin and then proteinase K for 1 h is too aggressive and still gives cloudy free nuclei. For us, the best results were with lysis and proteinase K 10 mg/ml 1-h treatment on 37°C. It seems that also high pH of alkaline denaturation and electrophoresis makes massive DNA damage, as already mentioned in Szeto et al. [61]. As Szeto et al. [61] already mentioned, buccal cells as a type of stratified squamous epithelium do not divide but undergo a terminal differentiation from basal cells on order to form a protective barrier (cell envelope rich in a small prolinerich protein) that will protect the buccal cell from very harmful environment in the mouth and also will give resistance of buccal cells to lysis. On Figure 2, we have represented some pictures of the buccal cells after lysis and electrophoresis in alkaline conditions (pH > 13). Szeto el al. [61] suggested that denaturation and electrophoresis in neutral conditions would be more appropriate. According to our

Figure 2. Pictures of buccal cells after different duration and type of lysis step, but all electrophoresis were at pH > 13: (a) treatment of lysis solution for 15 h 4°C, (b) lysis step for 20 h 4°C, (c) treatment with 0.25% trypsin for 30 min, and lysis for 30 min, both at 37°C, (d) 15 min of 0.25% trypsin a 37°C, 15 min of proteinase K 1 mg/ml, (e) 30 min of proteinase K 1 mg/ml at room temperature, 60 min of lysis at 4°C, (f) 24 h of lysis at 4°C, (g, h) 20 h of lysis at 4°C.

knowledge, alkaline conditions are also appropriate, but also this part needs further investigation.

A review of risk factors affecting background rates of parameters in the comet assay in cells of oral mucosa should be undertaken with a view to help in the interpretation of genotoxicity biomonitoring studies. Both endogenous factors and those due to methodological variation should be evaluated. Background variation of other indices of genotoxicity in buccal mucosa cells should be also considered as these data likely reflect overlapping causes of DNA damage and may provide some indicators for future research areas. A number of host risk factors, namely age, gender, smoking, vitamin status, alcohol consumption, disease conditions and infections, physical exercise, body mass index, and genotype should be identified, since there are evidences that they have an impact on background levels of genotoxicity biomarkers. Evaluation of these factors should be routinely included in genotoxicity biomonitoring studies [101].

However, important knowledge gaps remain about the methodologic procedures in laboratories around the world. To address these uncertainties, it will be necessary to develop similar projects as the HUMN and HUMNxL for validation of the lymphocytes and buccal cell MN assay, respectively [7,12,17,18]. Future research should explore sources of variability in the assay and resolve key technical issues, such as the method of buccal cell sample and sample storage, slide preparation, enzyme treatment, and optimal criteria for the classification of normal and degenerated cells. The harmonization and standardization of the buccal comet assay will allow more reliable comparison of the data among human populations and laboratories, evaluation of the assay's performance, and consolidation of its worldwide use for biomonitoring of DNA damage.

In order that comet assay in buccal cells has widespread acceptance and credibility in human population studies, standardization of analyzed parameters and protocol is necessary and also a better knowledge of critical features affecting the assay outcomes, including the definition of the values of spontaneous DNA damage. Developing the network of laboratories using this technique and performing and international collaborative studies would be an ideal solution. Result of connecting would be the assembly of large databases which would allow a more detailed analysis of the assays performance and study of the biological/clinical events associated with this biomarker.

The need for a careful consideration of factors affecting the comet assay in cells of oral mucosa exists, which, in turn, should aid in the interpretation of studies of environmental and occupational chemical exposures and health risk. There is a need for further collaborative work as in the HUMN collaborative project which has reported data on ~7000 individuals [15,16,102–104]. If these measures are achieved, then it would be possible to use the data from biomonitoring studies in risk assessments to derive risk management measures [95]. Based on the experience of the HUMN project [96], the Conference on Environmental Mutagens in Human Populations [105,106], and the HUMNxL project, design of the studies could be similar to (i) identify technical variables that affect the measurement of DNA damage of buccal cells assessed with comet assay, (ii) identify lifestyle variables affecting this damage, (iii) identify protocol variables that affect the recovery of buccal cells and their scoring in comet assay, (iv)

design intra- and inter-laboratory validation studies based on the results of information collected for the method and scoring criteria, and (v) determine the role of buccal genomic damage monitoring and the prediction of cancer and other degenerative diseases.

The creation of a network of laboratories will allow more focused validation studies, including the design of a classic, historic, prospective cohort study, to explore the link between measures of genetic instability in the buccal mucosa and the risk of cancer and other chronic-degenerative diseases [12]. ComNet project and new COST project are a great step forward.

Acknowledgements

The authors thank Ana Rosa Flores-Márquez for her technical assistance; MS Makso Herman for English review and Rafael Alexander Valencia-Sánchez for editing assistance.

Author details

J. Sánchez-Alarcón¹, M. Milić², S. Gómez-Arroyo³, J. M. R. Montiel-González¹ and R. Valencia-Quintana^{1*}

*Address all correspondence to: prvq2004@yahoo.com.mx

1 Laboratorio "Rafael Villalobos-Pietrini" de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, Tlaxcala, México

2 Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10, Zagreb, Croatia

3 Laboratorio de Genotoxicología Ambiental, Centro de Ciencias de la Atmósfera, UNAM, Coyoacán, México, D.F., México

References

- [1] International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risk to Humans [Internet]. 2016 [Updated: 2016]. Available from: http:// monographs.iarc.fr/ [Accessed: 03 Feb 2016]
- [2] International Programme on Chemical Safety INCHEM. Environmental Health Criteria Monographs (EHCs) 214 [Internet]. 2000 [Updated: 2000]. Available from: http://www.inchem.org/documents/ehc/ehc/ehc214.htm [Accessed: 03 Feb 2016]

- [3] OECD. OECD Guidelines for the Testing of Chemicals [Internet]. 2015 [Updated: 2015]. Available from: http://www.oecd.org/chemicalsafety/testing/oecdguidelinesforthetestingofchemicals.htm [Accessed: 03 Feb 2016]
- [4] Cohen SM. Human carcinogenic risk evaluation: An alternative approach to the twoyear rodent bioassay. Toxicol Sci. 2004; 80:225–229. DOI: 10.1093/toxsci/kfh159
- [5] Borràs M, Nadal J. Biomarkers of genotoxicity and other end-points in an integrated approach to environmental risk assessment. Mutagenesis. 2004; 19:165–168. DOI: 10.1093/mutage/geh023
- [6] Hattis DB. The promise of molecular epidemiology for quantitative risk assessment. Risk Anal. 1986; 6:181–193. DOI: 10.1111/j.1539–6924.1986.tb00206.x
- [7] Holland N, Bolognesi C, Kirsch-Volders M, Bonassi S, Zeiger E, Knasmueller S, Fenech M. The micronucleus assay in human buccal cells as a tool for biomonitoring. DNA damage: the HUMN project perspective on current status and knowledge gaps. Mutat Res. 2008; 659:93–108. DOI: 10.1016/j.mrrev.2008.03.007
- [8] Migliore L, Colognato R, Naccarati A, Bergamaschi E. Relationship between genotoxicity biomarkers in somatic and germ cells: findings from a biomonitoring study. Mutagenesis. 2006; 21:149–152. DOI: 10.1093/mutage/gel012
- [9] Migliore L, Naccarati A, Coppedè F, Bergamaschi E, De Palma G, Voho A, Manini P, Järventaus H, Mutti A, Norppa H, Hirvonen A. Cytogenetic biomarkers, urinary metabolites and metabolic gene polymorphisms in workers exposed to styrene. Pharmacogenet Genomics. 2006; 16:87–99. DOI: 10.1097/01.fpc.0000182783.70006.44
- [10] Ceppi M, Biasotti B, Fenech M, Bonassi S. Human population studies with the exfoliated buccal micronucleus assay: statistical and epidemiological issues. Mutat Res. 2010; 705:11–19. DOI: 10.1016/j.mrrev.2009.11.001.)
- Thomas P, Holland N, Bolognesi C, Kirsch-Volders M, Bonassi S, Zeiger E, Knasmueller
 S, Fenech M. Buccal micronucleus cytome assay. Nat Protoc. 2009; 4:825–837. DOI: 10.1038/nprot.2009.53
- [12] Bonassi S, Coskun E, Ceppi M, Lando C, Bolognesi C, Burgaz S, Holland N, Kirsh-Volders M, Knasmueller S, Zeiger E, Carnesoltas D, Cavallo D, da Silva J, de Andrade VM, Demircigil GC, Domínguez Odio A, Donmez-Altuntas H, Gattas G, Giri A, Giri S, Gómez-Meda B, Gómez-Arroyo S, Hadjidekova V, Haveric A, Kamboj M, Kurteshi K, Martino-Roth MG, Montero Montoya R, Nersesyan A, Pastor-Benito S, Favero Salvadori DM, Shaposhnikova A, Stopper H, Thomas P, Torres-Bugarín O, Yadav AS, Zúñiga González G, Fenech M. The HUman MicroNucleus project on eXfoLiated buccal cells (HUMN(XL)): the role of life-style, host factors, occupational exposures, health status, and assay protocol. Mutat Res. 2011; 728:88–97. DOI: 10.1016/j.mrrev.2011.06.005
- [13] OECDLibrary. Test No. 489: In Vivo Mammalian Alkaline Comet Assay [Internet]. 16 Sep 2014 [Updated: 16 Sep 2014]. Available from: http://www.oecd-ilibrary.org/

environment/test-no-489-in-vivo-mammalian-alkaline-comet-assay_9789264224179en [Accessed: 03 Feb 2016]. DOI :10.1787/9789264224179-en

- [14] Rojas E, Valverde M, Sordo M, Ostrosky-Wegman P. DNA damage in exfoliated buccal cells of smokers assessed by the single cell gel electrophoresis assay. Mutat Res. 1996; 370:115–120. DOI: 10.1016/0165–1218(96)00062-6
- [15] Fenech N, Chang WP, Kirsch-Volders M, Holland N, Bonassi S, Zeiger E. HUMN project: detailed description of the scoring criteria for the cytokinesisblock micronucleus assay using isolated human lymphocyte cultures. Mutat Res. 2003; 534:65–75. DOI: 10.1016/S1383-5718(02)00249-8
- [16] Fenech M, Bonassi S, Turner J, Lando C, Ceppi M, Chang WP, Holland N, Kirsch-Volders M, Zeiger E, Bigatti MP, Bolognesi C, Cao J, De Luca G, Di Giorgio M, Ferguson LR, Fucic A, Lima OG, Hadjidekova VV, Hrelia P, Jaworska A, Joksic G, Krishnaja AP, Lee TK, Martelli A, McKay MJ, Migliore L, Mirkova E, Müller WU, Odagiri Y, Orsiere T, Scarfi MR, Silva MJ, Sofuni T, Surralles J, Trenta G, Vorobtsova I, Vral A, Zijno A. HUman MicroNucleus project. Intra- and inter-laboratory variation in the scoring of micronuclei and nucleoplasmic bridges in binucleated human lymphocytes. Results of an international slide-scoring exercise by the HUMN project. Mutat Res. 2003; 534:45– 64. DOI: 10.1016/S1383-5718(02)00248-6
- [17] Fenech M, Holland N, Zeiger E, Chang WP, Burgaz S, Thomas P, Bolognesi C, Knasmueller S, Kirsch-Volders M, Bonassi S. The HUMN and HUMNxL international collaboration projects on human micronucleus assays in lymphocytes and buccal cells-past, present and future. Mutagenesis. 2011; 26:239–245. DOI: 10.1093/mutage/geq051
- [18] Bolognesi C, Knasmueller S, Nersesyan A, Thomas P, Fenech M. HUMNxL scoring criteria for different cell types and nuclear anomalies in the buccal micronucleus cytome assay - an update and expanded photogallery. Mutat Res. 2013; 753:100–113. DOI: 10.1016/j.mrrev.2013.07.002
- [19] Dusinska M, Collins AR. The comet assay in human biomonitoring: gene-environment interactions. Mutagenesis. 2008; 23:191–205. DOI: 10.1093/mutage/gen007
- [20] Collins A, Dusinská M, Franklin M, Somorovská M, Petrovská H, Duthie S, Fillion L, Panayiotidis M, Raslová K, Vaughan N. Comet assay in human biomonitoring studies: reliability, validation, and applications. Environ Mol Mutag. 1997; 30:139–146. DOI: 10.1002/(SICI)1098-2280(1997)
- [21] Kassie F, Parzefall W, Knasmüller S. Single cell gel electrophoresis assay: a new technique for human biomonitoring studies. Mutat Res. 2000; 463:13–31. DOI: 10.1016/ S1383-5742(00)00041-7
- [22] Møller P, Knudsen LE, Loft S, Wallin H. The comet assay as a rapid test in biomonitoring occupational exposure to DNA damaging agents and effect of confounding factors. Cancer Epidemiol Biomarkers Prev. 2000; 9:1005–1015. PMID: 11045781

- [23] Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen. 2000; 35:206–221. DOI: 10.1002/ (SICI)1098-2280(2000)
- [24] Faust F, Kassie F, Knasmüller S, Boedecker RH, Mann M, Mersch-Sundermann V. The use of the alkaline comet assay with lymphocytes in human biomonitoring studies. Mutat Res. 2004; 566:209–229. DOI: 10.1016/j.mrrev.2003.09.007
- [25] Faust F, Kassie F, Knasmüller S, Kevekordes S, Mersch-Sundermann V. Use of primary blood cells for the assessment of exposure to occupational genotoxicants in human biomonitoring studies. Toxicology. 2004; 198:341–350. DOI: 10.1016/j.tox.2004.02.010
- [26] Møller P. The alkaline comet assay: towards validation in biomonitoring of DNA damaging exposures. Basic Clin Pharmacol Toxicol. 2006; 98:336–345. DOI: 10.1111/j. 1742-7843.2006.pto_167
- [27] Albertini RJ, Anderson D, Douglas GR, Hagmar L, Hemminki K, Merlo F, Natarajan AT, Norppa H, Shuker DE, Tice R, Waters MD, Aitio A. IPCS guidelines for the monitoring of genotoxic effects of carcinogens in humans. International Programme on Chemical Safety. Mutat Res. 2000; 463:111–172. DOI: 10.1016/S1383-5742(00)00049-1
- [28] Bates MN, Hamilton JW, LaKind JS, Langenberg P, O'Malley M, Snodgrass W. Workgroup report: biomonitoring study design, interpretation, and communicationlessons learned and path forward. Environ Health Perspect. 2005; 113:1615–1621. DOI: 10.1289/ehp.8197
- [29] Bennett DA, Waters MD. Applying biomarker research. Environ Health Perspect. 2005; 108:907–910. PMC2556934
- [30] Angerer J, Ewers U, Wilhelm M. Human biomonitoring: state of the art. Int J Hyg Environ Health. 2007; 210:201–228. DOI: 10.1016/j.ijheh.2007.01.024
- [31] Au WW. Usefulness of biomarkers in population studies: from exposure to susceptibility and to prediction of cancer. Int J Hyg Environ Health. 2007; 210:239–246. DOI: 10.1016/j.ijheh.2006.11.001
- [32] Collins A, Koppen G, Valdiglesias V, Dusinska M, Kruszewski M, Møller P, Rojas E, Dhawan A, Benzie I, Coskun E, Moretti M, Speit G, Bonassi S, ComNet project. The comet assay as a tool for human biomonitoring studies: the ComNet project. Mutat Res. 2014; 759:27–39. DOI: 10.1016/j.mrrev.2013.10.001.
- [33] Rojas E, Lorenzo Y, Haug K, Nicolaissen B, Valverde M.. Epithelial cells as alternative human biomatrices for comet assay. In: Azqueta A, Langie S, Collins A, editors. 30 years of the Comet Assay: an overview with some new insights. 1st ed. Switzerland: Frontiers Media SA; 2015. p. 100–122. DOI: 10.3389/fgene.2014.00386

- [34] Autrup H, Seremet T, Arenholt D, Dragsted L, Jepsen A. Metabolism of benzo[a]pyrene by cultured rat and human buccal mucosa cells. Carcinogenesis. 1985; 6:1761–1765. DOI: 10.1093/carcin/6.12.1761
- [35] Liu Y, Sundqvist K, Belinsky SA, Castonguay A, Tjalve H, Grafstrom RC. Metabolism and macromolecular interaction of the tobaccospecific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in cultured explants and epithelial cells of human buccal mucosa. Carcinogenesis. 1993; 14:2383–2388. DOI: 10.1093/carcin/14.11.2383
- [36] Vondracek M, Xi Z, Larsson P, Baker V, Mace K, Pfeifer A, Tjälve H, Donato MT, Gomez-Lechon MJ, Grafström RC. Cytochrome P450 expression and related metabolism in human buccal mucosa. Carcinogenesis. 2001; 22:481–488. DOI: 10.1093/carcin/ 22.3.481
- [37] Spivack SD, Hurteau GJ, Jain R, Kumar SV, Aldous KM, Gierthy JF, Kaminsky LS. Geneenvironment interaction signatures by quantitative mRNA profiling in exfoliated buccal mucosal cells. Cancer Res. 2004; 64:6805–6813. DOI: 10.1158/0008-5472.CAN-04-1771
- [38] Rosin MP. The use of the micronucleus test on exfoliated cells to identify anticlastogenic action in humans: a biological marker for the efficacy of chemopreventive agents. Mutat Res. 1992; 267:265–276. DOI: 10.1016/0027-5107(92)90071-9
- [39] Kashyap B, Reddy PS. Micronuclei assay of exfoliated oral buccal cells: means to assess the nuclear abnormalities in different diseases. J Cancer Res Ther. 2012; 8:184–191. DOI: 10.4103/0973-1482.98968
- [40] Tolbert PE, Shy CM, Allen JW. Micronuclei and other nuclear anomalies in buccal smears: methods development. Mutat Res. 1992; 271:69–77. DOI: 10.1016/0165-1161(92)90033-I
- [41] Fenech M, Crott JW. Micronuclei, nucleoplasmic bridges and nuclear buds induced in folic acid deficient human lymphocytes-evidence for breakage fusion-bridge cycles in the cytokinesis-block micronucleus assay. Mutat Res. 2002; 504:131–136. DOI: 10.1016/S0027-5107(02)00086-6
- [42] Betti C, Davini T, Giannessi L, Loprieno L, Barale R. Microgel electiophoresis assay (Comet test) and SCE analysis in human lymphocytes from 100 normal subjects. Mutat Res. 1994; 307:323–333. DOI: 10.1016/0027-5107(94)90306-9
- [43] Tice RR. The single cell gel/comet assay: a microgel electrophoretic technique for the detection of DNA damage and repair in individual cells. In: Phillips DH, Venitt S, editors. Environmental Mutagenesis. Oxford: Bios Scientific Publishers; 1994. p. 315– 340
- [44] Fairbaim DW, Olive PL O'Neill KL. The comet assay: a comprehensive review. Muat Res. 1995; 339:37–59. DOI: 10.1016/0165-1110(94)00013-3

- [45] Hartmann A, Speit G. Comparative investigations of the genotoxic effects of metals in the single ccl gel (SCG) assay and the sister chromatid exchange (SCE) test. Env Mol Mutag. 1994; 23:299–305. DOI: 10.1002/em.2850230407
- [46] Bolognesi C, Bonassi S, Knasmueller S, Fenech M, Bruzzone M, Lando C, Ceppi M. Clinical application of micronucleus test in exfoliated buccal cells: A systematic review and metanalysis. Mutat Res. 2015; 766:20–31. DOI: 10.1016/j.mrrev.2015.07.002
- [47] Cairns J. Mutation selection and the natural history of cancer. Nature. 1975; 255:197–200. PMID: 1143315
- [48] Weinstein LB. The origins of human cancer: molecular mechanisms and their implications for cancer prevention and treatment. Cancer Res. 1988; 48:4135–4143. PMID: 3292040
- [49] Nersesyan, Kundi M, Fenech M, Bolognesi C, Misik M, Wultsch G, Hartmann M, Knasmueller S. Micronucleus assay with urine derived cells (UDC): a review of its application in human studies investigating genotoxin exposure and bladder cancer risk. Mutat Res. 2014; 762 37–51. DOI: 10.1016/j.mrrev.2014.04.004
- [50] Eren K, Özmeriç N, Sardaş Ş. Monitoring of buccal epithelial cells by alkaline comet assay (single cell gel electrophoresis technique) in cytogenetic evaluation of chlorhexidine. Clin Oral Investig. 2002; 6:150–154. DOI: 10.1007/s00784-002-0168-1
- [51] Faccioni F, Franceschetti P, Cerpelloni M, Fracasso ME. In vivo study on metal release from fixed orthodontic appliances and DNA damage in oral mucosa cells. Am J Orthod Dentofacial Orthop. 2003; 124:687–694. DOI: 10.1016/j.ajodo.2003.09.010
- [52] Westphalen GH, Menezes LM, Prá D, Garcia GG, Schmitt VM, Henriques JA, Medina-Silva R. In vivo determination of genotoxicity induced by metals from orthodontic appliances using micronucleus and comet assays. Genet Mol Res. 2008; 7:1259–1266. PMID: 19065761
- [53] Fernández-Miñano E, Ortiz C, Vicente A, Calvo JL, Ortiz AJ (2011). Metallic ion content and damage to the DNA in oral mucosa cells of children with fixed orthodontic appliances. Biometals. 2011; 24:935–941. DOI: 10.1007/s10534-011-9448-z
- [54] Hafez HS, Selim EM, Kamel Eid FH, Tawfik WA, Al-Ashkar EA, MostafaYA. Cytotoxicity, genotoxicity, and metal release in patients with fixed orthodontic appliances: a longitudinal in-vivo study. Am J Orthod Dentofacial Orthop. 2011; 140:298–308. DOI: 10.1016/j.ajodo.2010.05.025
- [55] Baričević M, Ratkaj I, Mladinić M, Zelježić D, Kraljević SP, Lončar B, Stipetić MM. In vivo assessment of DNA damage induced in oral mucosa cells by fixed and removable metal prosthodontic appliances. Clin Oral Investig. 2012; 16:325–331. DOI: 10.1007/ s00784-010-0489-4

- [56] Visalli G, Baluce B, La Maestra S, Micale RT, Cingano L, De Flora S, Di Pietro A. Genotoxic damage in the oral mucosa cells of subjects carrying restorative dental fillings. Arch Toxicol. 2013; 87:179–187. DOI: 10.1007/s00204-012-0915-2
- [57] Martín-Cameán A, Puerto M, Jos Á, Azqueta A, Iglesias-Linares A, Solano E, Cameán AM. Utilización de microtornillos en ortodoncia: Evaluación de su genotoxicidad mediante ensayo cometa. II Jornadas de formación en Toxicología 2014. Rev Toxicol. 2014; 31:93–94
- [58] Martín-Cameán A, Jos Á, Iglesias-Linares A, Solano E, Cameán AM. In vitro and in vivo evidence of the cytotoxic and genotoxic effects of metal ions released by orthodontic appliances: A review. Environ Toxicol Pharmacol 2015; 40:86–113. DOI: 10.1016/ j.etap.2015.05.007
- [59] Gonçalves TS, Menezes LM, Trindade C, Thomas P, Fenechc M, Henriques JA (2015). In vivo evaluation of the genotoxic effects of Hyrax auxiliary orthodontic appliances containing silver-soldered joints. Mutat Res. 2015; 791:25–29. DOI: 10.1016/j.mrgentox. 2015.07.007
- [60] Dhillon VS, Thomas P, Fenech M. Comparison of DNA damage and repair following radiation challenge in buccal cells and lymphocytes using single-cell gel electrophoresis. Int J Radiat Biol. 2004; 80:517–528. DOI:10.1080/09553000410001723866
- [61] Szeto YT, Benzie IF, Collins AR, Choi SW, Cheng CY, Yow CM, Tse MM. A buccal cell model comet assay: development and evaluation for human biomonitoring and nutritional studies. Mutat Res. 2005; 578:371–281. DOI: 10.1016/j.mrfmmm.2005.06.014
- [62] Pal D, Banerjee S, Indra D, Mandal S, Dum A, Bhowmik A, Panda CK, Das S. Influence of regular black tea consumption on tobacco associated DNA damage and HPV prevalence in human oral mucosa. Asian Pac J Cancer Prev. 2007; 8:263–266. PMID: 17696743
- [63] Pal D, Sur S, Mandal S, Das S, Panda CK. Regular black tea habit could reduce tobacco associated ROS generation and DNA damage in oral mucosa of normal population. Food Chem Toxicol. 2012; 50:2996–3003. DOI: 10.1016/j.fct.2012.06.005
- [64] Saran R, Tiwari RK, Reddy PP, Ahuja YR. Risk assessment of oral cancer in patients with pre-cancerous states of the oral cavity using micronucleus test and challenge assay. Oral Oncol. 2008; 44:354–360. DOI: 10.1016/j.oraloncology.2007.05.002
- [65] Sellappa S, Prathyumnan S, Joseph S, Keyan KS, Balakrishnan M, Sasikala K. XRCC1399 and hOGG1326 polymorphisms and frequencies of micronuclei, comet and chromosomal aberrations among tobacco chewers: A South Indian Population Study. Asian Pac J Cancer Prev. 2009; 10:1057–1062. PMID: 20192583
- [66] Eshkoor SA, Ismail P, Rahman SA, Moin S. Does GSTP1 polymorphism contribute to genetic damage caused by ageing and occupational exposure? Arh Hig Rada Toksikol. 2011; 62:291–298. DOI: 10.2478/10004-1254-62-2011-2088

- [67] Eshkoor SA, Ismail P, Rahman SS., Adon MY, Devan RV. Contribution of CYP2E1 polymorphism to aging in the mechanical workshop workers. Toxicol Mechan Meth. 2013; 23:217–222. DOI: 10.3109/15376516.2012.743637
- [68] Eshkoor S, Ismail P, Rahman S, Moin S, Adon M. Role of the CYP1A2 Gene polymorphism on early ageing from occupational exposure. Balkan J Med Genet. 2013; 16:45–52. DOI: 10.2478/bjmg-2013-0031
- [69] Eshkoor SA, Ismail P, Rahman SA. Does CYP1A1 gene polymorphism affect cell damage biomarkers and ageing? Turk J Biol. 2014; 38:219–225. DOI: 10.3906/biy-1308-61
- [70] Khanna A, Gautam DS, Mukherjee P. Genotoxic effects of tobacco chewing. Toxicol Int. 2012; 19:322–326. DOI: 10.4103/0971-6580.103683
- [71] Jyoti S, Khan S, Naz F, Ali F, Siddique YH. Assessment of DNA damage by panmasala, gutkha chewing and smoking in buccal epithelial cells using alkaline single cell gel electrophoresis (SCGE). Egyp J Med Human Genetics. 2013; 14:391–394. DOI: 10.1016/ j.ejmhg.2013.07.004
- [72] Al-Amrah HJ, Aboznada OA, Alam MZ, ElAssouli MZ, Mujallid MI, ElAssouli SM. Genotoxicity of waterpipe smoke in buccal cells and peripheral blood leukocytes as determined by comet assay. Inhal Toxicol. 2014; 26:891–896. DOI: 10.3109/08958378.2014.970787
- [73] Bhagwath SS, Chandra L. Assessing extent of single stranded DNA damage in oral mucosal cells of patients with oral squamous cell carcinoma and its correlation with TNM staging. Ind J Dental Res. 2014; 25:555. DOI: 10.4103/0970-9290.147075
- [74] Katarkar A, Mukherjee S, Khan MH, Ray JG, Chaudhuri K. Comparative evaluation of genotoxicity by micronucleus assay in the buccal mucosa over comet assay in peripheral blood in oral precancer and cancer patients. Mutagenesis. 2014; 29:325–334. DOI: 10.1093/mutage/geu023.
- [75] Cavallo D, Ursini CL, Carelli G, Iavicoli I, Ciervo A, Perniconi B, Rondinone B, Gismondi M, Iavicoli S. Occupational exposure in airport personnel: characterization and evaluation of genotoxic and oxidative effects. Toxicology. 2006; 223:26–35. DOI: 10.1016/j.tox.2006.03.003
- [76] Cavallo D, Ursini CL, Rondinone B, Iavicoli S. Evaluation of a suitable DNA damage biomarker for human biomonitoring of exposed workers. Environ Mol Mutagen. 2009; 50:781–790. DOI: 10.1002/em.20501.
- [77] Ursini CL, Cavallo D, Colombi A, Giglio M, Marinaccio A, Iavicoli S. Evaluation of early DNA damage in healthcare workers handling antineoplastic drugs. Int Arch Occup Environ Health. 2006; 80:134–140. DOI: 10.1007/s00420-006-0111-x
- [78] Jayakumar R, Sasikala K. Evaluation of DNA damage in jewellery workers occupationally exposed to nitric oxide. Environ Toxicol Pharmacol. 2008; 26:259–261. DOI: 10.1016/j.etap.2008.03.016.

- [79] de Oliveira HM, Dagostim GP, da Silva AM, Tavares P, da Rosa LA, de Andrade VM. Occupational risk assessment of paint industry workers. Indian J Occup Environ Med. 2011; 15:52–58. DOI: 10.4103/0019-5278.90374.
- [80] Sudha S, Kripa SK, Shibily P, Joseph S, Balachandar V. Biomonitoring of genotoxic effects among shielded manual metal arc welders. Asian Pac J Cancer Prev. 2011; 12:1041–1044. PMID: 21790248
- [81] How V, Hashim Z, Ismail P, Omar D, Said SM, Tamrin SB. Characterization of risk factors for DNA damage among paddy farm worker exposed to mixtures of organophosphates. Arch Environ Occup Health. 2015; 70:102–109. DOI: 10.1080/19338244.2013.823905
- [82] Carbajal-López Y, Gómez-Arroyo S, Villalobos-Pietrini R, Calderón-Segura ME, Martínez-Arroyo A. Biomonitoring of agricultural workers exposed to pesticide mixtures in Guerrero state, Mexico, with comet assay and micronucleus test. Environ Sci Pollut Res Int. 2016; 23:2513–2520. DOI: 10.1007/s11356-015-5474-7
- [83] Valverde M, del Carmen López M, López I, Sánchez I, Fortoul TI, Ostrosky-Wegman P, Rojas E. DNA damage in leukocytes and buccal and nasal epithelial cells of individuals exposed to air pollution in Mexico City. Environ Mol Mutagen. 1997; 30:147–52. DOI: 10.1002/(SICI)1098-2280(1997)
- [84] Mondal NK, Bhattacharya P, Ray MR. Assessment of DNA damage by comet assay and fast halo assay in buccal epithelial cells of Indian women chronically exposed to biomass smoke. Int J Hyg Environ Health. 2011; 214:311–318. DOI: 10.1016/j.ijheh. 2011.04.003
- [85] How V, Hashim Z, Ismail P, Md Said S, Omar D, Bahri Mohd Tamrin S. Exploring cancer development in adulthood: cholinesterase depression and genotoxic effect from chronic exposure to organophosphate pesticides among rural farm children. J Agromedicine. 2014; 19:35–43. DOI: 10.1080/1059924X.2013.866917
- [86] Marcon A, Fracasso ME, Marchetti P, Doria D, Girardi P, Guarda L, Pesce G, Pironi V, Ricci P, de Marco R. Outdoor formaldehyde and NO2 exposures and markers of genotoxicity in children living near chipboard industries. Environ Health Perspect. 2014; 122:639–645. DOI: 10.1289/ehp.1307259
- [87] Glei M, Habermann N, Osswald K, Seidel C, Persin C, Jahreis G, Pool-Zobel BL. Assessment of DNA damage and its modulation by dietary and genetic factors in smokers using the Comet assay: a biomarker model. Biomarkers. 2005; 10:203–217. DOI: 10.1080/13547500500138963
- [88] Ishikawa T, Ogata S, Okumura K, Taguchi H (2005). Detection of DNA damages induced by five model chemicals in goldfish Carassius auratus cells using Comet Assay. Cytologia. 2005; 70:59–64. DOI: 10.1508/cytologia.70.59
- [89] Milić M, Rozgaj R, Kašuba V, Jazbec A M, Hrelia P, Angelini S. The influence of individual genome sensitivity in DNA damage repair assessment in chronic profes-

sional exposure to low doses of ionizing radiation. In: Chen CC, editor. DNA Repair -On the Pathways to Fixing DNA Damage and Errors- part II. 1st ed. Rijeka: In Tech; 2011. p. 437–464.

- [90] Moore L, Wiencke J, Eng C, Zheng S, Smith A. Evaluation of buccal cell collection protocols for genetic susceptibility studies. Biomarkers. 2001; 6:448–454. DOI: 10.1080/13547500110057416.
- [91] Osswald K, Mittas A, Glei M, Pool-Zobel BL. New revival of an old biomarker: characterisation of buccal cells and determination of genetic damage in the isolated fraction of viable leucocytes. Mutat Res. 2003; 544:321–329. DOI: 10.1016/j.mrrev. 2003.06.008
- [92] Pinhal D, Gontijo AM, Reyes VA, Salvadori DM. Viable human buccal mucosa cells not yield typical nucleoids: impacts on the single-cell gel electrophoresis/Comet assay. Environ Mol Mutagen. 2006; 47:117–126. DOI: 10.1002/em.20174
- [93] Hoelzl C, Knasmüller S, Misík M, Collins A, Dusinská M, Nersesyan A. Use of single cell gel electrophoresis assays for the detection of DNA-protective effects of dietary factors in humans: recent results and trends. Mutat Res. 2009; 681:68–79. DOI: 10.1016/ j.mrrev.2008.07.004
- [94] Muniz JF, McCauley LA, Pak V, Lasarev MR, Kisby GE. Effects of sample collection and storage conditions on DNA damage in buccal cells from agricultural workers. Mutat Res. 2011; 720:8–13. DOI: 10.1016/j.mrgentox.2010.11.010.
- [95] Gontijo AM, Elias FN, Salvadori DM, de Oliveira ML, Correa LA, Goldberg J, Trindade JC, de Camargo JL. Single-cell gel comet assay detects primary DNA damage in nonneoplastic urothelial cells of smokers and ex-smokers. Cancer Epidemiol Biomark Prev. 2001; 10:987–993. PMID: 11535552
- [96] Lewińska D, Palus J, Stepnik M, Dziubałtowska E, Beck J, Rydzyński K, Natarajan AT, Nilsson R. Micronucleus frequency in peripheral blood lymphocytes and buccal mucosa cells of copper smelter workers, with special regard to arsenic exposure. Int Arch Occup Environ Health. 2007; 80:371–380. DOI10.1007/s00420-006-0130-7
- [97] Ribeiro DA. Risk assessment of oral cancer in patients with pre-cancerous states of the oral cavity using micronucleus test and challenge assay [letter]. Oral Oncol. 2008; 44: 716–717. DOI: 10.1016/j.oraloncology.2007.12.004
- [98] McCauley LA, Lasarev M, Muniz J, Nazar Stewart V, Kisby G.Analysis of pesticide exposure and DNA damage in immigrant farmworkers. J Agromedicine. 2008; 13:237– 46. DOI: 10.1080/10599240802473817.
- [99] Kisby GE, Muniz JF, Scherer J, Lasarev MR, Koshy M, Kow YW, McCauley L. Oxidative stress and DNA damage in agricultural workers. J Agromedicine. 2009; 14:206–14. DOI: 10.1080/10599240902824042

- [100] Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988; 175:184–191. 10.1016/0014-4827(88)90265-0
- Battershill JM, Burnett K, Bull S. Factors affecting the incidence of genotoxicity biomarkers in peripheral blood lymphocytes: impact on design of biomonitoring studies. Mutagenesis. 2008; 23:423–437. DOI: 10.1093/mutage/gen040
- [102] Fenech M, Holland N, Chang WP, Zeiger E, Bonassi S. The HUman MicroNucleus Project-an international collaborative study on the use of the micronucleus technique for measuring DNA damage in humans. Mutat Res. 1999; 428:271–283. DOI: 10.1016/ S1383-5742(99)00053-8
- [103] Bonassi S, Fenech M, Lando C, Lin YP, Ceppi M, Chang WP, Holland N, Kirsch-Volders M, Zeiger E, Ban S, Barale R, Bigatti MP, Bolognesi C, Jia C, Di Giorgio M, Ferguson LR, Fucic A, Lima OG, Hrelia P, Krishnaja AP, Lee TK, Migliore L, Mikhalevich L, Mirkova E, Mosesso P, Müller WU, Odagiri Y, Scarffi MR, Szabova E, Vorobtsova I, Vral A, Zijno A. HUman MicroNucleus project: international database comparison for results with the cytokinesisblock micronucleus assay in human lymphocytes: I. Effect of laboratory protocol, scoring criteria, and host factors on the frequency of micronuclei. Environ Mol Mutagen. 2001; 37:31–45. DOI: 10.1002/1098-2280(2001)
- [104] Bonassi S, Neri M, Lando C, Ceppi M, Lin YP, Chang WP, Holland N, Kirsch-Volders M, Zeiger E, Fenech M. HUMN collaborative group (2003). Effect of smoking habit on the frequency of micronuclei in human lymphocytes: results from the Human Micro-Nucleus project. Mutat Res. 2003; 543:155–166. DOI: 10.1016/S1383-5742(03)00013-9
- [105] Fenech M, Bolognesi C, Kirsch-Volders M, Bonassi S, Zeiger E, Knasmüller S, Holland N. Harmonisation of the micronucleus assay in human buccal cells-a Human Micronucleus (HUMN) project (www.humn.org) initiative commencing in 2007. Mutagenesis. 2007; 22:3–4. DOI: 10.1093/mutage/gel056
- [106] Fenech M, Holland N, Knasmueller S, Burgaz S, Bonassi S. Report on the buccal micronucleus assay workshop organized by the International Human Micronucleus (HUMN) project-Antalya, Turkey 2007. Mutagenesis. 2009; 24:199–201. DOI: 10.1093/ mutage/gen065.
- [107] Speit G, Hartmann A. The comet assay: a sensitive genotoxicity test for the detection of DNA damage and repair. Methods Mol Biol. 2006; 314:275–286. doi: 10.1385/1-59259-973-7:275
- [108] Nadin SB, Vargas-Roig LM, Ciocca DR. A silver staining method for single-cell gel assay. J Histochem Cytochem. 2001; 49:1183–1186. doi: 10.1177/002215540104900912
- [109] Ostling O, Johanson KJ. Microelectrophoretic study of radiation induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun. 1984; 123:291–298. doi: 10.1016/0006-291X(84)90411-X

- [110] Fracasso ME, Doria D, Carrieri M, Bartolucci GB, Quintavalle S, De Rosa E. DNA singleand double-strand breaks by alkaline- and immuno-comet assay in lymphocytes of workers exposed to styrene. Toxicol Lett. 2009; 185:9–15. doi: 10.1016/j.toxlet.2008
- [111] Dhawan A, Bajpai M, Pandey AK, Parmar D. THE SCGE/Comet assay protocol. Protocol for the single cell gel electrophoresis/comet assay for rapid genotoxicity assessment. ITRC. 2003; pp. 41–48. http://www.cometassayindia.org/protocol%20for %20comet%20assay.pdf
- [112] Besaratinia A, Van Straaten HW, Godschalk RW, Van Zandwijk N, Balm AJ, Kleinjans JC, Van Schooten FJ. Immunoperoxidase detection of polycyclic aromatic hydrocarbon-DNA adducts in mouth floor and buccal mucosa cells of smokers and nonsmokers. Environ Mol Mutagen. 2000; 36:127–33. doi: 10.1002/1098-2280(2000)
- [113] Tice R, Vasquez M. Protocol for the application of the pH\13 alkaline single cell gel (SCG) assay to the detection of DNA damage in mammalian cells. 1999; http://cometassay.com/Tice%20and%20 Vasques.pdf
- [114] Titenko-Holland N, Jacob RA, Shang N, Balaraman A, Smith MT. Micronuclei in lymphocytes and exfoliated buccal cells of postmenopausal women with dietary changes in folate. Mutat Res. 1998; 417:101–114. doi:10.1016/S1383-5718(98)00104-1
- [115] Speit G, Hartmann A. The comet assay (single-cell gel test). A sensitive genotoxicity test for the detection of DNA damage and repair. Methods Mol Biol. 1999; 113:203–212. doi:10.1385/1-59259-675-4:203
- [116] Collins AR, Duthie SJ, Dobson VL. Direct enzymic detection of endogenous oxidative base damage in human lymphocyte DNA. Carcinogenesis. 1993; 14:1733–1735. doi: 10.1093/carcin/14.9.1733
- [117] Klaude M, Eriksson S, Nygren J, Ahnström G. The comet assay: mechanisms and technical considerations. Mutat Res. 1996; 363:89–96. doi:10.1016/0921-8777(95)00063-1
- [118] Olive PL, Vikse CM, Vanderbyl S. Increase in the fraction of necrotic, not apoptotic, cells in SiHa xenograft tumours shortly after irradiation. Radiat Oncol. 1999; 50:113– 119. doi: http://dx.doi.org/10.1016/S0167-8140(98)00104-2
- [119] Singh NP, Stephens RE. Microgel electrophoresis: sensitivity, mechanisms, and DNA electrostretching. Mutat Res. 1997; 383:167–175. doi:10.1016/S0921-8777(96)00056-0
- [120] Tice RR, Strauss GH, Peters WP. High-dose combination alkylating agents with autologous bone-marrow support in patients with breast cancer: preliminary assessment of DNA damage in individual peripheral blood lymphocytes using the single cell gel electrophoresis assay. Mutat Res. 1992; 271:101–113. doi: 10.1016/0165-1161(92)91083-4
- [121] Hartmann A, Agurell E, Beevers C, Brendler-Schwaab S, Burlinson B, Clay P, Collins A, Smith A, Speit G, Thybaud V, Tice RR; 4th International Comet Assay Workshop.

Recommendations for conducting the in vivo alkaline Comet assay. 4th International Comet Assay Workshop. Mutagenesis. 2003; 18:45–51. doi:10.1093/mutage/18.1.45

- Burlinson B, Tice RR, Speit G, Agurell E, Brendler-Schwaab SY, Collins AR, Escobar P, Honma M, Kumaravel TS, Nakajima M, Sasaki YF, Thybaud V, Uno Y, Vasquez M, Hartmann A; In Vivo Comet Assay Workgroup, part of the Fourth International Workgroup on Genotoxicity Testing. Fourth International Workgroup on Genotoxicity testing: results of the in vivo Comet assay workgroup. Mutat Res. 2007; 627:31–35. doi: 10.1016/j.mrgentox.2006.08.011
- [123] Nandhakumar S, Parasuraman S, Shanmugam MM, Rao KR, Chand P, Bhat BV. Evaluation of DNA damage using single-cell gel electrophoresis (Comet Assay). J Pharmacol Pharmacother. 2011; 2:107–111. doi:10.4103/0976-500X.81903.
- [124] Khanna A, Shukla P, Tabassum S. Role of Ocimum sanctum as a Genoprotective Agent on Chlorpyrifos-Induced Genotoxicity. Toxicol Int. 2011; 18:9–13. doi: 10.4103/0971-6580.75845.
- [125] Jaloszynski, P., Kujawski, M., Czub-Swierczek M, Markowska J, Szyfter K. Bleomycininduced DNA damage and its removal in lymphocytes of breast cancer patients studied by comet assay. Mutat Res. 1997; 385:223–233. doi:10.1016/S0921-8777(97)00046-3
- [126] Zhao X, Aldini G, Johnson EJ, Rasmussen H, Kraemer K, Woolf H, Musaeus N, Krinsky NI, Russell RM, Yeum KJ. Modification of lymphocyte DNA damage by carotenoid supplementation in postmenopausal women. Am J Clin Nutr. 2006; 83:163–9. PMID: 16400064
- [127] Carrano AV, Natarajan AT. Considerations for population monitoring using cytogenetic techniques, International Commission for Protection against Environmental Mutagens and Carcinogens (ICPEMC publication 14). Mutat Res. 1988; 204:379–406. doi:10.1016/0165-1218(88)90036-5
- [128] Villela IV, Oliveira IM, Silva J, Henriques JA. DNA damage and repair in haemolymph cells of golden mussel (Limnoperna fortunei) exposed to environmental contaminants. Mutat Res. 2006; 605:78–86. doi:10.1016/j.mrgentox.2006.02.006
- [129] de Marco R, Marcon A, Rava M, Cazzoletti L, Pironi V, Silocchi C, Ricci P. Proximity to chipboard industries increases the risk of respiratory and irritation symptoms in children: the Viadana study. Sci Total Environ. 2010; 408:511–517. doi: 10.1016/ j.scitotenv.2009.10.024
- [130] Fracasso ME, Doria D, Bartolucci GB, Carrieri M, Lovreglio P, Ballini A, Soleo L, Tranfo G, Manno M. Low air levels of benzene: correlation between biomarkers of exposure and genotoxic effects. Toxicol Lett. 2010; 192:22–28. doi: 10.1016/j.toxlet.2009.04.028.

IntechOpen