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Abstract

Neurodegenerative diseases are being modelled in-vitro using human patient-specific,
induced pluripotent stem cells and transgenic embryonic stem cells to determine more
about disease mechanisms, as well as to discover new treatments for patients. Current
research in modelling Alzheimer’s disease, frontotemporal dementia and Parkinson’s
disease using pluripotent stem cells is described, along with the advent of gene-editing,
which has been the complimentary tool for the field. Current methods used to model these
diseases are predominantly dependent on 2D cell culture methods. Outcomes reveal that
only some of the phenotype can be observed in-vitro, but these phenotypes, when
compared to the patient,  correlate extremely well.  Many studies have found novel
molecular mechanisms involved in the disease and therefore elucidate new potential
targets for reversing the phenotype. Future research that includes studying more complex
3D cell cultures, as well as accelerating aging of the neurons, may help to yield stronger
phenotypes in the cultured cells. Thus, the use and application of pluripotent stem cells
for modelling disease have already shown to be a powerful approach for discovering
more about these diseases, but will lead to even more findings in the future as gene and
cell culture technology continues to develop.

Keywords: Disease modelling, Alzheimer’s disease, frontotemporal dementia, Parkin‐
son’s disease, pluripotent stem cells

1. Introduction

The ability for researchers to model diseases in a dish has accelerated during the past decade,
thanks to the discovery of a new stem cell type, the induced pluripotent stem cell (iPSC). This
is an artificially created cell that recapitulates all the features of embryonic stem cells (ESCs)
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isolated from the early pre-implantation embryo. The production of this cell type in 2006 was a
remarkable finding which led its founder, Shinya Yamanaka, to receive the Nobel Prize in
Physiology and Medicine, just 6 years after its discovery, in 2012. The prize at that time was also
shared with Sir John Gurdon who uncovered the mechanism of reprogramming in the late 1950s.
These iPSCs were first produced from mouse fibroblasts by the transduction of four transcrip‐
tion factors, which when overexpressed, could completely change the fibroblast’s phenotype
into that of an embryonic stem cell-like cell, capable of forming all cell types in the body, upon
differentiation [1]. Today, iPSCs are being produced from human cells and other species in many
labs across the world, and production of these has been streamlined using more refined
reprogramming techniques as well as different combinations of either genes, proteins, small
molecules or miRNAs that can replace the function of the transgenes [2]. What makes these cells
so useful for studying disease is that they can easily be produced from patients suffering from
the disease (patient-specific iPSCs) and be differentiated into the cell type/s affected by the
disease, thus modulating and mimicking the disease in a dish.

The ability to produce patient-specific iPSCs has a number of advantages for both learning
more about the disease itself and also in improving therapies and treatments. The ability to
produce autologous stem cell populations from easy-to-access cells from the patient (e.g. blood
cells and skin biopsies) overcomes the ethical conundrum of having to first produce a cloned
human embryo using a donor cell from the patient and host de-nucleated oocyte and then
having to destroy the cloned embryo, to harvest the pluripotent ESCs within [3]. This in itself
is an enormous breakthrough. There are several benefits in being able to have autologous cells
from the patient. In patients that have degenerative diseases (e.g. diabetes, heart disease,
osteoporosis, atherosclerosis and varying neurodegenerative diseases), the potential oppor‐
tunity to have healthy cells transplanted back into the site affected is particularly appealing.
The patient’s own cells can in fact also be corrected, in cases where genetic mutations induce
the disease pathology. Alternately, autologous iPSCs derived from patients can also be used
to improve the patient’s own medical treatment. In this case, the iPSC-derived cells can be
screened in-vitro to determine which drugs prove most beneficial for the patients. This is one
aspect of many approaches for developing tailored-specific treatments for patients, known as
‘personalized medicine’. The iPSCs, when differentiated into the target cells affected in the
disease, can also be used to screen the potential new drugs being developed by Pharma, or
potentially even used to discover new biomarkers of the disease. One of the latest developing
fields in medical research includes the development of nanoparticles for treating disease,
which are particularly attractive for use in brain diseases as they may pass easily through the
blood-brain-barrier [4].

Despite the forefront in iPSC research, human ESC research is still in practice today for
modelling neurodegenerative disease. Cell lines can be gene-targeted to induce familial-linked
mutations, and in this way can be compared to genetically matched, unmodified control cell
lines which are similar, if not more stringent controls than isogenic controls produced from
iPSCs (see section on gene-editing below). Human ESCs are derived following the culture of
the inner cell mass isolated from a pre-implantation embryo [5]. Hundreds of lines have been
produced over the years for research purposes for the study of cell pluripotency and regen‐
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eration, and these can be easily sourced from stem cell banks, registries or commercial
companies. Generally, human ESCs are non-autologous, unless derived by somatic cell nuclear
transfer from the patient. Only a handful of studies have produced autologous human ESCs
from patients with disease [6, 7], and none exist at present for neurodegenerative diseases.
Reasons for this are likely due to the ethical dilemmas in producing cloned human embryos
and the technical challenges in cloned embryo production, compared to the ease in production
of iPSCs.

Neurodegenerative diseases are characterized by progressive dysfunction of the nervous
system as a result of loss of neuronal function in either the brain or the spinal cord and include
Alzheimer’s disease (AD), frontotemporal dementia (FTD), Parkinson’s disease (PD), Hun‐
tington’s disease, amylotrophic lateral sclerosis and multiple sclerosis. Pluripotent stem cells
(PSCs) have shown to be of particular promise for studying these diseases, since they can be
expanded exponentially, hence providing much cell material for study. This is useful since it
is particularly difficult to obtain tissue from the brain from patients suffering from the disease.
In this review, we focus on the use of both iPSCs and PSCs in modelling AD, FTD and PD. In
order for PSCs to deliver on their promises, it is important that clinical grade and safe cells can
be produced for potential cell therapy. It is also important that these cells can modulate the
disease accurately in the dish. That is, the cells must show the same pathology linked to the
disease. In this review, we focus on how well iPSCs can model disease in a dish. We discuss
how far the field has come in correcting the familial forms of AD, FTD and PD and how
important the corrected mutations are for these diseases in relation to both the in-vitro studies
and the potential for future cell therapy. Finally, we discuss what more is required to improve
modelling in a dish, and where the current research is heading.

2. Use of gene-editing in modelling disease

Gene-editing involves insertion, deletion or replacement of DNA in the genome of an organism
using engineered nucleases. This field has advanced considerably in just over a decade, thanks
to the discovery and application of nucleases, combined with the latest molecular technology,
which both enhance and improve the editing process. Gene-editing using designer nucleases
was first applied to PSCs in 2007 [8]. Since then, its application and use on PSCs have become
widespread. It is currently being used by researchers to correct disease-causing mutations
(endogenous gene correction) found within patient-specific iPSCs. In the case of PD, corrected
autologous iPSCs through gene-editing are particularly promising for future cell transplanta‐
tion studies, where diseased cells are genetically corrected and transplanted back into the
patient’s brain. Another application for gene-editing in modelling disease is to produce
genotypically matched control cell lines of disease iPSC lines. That is, because comparisons
with age-matched healthy control lines from non-related persons are genetically different,
which may impede on both phenotype and even differentiation capabilities [9]. This use of
gene-editing technology thus enables eloquent comparable studies in-vitro of disease pheno‐
types, which is directly linked to the mutation per se and not to other compounding factors.
One other application is to use gene-editing for gene knockout studies [10]. PSCs are especially
amenable for gene-editing, since they can be cultured in-vitro for a very long duration without
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changing either their genotype or their phenotype. To date, three custom-engineered nuclease
technologies have been developed. This technology shares a common background. That is, all
introduced engineered nucleases are able to introduce double-strand breaks (DSBs) in the
DNA, which trigger DNA repair either via an error-prone non-homologous end joining (NHEJ)
or via the preferred route of precise homology-directed repair (HDR) [9].

Figure 1. Three custom-engineered nuclease technologies exist, including zinc-finger nucleases (ZFNs), transcription
activator-like effector nucleases (TALENS) and clustered, regularly interspaced, short palindromic repeats (CRISPR)
RNA-guided repeats, although only ZFNs have so far been used to correct point mutations in two neurodegenerative
diseases.

The first generation of engineered nucleases produced were the zinc-finger nucleases (ZFNs),
which were initially developed as chimeric restriction enzymes [11]. These are modular
proteins containing a FokI endonuclease catalytic domain fused to several Cys2-His2 zinc finger
(ZF) DNA-binding motifs [12]. They function as dimers, with each monomer consisting of a
non-specific cleavage domain from the Fok1 endonuclease, fused to a ZF array that is designed
to bind to the target sequence of interest [13]. Each ZF domain consists of a 3bp subsite that
can be constructed into monomers that recognize up to 24bp of the target site (Figure 1) [13].
Several studies have shown that ZFNs can target endogenous genes in both human ESCs and
iPSCs with variable efficiency (from >1% up to 94%) [14]. In addition, they have been used to
target and insert gene cassettes within the AAVS1 locus in both human ESCs and iPSCs, which
is a commonly targeted locus for long-term stable transgene expression in mammalian cells
[14]. ZFNs can be designed and produced using two different methods, including modular
assembly (mix-and-match combination of several individual pre-characterized ZFs) and cell-
based selection using a public platform called ‘OPEN’ provided by the ZF consortium [15,
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16]. The length and design of the ZFs, as well as unwanted homodimer binding and cleavage,
can result in off-target binding and cleavage of DNA, which can lead to unwanted alterations
of the genome elsewhere. Thus, to overcome this, newer strategies have been developed such
as ‘obligate heterodimers’, which include modified Fok1 nucleases, which only cleave when
heterodimers form [16] as well as another manipulated form of Fok1, called zinc finger nickases,
which stimulate HDR and produce fewer off-target effects [17].

Another gene-editing tool is the transcription activator-like effector nucleases (TALENs).
These are composed of a sequence-specific DNA-binding domain and a non-specific DNA
cleavage module [18]. The DNA binding domain contains a series of tandem repeats compris‐
ing 33–35 amino acids, similar to tandem repeats first discovered in the plant pathogen
Xanthomonas [19]. The DNA recognition is conferred by the highly variable amino acids at
positions 12 and 13 [20]. Like ZFNs, TALENs form dimers on either side of the DNA strand
and use the non-specific cleavage effect of the Fok1 cleavage domain to produce a DSB (Figure
1) [20]. TALENS can be designed to almost any sequence due to their simple protein-DNA
code. The only requirement is for the presence of thymine at each 5' end of the DNA recognition
site [10]. TALENS generally also have fewer off-target cuts due to their longer recognition
motifs and they are also less cytotoxic when compared to ZFNs, which is an attractive feature
of this technology [10, 20]. To date, TALENs have been used for generating gene reporter lines,
biallelic knock-out of genes and repair and introduction of point mutations in human PSCs [9].

The most recently developed method, which is even easier to use than TALENs and ZNFs is
clustered, regularly interspaced, short palindromic repeats/Cas9-mediated genome-editing
method (CRISPR/Cas9). This method consists of a specialized two-RNA structure containing
CRISPR RNA (crRNA) and trans-activating RNA (tracrRNA), which are able to bind as a
monomer to DNA strands next to a protospacer adjacent motif (PAM) composed of the
sequence, 5'NGG'3 [18]. This chimeric RNA is known as a guide RNA (gRNA) and facilitates
a DSB by guiding an endonuclease (first derived from Streptococcus pyogenes (Cas9)) to induce
cleavage near the PAM site (Figure 1). The target recognition site is also typically 22 bp, which
is shorter than the recognition site of TALENs. The CRISPR/Cas9 system has already been used
successfully in gene-editing PSCs and has been shown to have a higher efficacy when com‐
pared to TALENs and ZFNs for gene knock-out studies [21]. It is also comparable to TALENs
for HDR-mediated gene-editing of PSCs [22]. Importantly, for precise editing of point muta‐
tions (both deletions and insertions), dependence on HDR is required and use of an exogenous
DNA template is needed such as single-stranded oligodeoxynucleotides or plasmid DNA
templates [9]. An advantage of both TALENs and CRISPRs is that they do not leave a trace in
the DNA, following the genome-editing process. Despite these advantages, there are some
drawbacks in the case of CRISPRs. Some constraints exist in the target design, due to require‐
ment for a PAM motif in the target site. Another potential disadvantage is the potential
increased off-target binding and cleavage compared to TALENs, due to its monomeric action,
shorter target sequences and greater chance of binding to identical target sites elsewhere in
the genome [9, 23]. Like ZFNs, nickases have been effectively used to prevent off-target binding
and cleavage [18].
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To date, despite a surge in literature in gene-editing technologies, only three reports have been
published that have led to the correction of iPSCs from patients with neurodegenerative
diseases or alternately, insertion of disease-causing mutations into healthy PSCs. Two of these
have been in the field of PD, and one in the field of FTD and all cases used ZFNs [24, 25] (Figure
1). In the case of PD, insertion of point mutations, A53T and G188A located in the gene, α-
synuclein (SNCA), which leads to familial onset of PD, was successfully achieved in ESCs [24].
In the same study, repair of the A53T and point mutation in SCNA mutation was also suc‐
cessfully performed in patient-specific iPSCs. Genome-wide analyses did not reveal any off-
target effects following the ZFN targeting in all engineered lines. A follow-up study of the
repaired A53T iPSCs showed that defects in dopaminergic neurons and mitochondrial
dysfunction originally observed in the patient-iPSC lines could be reversed in the corrected
iPSCs [26]. This mitochondrial dysfunction, which led to apoptotic death, was induced by
nitrosative stress and could be directly linked with impaired functioning of the MEF2C-
PGC1α pathway. This research was therefore unable to uncover a novel pathway, which could
be used for the development of new drugs. Another study was able to correct the G2019S
LRRK2 mutation in PD patient-specific iPSCs and rescued phenotypic and genotypic dys‐
function [27]. This study was also able to find a new molecular pathway responsible for the
phenotypes found in-vitro. In this case, ERK signaling was dysfunctioning and could be
repaired through correction of the mutation. In the field of FTD, one recent study revealed that
iPSCs derived from patients carrying a familial inherited mutation in the progranulin gene
(GRN) were unable to form cortical neurons in-vitro. However, this phenotype could be
restored when the mutation was corrected using ZFNs [28]. This helped to verify that the
phenotype, which had not been described before, was directly related to the mutation and
disease and not due to other unrelated, technical or cell culture factors.

Together, these studies show that gene-editing is a particularly helpful tool for modelling
diseases with iPSCs, as well as for helping to determine new molecular pathways involved in
the disease by repair of the mutation and assessment for amelioration of the phenotype. It is
likely that an increase in similar studies will soon emerge for PD and FTD as well as other
neurodegenerative diseases, such as AD in the near future.

3. Current approaches to developing neural cells in a dish

Investigations on iPSC-derived neural cells can be performed either in two-dimensional (2D)
models or three-dimensional (3D) models. Traditional stem cell research has been performed
in 2D, predominantly by culturing cells that adhere to a plastic surface, and which form a
flattened monolayer across the plastic surface. The advantage of this technique is that it is low
cost and an easy system to use. Stem cells, however, can alternately be cultured in 3D. One
popular 3D method is to culture cells in small spheres in suspension within the media, termed
either ‘embryoid bodies’, or to differentiate them into neural progenitor cells that also cluster
together in small spheres, termed ‘neurospheres’. These can be further differentiated into more
mature neural cell types, which are often termed ‘engineered neural tissue’ or ‘organoid’
cultures. The cells can be cultured as described in aggregates, but can also be cultured in either
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the presence of microcarriers, on alginate microencapsulates, in thermoreversible hydrogel or
in scaffolds [29]. It is accepted today that neural stem cells (NSCs) isolated from primary tissue
from foetal tissue or brain differ to neurospheres differentiated from EBs, as the former spheres
tend to contain radial glial-like stem cells that are unable to form complex neural tissues such
as the layered cortical neuroepithelium and complex pattern formations [30]. In contrast, the
stem cell-derived neurospheres can be instructed to form specific neural regions of the
developing brain when exposed to potent mitogens/morphogens [30]. Alternately, neural cells
can also be cultured within artificially produced 3D scaffolds or in microwells formed within
the plastic substrate that help to re-create a microenvironmental cue for the cells to form in 3D
clusters. In fact, 3D cultures originated in the NSC field in the early 1990s when the first
suspension cultures of rodent brain NSCs was performed [31], and have become a standar‐
dized way of culturing NSCs in-vitro in labs across the world. Today, there are several types
of 3D scaffolds available, including metal, synthetic organic types made from polymers,
synthetic inorganic materials, natural organic materials, natural inorganic material types and
even nanostructure scaffolds [29]. All of these have their advantages. For example, microcarrier
systems allow for good diffusion properties and induce cells of high quality. Also, encapsu‐
lated cells in gels allow them to be protected from shear force-induced cell death, and ther‐
moreversible hydrogel allows for rapid expansion of cells [29].

Comparative studies of 2D versus 3D cultures suggest that 3D culturing may improve the
quality of the cell expression profile of the cultured cells as cells are influenced by the bio‐
chemical, mechanical and physical surface properties of the surrounding matrix in which they
normally reside [32]. One such comparative study showed neural-derived ESCs expressed
more neural markers and greater neurite outgrowth when cultured in a 3D scaffold than the
equivalent neural cells cultured in 2D [33]. Furthermore, timing in differentiation appears to
differ between 2D versus 3D cultures. In fact, stem cells appear to differentiate earlier in 2D
culture when compared to culture in extracellular matrix gel or as spheres, shown by the earlier
upregulation of differentiation markers [34]. Whether this is abnormal or not has not yet been
determined. Cell size and proliferation can also be altered by culture in 3D. One study has
illustrated human ESCs cultured in 3D within microwells were smaller in size and divided
more slowly compared to equivalent cells grown in 2D [35].

There has also been a recent surge in developing 3D models that better recapitulate the 3D
complexity of the tissue in the body and which contain several cell types. The recent discovery
that a human foetal-like brain could be recapitulated in the dish after culture of neural stem
cells for several weeks was a remarkable discovery. This tissue was termed as a ‘cerebral
organoid’ and was formed by embedding neural aggregates into Matrigel® droplets and
culturing these in a bioreactor for 75 days [36]. The tissue contained both early-born and late-
born cortical neurons, suggesting more complex cortical neural development could be
recapitulated in-vitro. It also contained interneurons, suggesting a mix of different progenitor
origins were present in the tissue. Other researchers have also produced complex neural tissue
with cortical layer patterning in 3D neural cultures, which depict both proliferative cell
populations and post-mitotic cortical cell types; however, the complex stratification of the
cortical layers has not yet been replicable [30]. The addition of extracellular matrix molecules
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to both the substrate of 2D and within 3D culture systems may also be particularly advanta‐
geous for the growth and cellular expression of neural cell types, as shown by Lancaster and
colleagues where neural aggregates were cultured in Matrigel® droplets [36].

There appears to be improvement in the cellular expression and cell function when cultured
in 3D, as well as other physical and changes in size and growth. However, some drawbacks
in using 3D scaffolds are the difficulties of performing molecular analyses on the tissue, which
are related to problems in extracting the cells from the scaffolds or light refraction that emanate
from the scaffold structures and which interfere with fluorescence microscopy. In addition,
there are also seeding issues related to the complexity of some scaffold structures. Furthermore,
3D culturing is more labour-intensive and can also be difficult to scale up. Bioreactors help, in
part, to solve this issue when cells are grown in spheres or small scaffolds and they also help
through their spinning properties to distribute medium evenly throughout the culture. Use of
bioreactors, however, requires extensive volumes of media, which can be costly when large
volumes of cytokines or growth factors are required in the culture medium.

Despite the given advantages in use of 3D culture over 2D, disease modelling studies for AD,
PD and FTD using PSCs have been performed using 2D cultures. One interesting research
article relevant for AD demonstrates the advantages of producing 3D cultures. Choi and
colleagues showed that transgenic human NSCs overexpressing either APP or PSEN1 could
be differentiated into 3D tissue, which contained the classical hallmarks of the disease,
including amyloid plaques and aggregates of phosphorylated tau (p-tau) [37]. These hallmark
pathologies have not yet been demonstrated in iPSC models of AD. What seems apparent is
that 3D modelling may recapitulate the in-vivo environment better. Use of more complex
models might be better for modulating and studying the brain and the disadvantages of 3D
modelling described are outweighed by the advantages.

4. Modelling Alzheimer’s disease using pluripotent stem cells

Alzheimer’s disease is the most prevalent type of dementia, which in most cases (approxi‐
mately 90%) arises in patients with no known genetic link. However, some risk factor genes
(e.g. presence of the allele ε4 of apolipoprotein E4 (APOE ε4) appear to play a role in more than
half of these cases [38]. See section under “Sporadic cases with mutations in APOE”, for more
details. The disease induces loss of memory and impairs cognitive function, but is also known
to induce loss in olfaction, hearing and even some motor function [39]. Depression, agitation,
apathy, social withdrawal, insomnia, delusion and emotional/physical outbursts are all typical
symptoms associated with AD. Ultimately, the disease culminates in loss of respiration
function, leading to death. The disease is induced by protein aggregation and has two distinct
histopathological signatures, which lead to neural degeneration of the tissue. The first includes
the development of extracellular amyloid plaques, which are clusters of overproduced toxic
forms of amyloid-beta (Aβ) peptides, deposited outside of the cell. The common theory
accepted today is that these plaques develop first, prior to the development of the second
signature, the intracellular neurofibrillary tangles (NFTs), which are composed of a predom‐
inant protein, tau in a hyperphosphorylated state. The disease spreads throughout the patient’s
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brain and is present pathologically years before the first symptoms appear. It arises first in the
periallococortical transentorhinal region of the temporal mesocortex before spreading to the
entorhinal cortex and then the hippocampus before later spreading to many regions of the
brain, including the temporal neocortex, the insular cortex, the medial temporal gyrus and
superior temporal gyru and then the occipital lobe [40]. Since many parts of the brain are
affected, modulating the disease in a dish is a difficult task. In addition, the likelihood of the
success of stem cell therapy is very low considering the widespread nature of the pathology.
Instead, there is more interest in understanding AD pathogenesis and for developing new and
more effective therapies by using PSCs [41]. Most researchers model the cortical tissue, which
is affected later on in the disease; however, NSCs derived from PSCs have also been studied.
These progenitor cells are attractive as they might reveal early mechanisms of the disease.

4.1. Sporadic AD with no known genetic mutations

The main pathology of sporadic AD is typical for the disease with the accumulation of toxic
forms of Aβ peptides and tau protein. However, other proteins are also known to accumulate,
including SNCA, TDP-43 and ACTIN which form Lewy-like bodies and Hirano bodies [42]. In
sporadic AD, the symptoms occur later than in the familial forms [42]. However, the com‐
plexity and heterogeneity of both symptoms and pathology are widespread in sporadic AD,
which may be due to multiple unknown risk factors, mutations in varying genes which have
not yet described, but potentially also the diverse effects of environmental factors and potential
interaction with genes [42]. To date, three studies have been performed to modulate sporadic
AD using patient-specific iPSCs. From these studies, no clear pathology for altered processing
APP was observed. The patient iPSC-derived neurons did not reveal a change in the levels of
either Aβ40 or Aβ42 [43, 44]. Tau pathology was reported only from one of the studies, with
increased p-tau and enlarged endosomes observed in neurons, but only in one of the analysed
patient’s cell lines [43]. Other pathology, however, was reported. One study found altered
WNT signalling and glutamate metabolism in mixed cell cultures from one patient, as well as,
gene expression changes related to proteosome function, reactive oxygen species (ROS) and
cell death [45]. Another study found elevated oxidative stress-related gene expression and also
elevated ROS in the iPSC-derived cortical neurons [44]. Interestingly, this study that conse‐
quently found no altered expression in Aβ expression in the neurons found elevated Aβ in
iPSC-derived astrocytes.

4.2. Sporadic cases with mutations in APOE

The polymorphism of the APOE gene is a risk factor for the disease and presence of the ε4
allelle (APOE4) has been linked with AD [42]. One copy of this allele increases the risk of AD
twofold, whereas two copies increases the risk of AD by 12-fold [46]. The ε4 allele has been
shown to be less efficient in transporting cholesterol from neurons [42]. One iPSC study
performed on patients with a APOε3/ε4 genotype found elevated Aβ42 in neurons derived
from two of the three patients studied. Two of the patients also showed increased cell stress
following glutamate-induced excitation [46]. No investigation of cholesterol transport was
performed, which could have been useful to confirm this specific phenotype related to APOE
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dysfunction. There are also no iPSC studies to date performed on patients with the Apoε4/ε4
genotype.

5. Familial AD

Pathology common to all familial mutations includes an earlier onset of the disease and
increased amyloid plaque formation when compared to sporadic AD in many, but not all cases
[47]. Plaques tend to predominantly contain Aβ42 with often no increase in Aβ40 observed,
contrasting that seen in sporadic AD [47]. A summary of the PSC-derived neural cell pathology
and comparative pathology known in familial AD patients is summarized in Table 1.

Gene Mutation Pathology in Patients Study Pathology in PSCs Study

PSEN1 A246E
(ex7)

Unknown Increased
Aβ42:Aβ40
No increase in
Aβ42

Yagi et al., 2011; Liu
et al., 2014;
Mahairaki et al.,
2014
Duan et al., 2014

D385N Unknown Decreased Aβ40 Koch et al., 2012

L166P
(ex6)

Amyloid plaques
Cotton wool plaques

Moehlmann
et al., 2002

Decreased Aβ40 Koch et al., 2012

H163R
(ex6)

Increased
Aβ42
Lewy bodies
Atrophy of substantia nigra and
cerebral cortex
Cotton wool plaques
Corticospinal degeneration
SNCA deposits
Neurofibrillary tangles
Amyloid plaques

Ishikawa et al.,
2005,84

Increased
Aβ42:Aβ40

Liu et al., 2014

M146L
(ex5)

Amyloid plaques
Pick bodies

Halliday et al.,
2005

Increased
Aβ42:Aβ40

Liu et al., 2014

PSEN2 N141I Increased
Aβ42:Aβ40
SNCAdeposits
Amyloid Plaques
Neurofibrillary tangles
Some cases with Lewy body
pathology in frontal cortex and
amydala

Levy-Lahad et al.,
1995; Rogaev
et al., 1995
Jayadev et al., 2010

Increased Aβ42:Aβ40 Yagi et al., 2011
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Gene Mutation Pathology in Patients Study Pathology in PSCs Study

APP duplication Intercerebral haemorrhage,
Diffuse brain atrophy
Cerebral ventricular dilation,
Intraneural Aβ40
Cerebellar purkinje cell atrophy
Amyloid plaques

Cabrejo et al.,
2006

Increased
Aβ40
Increased p-tau
(Thr231)

Israel et al., 2012
Israel et al., 2012

E693Δ Early stages—limited brain
atrophy and little
accumulation of Aβ.
Cerebellar ataxia
Aβ oligomers
No plaques

Shimada et al.,
2011

Decreased Aβ40 and
Aβ42
Elevated Aβ
oligomers
Oxidative stress

Kondo et al., 2013

V717L Unknown Increased
Aβ42:Aβ40
Oxidative stress

Kondo et al., 2013

V717I Tau pathology
Neurofibrillary tangles
Plaque neurites
Neuropil threads
Cortical and subcortical
Lewy bodies

Lantos et al., 1992 Increased Aβ42:Aβ40
Increased Aβ38
Increased total tau
Increased p-tau (S262)

Muratore et al., 2014

Abbreviations: Aβ - amyloid beta; ex - exon; p-tau - phosphorylated tau; SNCA – alpha synuclein gene

Table 1. Pathology in patients with familial Alzheimer’s disease patients and respective pluripotent stem cell (PSC)
studies.

5.1. PSEN1 mutations

Over 170 mutations in PSEN1 have been described, making this the most common cause of
autosomal dominant early onset AD [48, 49]. Patients with mutations in the PSEN1 locus have
the earliest age of onset (AOO). These patients often have seizures, myoclonus, paraparesis
and cerebeller signs [50]. For all PSEN1 cases, classic hallmark pathologies are observed,
including amyloid plaques, NFTs, tissue atrophy, neuronal loss and inflammation [47].
However, pathological differences do exist depending on the gene affected, and even depend‐
ing on the location of the mutation within the gene. For example, Lewy bodies and other
parkinsonian pathologies have been described in PSEN1 H163R carriers, and pick bodies have
been described in M146L carriers (see Table 1). Pathological mechanisms common to both
PSEN1 and PSEN2 are altered Aβ peptide metabolism induced by disrupted γ-secretase
cleavage, which results in increased Aβ42 production. In some PSEN1 mutations, severe
neurodegeneration has been described without any Aβ pathology, which contradicts the
hypothesis that amyloid pathology arises prior to tau pathology. Other pathological differen‐
ces described include some plaques containing predominantly Aβ40. These Aβ40 plaques have
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been observed in the cortex of some PSEN1 mutation patients [47]. Studies have also high‐
lighted that soluble and insoluble levels of Aβ42 is higher in familial AD brain tissue compared
to sporadic AD [47]. It is thus apparent that given the diversities in the patient’s pathology, a
similar diversity in iPSC-derived neurons might also be evident.

The majority of iPSC lines modelling AD have in fact been produced from patients carrying
mutations in PSEN1. These studies have revealed that most of the neurons generated from
PSEN1 AD patients also have increased Aβ42 [51–54], although decreases in Aβ40 have also
been described in two particular mutations [55]. However, little other pathology has been
described. In one study, no tau accumulation or tangle formation was observed [51]. One other
study has reported small changes in gene function in PSEN1 mutant iPSC-derived neurons,
including increased NLRP2, ASB9 and NDP [53]. In addition, overexpression of PSEN1 in
human ESCs led to increased Aβ42/Aβ40 and Aβ43/Aβ40 ratios as well as synaptic dysfunction
in neurons expressing NeuN and BIII-tubulin [56].

5.2. PSEN2 mutations

There are 23 known DNA variants reported in the PSEN2 gene. Patients with mutations in
PSEN2 have a delayed AOO, suffer from disorientation and endure a long duration of the
disease [50]. Pathologically, similar to PSEN1, mutations affect Aβ peptide metabolism by γ-
secretase cleavage which results in Aβ42 production.

To date, only one study has investigated the pathology from neurons derived from a patient
carrying the N141I mutation in PSEN2. This study reported increased Abβ2:Aβ40, but no tau
accumulation or NFT formation [51]. Interestingly, some patients with this mutation do also
have Lewy body pathology and SNCA deposition within neurons [49]. Clearly, more research
is required to investigate Aβ metabolism, γ-secretase function and whether neural atrophy,
inflammation, tau, NFT and even parkinsonism pathology can be observed in-vitro from
patient cells carrying this mutation.

5.3. APP mutations

Patients with APP mutations frequently are more aggressive and those with an APP duplica‐
tion frequently have apraxia [50], cerebellar dysfunction and some cases have cerebral
haemorrhaging [57]. Different APP mutations induce neural death by different mechanisms.
For example, some mutations induce an increased production of AICD and other C-terminal
APP fragments directly regulate apoptosis [47]. Other mutations affect intracellular mecha‐
nisms which increase oxidative stress and death [47]. Studies have also highlighted that soluble
and insoluble levels of Aβ42 are reportedly also higher in APP mutation cases compared to
sporadic AD cases.

Three studies have investigated the pathology in neurons derived from patients carrying
mutations in APP. These studies have conflicting results in relation to APP processing, likely
related to diverse pathology dependent on the mutation. One study found elevated Aβ40 [43],
another study found one patient had increased Aβ42 whilst a second patient had decreased
Aβ40 [44], and a third study revealed a patient with both increased Aβ42 and Aβ38 [58]. Two

Pluripotent Stem Cells - From the Bench to the Clinic284



of these studies showed good correlation with known patient pathology, whilst the study
reporting increased Aβ42:Aβ40 levels cannot be validated to the patient pathology since this
mutation has not been well characterized. One study also reported an increase in Aβ oligomers
in the analysed neural cells and astrocytes [44], which again correlates well with the patient’s
phenotype [59]. Increased p-tau has been observed in patients from two different studies [43,
58] and total tau has also been reported [58]. Increased αGSK-3β has also been reported [43].
No studies have looked at AICD function; however, oxidative stress has been partially
investigated in one study, which revealed elevated ROS and oxidative stress-related genes in
the cortical neurons and also elevated ROS in astrocytes [44]. No pathology related to cerebellar
dysfunction or parkinsonism-related pathology described in some of these mutations has been
reported.

6. Other models of AD

6.1. Trisomy 21

Trisomy 21 (also known as Down’s syndrome) results in the duplication of the APP gene,
which is located on chromosome 21. People with this syndrome develop symptoms and
pathology early in life, which are strikingly similar to AD [60]. The extra copy of APP is

Figure 2. A summary of pathology observed in published induced pluripotent stem cell (iPSC) models of Alzheimer’s
disease (AD) and pathology found in AD patients but currently lacking in the iPSC models.
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considered the major factor in the AD-like symptoms and, in addition, duplication of Dyrk1A
kinase (which is also located on chromosome 21), which phosphorylates tau, may also
contribute to the pathology and symptoms [60]. Increased Aβ peptides can be observed in
early childhood which are the main candidate thought to induce the early onset of dementia
[60]. Since duplications of APP are observed in AD patients, trisomy 21 has also been used to
model AD in many studies. One study has produced iPSCs from patients with trisomy 21 and
neurons derived from the iPSCs showed perturbed Aβ processing, including increased Aβ40
and Aβ42 in long-term cultured neurons, as well as Aβ42 intracellular and extracellular
aggregates [60]. Furthermore, this study also reported increased p-tau and total tau, as well as
increased cell death [60]. This is the only study to date which reports cell death in an iPSC
model of AD, which suggests this may be a relevant and worthy model of APP duplication
and study of AD-like dementia.

To conclude, iPSCs from AD models tend to show early features of the disease in the dish,
rather than distinct histopathological hallmarks (Figure 2). The most common observations
include altered expression levels of Aβ and increased levels of tau. It might be that the main
pathological hallmarks only develop after many years of protein aggregation and build-up in
the cell.

7. Modelling frontotemporal dementia using pluripotent stem cells

Frontotemporal dementia accounts for a large proportion (50% of dementia cases that arise
before the age of 60, and is the second most common early-onset dementia). This disease is
characterized by the progressive loss and degeneration of the cortical neuron population, in
the frontal and temporal lobes of the brain. Common symptoms include altered behaviour and
deterioration in both speech and cognition [61, 62]. This disease has a much stronger genetic
link than AD and PD. Approximately 40% of the cases are attributed to mutations in one of
three genes, including microtubule-associated protein tau (MAPT), progranulin (GRN) and
C9ORF72 [28]. However, many other genes carrying mutations have also been linked to the
disease, including, valosin-containing protein (VCP), charged multivesicular body protein 2B
(CHMP2B), ubiquilin 2, transactive response DNA-binding protein (TDP-43), dynactin
(DCTN1) and fused in sarcoma (FUS) [63]. The large genetic diversity is reflected by diverse
symptoms and pathology amongst the patients that differ from the common symptoms. Hence,
the disease is stratified into a behavioural variant of FTD (bvFTD), two language variants
(semantic dementia and progressive nonfluent aphasia (PNFA)) and an overlap of these with
atypical parkinsonian disorders corticobasal syndrome (CBS) and progressive supranuclear
palsy (PSP) [63]. In addition, in some cases of FTD, shared pathological features with motor
neuron disease (MND)/amyotrophic lateral sclerosis (ALS) are observed, including the
accumulation of proteins TDP-43 and FUS [63]. Thus, another variant (FTD-MND/ALS) is
described and is due to mutations in VCP and CHMP2B, C9ORF72 and UBQLN2, which can
lead to the development of either FTD or ALS [64]. A summary of the familial FTD studies
modelled using PSCs and respective known pathology from the patients is shown in Table 2.
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Gene Mutation Pathology in Patients Study Pathology in PSCs Study

C90RF72RF72 expansion
repeat

Brain atrophy
Hippocampal sclerosis
TDP-43 accumulation
Argyrophilic grain disease in
limbic areas and orbital frontal
cortex
Tau pathology
Neurofibrillary tangles
Atrophy also in substantia nigra,
brain stem and spinal cord
Lewy bodies
RNA foci

Shinagawa et
al., 2014
DeJesus-
Hernandez et
al., 2011

Cellular stress
RNA foci
Glutamate
excitotoxicity

Almeida et al.,
2013
Almeida et al.,
2013; Donnelly
et al., 2013
Donnelly et al.,
2013

MAPTT ex10 N279K
FTDP-17-1

Hyperphosphorylated tau in DA
neurons and glia and in brain
stem and temporal cortex
Neurofibrillary tangles
Increased 4R tau isoform

Ehrlich et al.,
2015; Wren et
al., 2015

Increased expression
of 4R tau isoform,
increased tau
fragmentation
Neurite shortening
Oxidative stress
Cellular stress
Enlarged vesicles
Early maturation
Altered axonal
mitochondrial
transport

Ehrlich et al.,
2015: Iovino et
al., 2015
Ehrlich et al.,
2015
Wren et al., 2015
Iovino et al.,
2015

Ex12 V337M
FTDP-17-2

Frontotemporal atrophy
Moderate parietal cortical
atrophy
Hippocampal atrophy
Astrogliosis
Atrophy of substantia nigra
Tau pathology

Domoto-Reilly
et al., 2016

Increased tau
fragmentation
Neurite shortening
Oxidative stress

Ehrlich et al.,
2015

P301L Frontotemporal atrophy
Astrogliosis
Atrophy of substantia nigra
Tau pathology
Pick bodies

Spillantini et
al., 1998

Early maturation
Altered axonal
mitochondrial
transport
SNCA deposition
4R tau

Iovino et al.,
2015

GRN IVS1+5G>C Frontotemporal atrophy
Caudate nucleus atrophy
Substantia nigra atrophy
Gliosis

Brouwers
et al., 2007

Impaired
corticogenesis
Impaired WNT
signalling

Raitano et al.,
2015
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Gene Mutation Pathology in Patients Study Pathology in PSCs Study

Ubiquitin inclusions containing
TDP-43
Lewy bodies
Amyloid plaques

S116X Unknown Cellular stress Almeida et al.,
2012

TARDBP A90V Unknown Staurosporine-
induced cellular
stress

Zhang et al.,
2013

M337V TDP-43 accumulation Tamaoka
et al., 2010

Decreased survival Bilican et al.,
2012

Abbreviations: SNCA – alpha synuclein gene; TDP-43 – TAR DNA-binding protein 43 gene

Table 2. Pathology in familial frontotemporal dementia patients and respective pluripotent stem cell (PSC) studies.

7.1. Sporadic FTD

Sporadic FTD has been modulated in-vitro by two independent studies to date [65, 66]. Brain
atrophy is greater in the anterior cingulate compared to familial FTD cases [67]. In one study,
no characterization of the phenotype was performed. Another study also characterized patient
iPSCs from a sporadic case of FTD and the cultured neurons showed greater cellular stress
and oxidative stress compared to control cells [66]. Whether all cases of sporadic FTD are in
fact undiscovered genetic mutations is a distinct possibility, since there have been many recent
discoveries of gene mutations lying behind the disease [68].

7.2. C90RF72 mutations

A GGGGCC repeat expansion in the noncoding region of C9ORF72 is a common mutation for
both FTD and ALS, representing approximately 40% of FTD cases and familial ALS [69]. This
mutation leads to specific pathology including non-ATG-initiated translation of RAN peptides
[69] and formation of nuclear RNA foci which lead to bvFTD with diverse phenotypes, even
within the same family [68]. The AOO appears to be earlier in carriers of this mutation and
have higher prevalence of delusional psychotic symptoms and hallucinations [70].

Two studies have produced patient-specific iPSCs from patients carrying this mutation.
Characterization of the neurons derived from the iPSCs revealed they were more susceptible
to cellular stress compared to control neurons [64]. In addition, RNA foci were observed in the
in-vitro produced neurons [69], but there is controversial evidence that suggests patient
neurons have these [64]. Both studies also showed cytoplasmic expression of RAN. Of interest
was one other study that used patient-specific iPSCs to discover potential binding partners,
e.g. ADARB2 to the expanded repeat region in an attempt to discover more about the mech‐
anisms that lead to disease onset with this mutation [69] and to find out more about the gene’s
actual function.
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7.3. MAPT mutations

Mutations in MAPT account for approximately half of the familial cases of FTD and tend to
present symptoms typical of FTD, but may also include Parkinson’s disease-like symptoms;
therefore, these patients are termed frontotemporal dementia with parkinsonism related to
chromosome 17 tau (FTDP-17T). There are at least 50 family kindreds carrying mutations in
this gene, which includes nine missense mutations, one deletion mutation, two transition
mutations within exons 9, 10, 12 and 13 and five intronic mutations leading to alternate splicing
of exon 10 [71]. The missense mutations give rise to pathology very similar to AD and include
the formation of NFTs, whereas those that lead to alternatively spliced exon 10 show progres‐
sive PSP, corticobasal degeneration and Pick’s disease [71]. The N279K substitution is an
intronic mutation and one of the most common types of FTDP-17T mutations, along with the
mutation P301L [72]. The N279K mutation leads to overproduction of tau protein isoforms
containing four tandem microtubule-binding domain repeats (4R-tau) which induces disease
pathogenesis, including accumulation of neurotoxic tau aggregates and NFTs in both neurons
and glia [73]. In addition, MAPT mutations (in particular the N279K mutation) are also
associated with degeneration of the basal ganglia and depigmentation of the substantia nigra
[71].

Two eloquent studies have generated iPSCs from patients carrying the N279K mutation and
compared the in-vitro pathology directly to pathology in the deceased patient brain. Here, the
cultured neurons had increased expression of the 4R tau isoform and fragmentation of tau [74],
which helped to confirm the phenotype; however, neurite shortening, oxidative stress [74],
cellular stress and enlarged vesicles [72] were also observed in the cultured neurons. The NFTs,
however, were not able to be recapitulated in-vitro. Another study reported similar pathology
in iPSC-derived neurons also carrying the N279K mutation [75]. In addition, this same study
also compared the N279K iPSCs to iPSCs carrying the MAPT mutation P301L and found that
they shared some cellular phenotypes and differed in others [75]. Specifically, neurons from
both mutation backgrounds matured earlier compared to controls and had altered axonal
mitochondrial transport, whereas the P301L iPSCs showed SNCA and 4R tau deposition in
varicosity-like structures in the neurons.

7.4. GRN mutations

Patients carrying mutations in GRN tend to display Parkinson-like symptoms. Haploinsuffi‐
ciency of GRN induces the disease and typically does not present with tau pathology, but
instead, patients have cytoplasmic ubiquitin inclusions and intranuclear inclusions, compris‐
ing of TDP-43 both in neurons and in microglia [76]. They are often characterized as fronto‐
temporal lobar degeneration (FTLD-TDP) and generally increased expression of GRN is
associated with pathogenesis. However, patients tend to have varying expression of GRN in
the brain at late stages of disease [77]. In another study, neurons were characterized from a
patient carrying a novel nonsense mutation in GRN (S116X) [66]. The patient had Parkinson-
like symptoms. The neurons were found to be more susceptible to cellular stress and oxidative
stress compared to control neurons, which could be reversed upon induced expression of GRN
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 [66]. A follow-up study on the same neurons used these neurons to test different approaches
of rescuing GRN expression as a way of finding new tools to treat the disease [78].

7.5. TARDBP mutations

Mutations in the TARDBP gene tend to result in aggregation and mislocalization of its protein
TDP-43 to the cytoplasm [79] and many cases can be characterized as semantic dementia [80].
One study has produced patient-specific iPSCs carrying a M337V TARDBP mutation, and
found during long-term culture that these cells had decreased cell survival [81]. A later study
on these same cell lines found that application of two different autophagy-inducing molecules
(which help to clear the accumulating TDP-43) could help to increase cell survival in these
patient iPSCs [82]. Another study produced iPSCs from patients carrying the A90V mutation,
and here cellular stress could be detected in the cells following exposure to staurosporine [83].
No other pathology was reported.

Figure 3. A summary of pathology observed in published induced pluripotent stem cell (iPSC) models of frontotempo‐
ral dementia (FTD) and pathology found in FTD patients but currently lacking in the iPSC models.
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To date, only a fraction of the familial FTD mutations have been modelled using PSCs. Given
the expanse of different mutations that exist as well as the broad pathology from each of the
FTD variants, as well as within the variants themselves, it is important that the in-vitro studies
can be correlated to the known pathology in the patients. Many different phenotypes can be
observed in the dish, but the classical hallmarks appear to be missing in modelling the disease
using iPSC-derived cells (Figure 3). How this might be improved upon is discussed more at
the end of the chapter in the section under “Current limitations in modelling neurodegenera‐
tive disease using pluripotent stem cells”.

8. Modelling Parkinson’s disease using pluripotent stem cells

Parkinson’s disease is the second most common neurodegenerative disease, which is both
sporadic and monogenic in form. The inherited monogenic form accounts for the minority of
cases with approximately 5–10% of presented cases. The genetic contribution to Parkinson’s
disease has been firmly characterized in the past few years to be directly induced by over 15
mutations in PARK loci, which are located within six genes: SNCA, LRRK2, PARK2, PINK1,
PARK7 and ATP13A2. Furthermore, several genetic risk factors are linked to the onset of the
disease [84]. Dependent on the gene affected, the disease may initiate in juveniles, early in
adult life or in late adult life. Some of these genes are autosomal dominant (SNCA and
LRRK2), whilst the others are autosomal recessive (PARK2, PINK1, PARK7 and ATP13A2).

The common idiopathic features of the disease are motor disturbances including resting
tremor, rigidity and bradykinesia, as well as non-motor symptoms such as cognitive impair‐
ment, autonomic dysregulation, sleep deterioration and neuropyschiatric symptoms [84].
These symptoms and disturbances arise due to the loss of nigrostriatal dopaminergic neurons
in the substantia nigra pars compacta and the development of Lewy bodies in surviving
neurons. This makes PD a particularly easy disease to modulate in a dish, as one predominant
neuron type is affected. Despite this, there still lacks perfect differentiation protocols that result
in the A9 type dopaminergic neuron in high proportion. Given the simplicity in the tissue
affected by the disease, it has been considered that PSC-derived nigrostriatal dopaminergic
neurons from healthy donors or genetically corrected iPSCs could be used for transplantation
either into the striatum where they migrate to or in the substantia nigra where the cell bodies
lie. In this case, many studies have attempted to improve the production and numbers of
nigrostriatal dopaminergic neurons from PSCs [85]. A summary of the PSC studies that model
familial PD in a dish are shown in Table 3 along with known pathology in the patients.

Gene Mutation Pathology in

Patients

Study Pathology in PSCs Study

SNCAA A53T (G209A) Lewy body

pathology

Golbe et al., 1990 Oxidative stress

Mitochondrial

dysfunction

Ryan et al., 2013
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Gene Mutation Pathology in

Patients

Study Pathology in PSCs Study

Cell death

A53T (G188A) Soldner et al., 2011

Triplication Lewy body

pathology,

hippocampal

neuronal loss,

temporal lobe

vacuolation

Farrer et al., 2004;

Muenter et al.,

1998

Increased α-syn

Oxidative stress

Devine et al., 2011

Byers et al., 2011

Byers et al., 2011

LRRK2  G2019S Lewy bodies in

brain stem

Lewy body + AD

pathology

Transitional Lewy

body disease

SN neuronal loss,

tau pathology, +

AD pathology

SN neuronal loss

Lewy body

pathology

Giasson et al.,

2006; Ross et al.,

2006

Giasson et al

., 2006

Ross et al., 2006

Rajput et al., 2006

Gaig et al., 2007

Gilks et al., 2005

Oxidative stress

Altered ERK

signalling

Neurite shortening

Increased sensitivity

to toxins

Increased expression

of MAPT and p-tau

Mitochondrial DNA

damage

Increased autophagy

Dysregulated

epigenome

Nguyen et al., 2011

Reinhardt et al., 2013

Reinhardt et al., 2013;

Sanchez-Danes et al.,

2012

Reinhardt et al., 2013;

Cooper et al., 2012

Reinhardt et al., 2013

Sanders et al., 2014

Sanches-Danes et al.,

2012

Fernandez-Santiago

et al., 2015

R1441C

substitution

Not known Increased sensitivity

to toxins

Cooper et al., 2012

PARK2K2 del_40bp ex3/del

ex4+5

Not known Oxidative stress Aboud et al., 2012

del_40bp ex3 Lewy body

pathology

Farrer et al., 2001

del_ex7 Lewy body

pathology

Pramstaller et al.,

2005

del ex4 SN neuronal loss, no

Lewy bodies

Mori et al., 1998

Hayashi et al.,

2000
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Gene Mutation Pathology in

Patients

Study Pathology in PSCs Study

del ex5 Only clinical features

known

Proteosome

dysfunction

Oxidative stress

Increased SNCA

Chang et al., 2016

PINK1 del_ex7/c.1488+1

G>A

Lewy body

pathology

Samaranch et al.

2010

c.1366C>T;p.Q456X Only clinical

features known

Hedrich, et al.,

2006

Oxidative stress Seibler et al.,2011

c.509T>G;pV170G

Q456X homozygote Increased sensitivity

to toxins

Oxidative stress

Cooper et al., 2012

D525N/W577R

compound

Cooper et al., 2012

Abbreviations: AD – Alzheimer’s disease; del – deletion; ex – exon; p-tau – phosphorylated tau; SNCA – alpha
synuclein gene; SN – substantia nigra

Table 3. Pathology in familial Parkinson’s disease patients and respective pluripotent stem cell (PSC) studies.

8.1. Sporadic PD

One study that produced iPSC lines from seven patients with idiopathic PD revealed that
dopaminergic neurons produced in-vitro had reduced numbers of neurites, neurite arbouri‐
sation and increased autophagy [86]. Another study observed methylation alterations in
sporadic PD iPSC-derived dopaminergic neurons [87], which was the first to describe epige‐
netic dysregulation in the disease.

8.2. SNCA mutations

There are at least five mutations characterized within SNCA, which induce PD which also
include either duplication or triplication of the gene. Mutations in SNCA lead to an early-onset
parkinsonism with or without the development of dementia. The pathology generally contains
the presence of Lewy bodies, and tau pathology has also been observed some of the mutations.

Induced PSC lines have been derived from PD patients carrying either a triplication of SNCA
[88–90] or a mutation in A53T [24]. In two articles, triplication of SCNA led to increased
production of SNCA [88, 89]. Oxidative stress has also been reported in iPSC-derived neurons
containing triplication of SCNA [89] and A53T mutations [26]. This has been shown to
contribute to mitochondrial dysfunction and apoptotic cell death [26].

Modelling Neurodegenerative Diseases Using Human Pluripotent Stem Cells
http://dx.doi.org/10.5772/63521

293



8.3. LRRK2 mutations

There have been five identified mutations in the LRRK2 gene and many of these have either
brainstem-predominant Lewy body pathology, diffuse Lewy body disease or no Lewy body
pathology. Three research groups have produced iPSCs from patients carrying two of the
known mutations. One study found increased oxidative stress gene expression and increased
production of SNCA protein [91]. One research group was able to uncover altered cell
signalling of several genes, some of which were involved in ERK signalling; and repression of
ERK signalling could reverse certain pathology in neurons including prevention of neurode‐
generation, more cell robustness when treated with oxidative stress and a reversal in the
shortening of neurites. Genetically corrected iPSCs also revealed a reversal in neurite short‐
ening and sensitivity to neurotoxins that were observed in the patient iPSC-derived neurons
[27]. Furthermore, this same study also found increased expression of MAPT expression and
p-tau181. The LRRK2 lines have also been used to more closely evaluate mitochondrial function.
One study found increased mitochondrial DNA damage in neural cells from patients, which
was reversed when the mutation was genetically corrected [25]. Similar to sporadic PD iPSC-
derived dopaminergic neurons, it has been shown that epigenetic dysregulation also occurs
in LRRK2-associated PD patients [87]. Interestingly, the commonly described Lewy body
pathology has yet to be observed in the iPSC-derived neurons.

8.4. PARK2 mutations

Mutations in PARK2 lead to an early-onset parkinsonism. Seven different mutations have been
identified, and general pathology in most of the mutations does not include Lewy bodies. One
study has evaluated the effects of manganese exposure on neural progenitor cells derived from
PARK2 mutation PD iPSCs and discovered increased ROS generation upon exposure in the
patient cells compared to healthy controls [92]. Another study which evaluated iPSCs pro‐
duced from patients with a deleted exon 5 in PARK2 showed the iPSC-derived neurons had
proteasome dysfunction, oxidative stress and increased expression of SNCA [93].

8.5. PINK1 mutations

A mutation in PINK1 leads to early-onset parkinsonism. Here, Lewy body pathology has been
identified. Two studies have produced patient-specific iPSCs harbouring mutations in
PINK1. In one study, mitochondrial function was analysed and revealed increased mitochon‐
drial copy numbers and increased expression of PGC-1α in the patients’ in-vitro-produced
dopaminergic neurons [94]. Another research article found PINK1 mutation iPSCs were more
vulnerable to chemical toxins. Mitochondrial perturbation was also discovered, with a lower
basal oxygen consumption rate and an increased bidirectional motility of neurons in the
proximal axon of neurons [95].

Together, the literature reveals a vast array of disease modelling studies using PSCs to model
PD and a number of phenotypes have emerged in the dish although the classic hallmark, Lewy
bodies and neurodegeneration, remain absent in the in-vitro cultures (Figure 4). Oxidative
stress is a clear phenotype observed in many of the different studies and appears common for
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many of the mutations, but it is clear that the disease pathology is diverse and therefore the
pathology in the iPSC-derived cells would also expect to be diverse.

9. Current limitations in modelling neurodegenerative disease using
pluripotent stem cells

Modelling AD and FTD is definitely more challenging than modelling PD, since many different
cell types and regions within the brain are affected by these diseases compared to PD.

Figure 4. A summary of pathology observed in published induced pluripotent stem cell (iPSC) models of Parkinson’s
disease (PD) and pathology found in PD patients but currently lacking in the iPSC models.
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Therefore, these former diseases are considered less attractive for cell therapy compared to
PD. In fact, there is much discussion in the scientific community on the embarkment of clinical
trials for PD using human PSCs and it is therefore only a matter of time before these trials begin
to emerge. However, the majority of the studies to date have been performed to understand
more about the mechanisms of the disease and to find new targets that could be used for
discovering new and more effective medicines for braking the disease and for improving
symptoms and quality of the patient’s life.

One of the limitations observed to date in modelling the diseases is producing the right type
of cells that are affected by the disease following differentiation of the iPSCs. In the case of AD
and FTD, most studies have focused on evaluation of MAP2/TUJ1-positive neurons, cortical
neurons and neural progenitors, which are often derived in heterogenic cultures. Whether
these are the best cell types to examine in the dish is debatable. MAP2/TUJ1 expression is
relatively unspecific and can label a vast number of different neuron subtypes, so it might be
more important to use more specific antibodies to identify the specific neuron subtype that is
being analysed. Cortical neurons are also numerous and some research, but not all, has
identified the cortical subtype that has been produced in-vitro. In the case of AD, for example,
the superficial cortical neurons are affected earlier on in the disease and the deeper cortical
neurons are affected later [96]. Therefore, knowing which cortical neuron subtype is produced
in the dish will help to understand better the disease mechanisms and whether the pathology
being observed is related to early or late stages of the disease. Some researchers are pursuing
the development of more complex laminated cortical layer cultures in-vitro [97], which could
be a great source of tissue for performing further studies on. The study of neural progenitors
might be more relevant for looking at potential early mechanisms of the disease and to evaluate
regions of the brain where progenitors exist, as well as the effect of the disease on the cell cycle.
In the case of PD, protocols for the generation of dopaminergic neurons have been refined over
recent years allowing for relatively high proportions of the correct ventral-mesencephalon type
following differentiation [85]. However, it is easy to forget the other cell types that can be
affected in PD and the role they may also have in the disease. Therefore, the identity of the cell
types produced needs to be more carefully defined in studies to help reveal more details about
how the disease affects that particular cell type. More complex in-vitro models could also help
to mimic the in-vivo environment better, which might help to reveal more phenotypes
associated with the disease.

It is clear from the studies that the phenotypes, and in particular, the classic hallmark pathol‐
ogies, are not represented in-vitro. The reasons for this are not really clear, but may relate to
the fact that neural subtypes may be relatively young in the dish compared to the neural cells
found in the patients. The evidence so far reveals that the iPSC-derived cells can model early
changes related to the disease and therefore might prove useful for finding ways to reverse
the disease or slow it down in the early or pre-symptomatic stages. If we are to evaluate some
of the classic hallmarks, which are generally missing in culture (i.e. neurodegeneration,
amyloid plaques, NFTs and Lewy bodies), then it might be needed to accelerate the aging of
neurons in-vitro using artificial methods. One approach successfully used to age neurons in a
dish was demonstrated using iPSCs from PD patients [98]. Overexpression of progerin (a gene
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linked to a disease of accelerated aging, progeria) was performed, which resulted in a pro‐
nounced PD phenotype of the dopaminergic neurons. The neurons were able to show much
more pathology compared to non-aged neurons, including dendrite degeneration, loss of
tyrosine hydroxylase expression (a typical marker of dopaminergic neurons) and Lewy-body-
precursor inclusions within the neurons. This has not yet been applied to AD or FTD, but is
an intriguing tool that could help to elaborate more of the classic pathologies/phenotypes in
the dish.

10. Conclusions

To conclude, disease modelling of neurodegenerative diseases using PSCs has developed
dramatically over a short period of time (a space of about 5 years). Already new mechanisms
related to AD, FTD and PD have been discovered and these will likely lead to the development
and trial of new medicines for the disease. There are many reported phenotypes that have been
linked to the disease that can be reversed when familial mutations are genetically corrected
using gene-editing technology. However, not all phenotypes have been reported so far, which
may be linked to the cell types evaluated, the relatively simple systems used and also the
relatively young neural cell types analysed. New studies developing 3D cultures and more
complex tissue types may help move the field forward. In addition, new technologies that
accelerate aging in the dish are also likely to help overcome these limitations. Thus, iPSCs have
already been useful for uncovering some of the mysteries surrounding neurodegenerative
disease and the future will likely lead to uncovering more about the disease mechanisms and
how we can repair and treat the dysfunctioning cells before they are lost in the patient.
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