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Abstract

Grain legume consumption has been linked in meta-analysis studies to decreased risk
of metabolic syndrome, obesity, and cardiovascular diseases; however, the evidence for
a chemo-protective effect of grain legume consumption against colorectal tumorigenesis
has been considered inconclusive. We conducted a meta-analysis of human and animal
studies to evaluate the effect of grain legume consumption on colorectal cancer (CRC)
and its precursors. Twelve case-control studies (42,473 controls and 12,408 cases) and
11 prospective cohorts (1,533,527 participants including 12,274 cases) were included in
the meta-analysis; the pooled risk ratio (95% confidence interval) for the highest versus
the lowest legume intake group based on a random effects model was 0.72 (0.60–0.89)
for incident adenoma, 0.91 (0.84–0.99) for prevalent adenoma, and 0.82 (0.74–0.91) for
CRC. Fourteen animal studies (355 animals on grain legume diets and 253 animals on
control diets) were included in the meta-analysis and showed in all but one study a
chemo-preventive  effect  against  colorectal  tumorigenesis.  Grain  legumes  contain
various compounds (e.g., resistant starch, soluble fiber, insoluble fiber, phytosterols,
saponins, phytates, flavonoids, proanthocyanidins, and phenolic acids) that have been
shown to inhibit colorectal tumorigenesis in animal studies at concentrations that are
relevant for human diets. Grain legume consumption alters several molecular pathways
(e.g.,  p53,  mTOR,  NF-kB,  Akt,  and  AMPK)  that  are  critical  for  tumor  induction,
promotion, and progression. Based on our meta-analysis, daily grain legume consump-
tion confers chemo-preventive effects against CRC.

Keywords: grain legumes, colorectal cancer, meta-analyses, bioactive compounds,
molecular mechanisms
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1. Introduction

Grain  legumes  (i.e.,  pulses)  are  defined  as  plants  belonging  botanically  to  the  family
Leguminosae, which are harvested as dry seeds for food consumption [1–3]. Grain legumes
are behind cereal grains the most common food crop worldwide; the primarily grown grain
legumes are in the order as follows: dry beans (e.g., pinto, navy, red kidney, lima, butter,
white,  and black beans;  Phaseolus  and Vigna  ssp.),  chick peas (i.e.,  garbanzo beans;  Cicer
arietinum), dry peas (e.g., garden peas; Pisum sativum), dry cow peas (Vigna unguiculata), lentils
(Lens culinaris), and dry broad beans (e.g., horse beans; Vicia faba) [3–5]. Beans are oval or
kidney shaped, peas are round, and lentils are flat. Grain legumes have served as staple foods
in many cultures around the globe, as they can be grown relatively inexpensively in various
climate zones and have a health-promoting nutrient profile, that is, they are a good dietary
source of protein, rich in fiber and folate, and very low in saturated fatty acids, cholesterol,
and sodium [6–8].

Grain legume consumption dramatically decreased in westernizing countries [9] and is in
the U.S., similar to other Western countries [10, 11], on average low (12.9 g/d) and infrequent
(only 8 and 14% consumed grain legumes daily or every other day) [6, 12]. Given the health-
promoting properties and nutrient profile of grain legumes and the growing interest in
ethnic, gluten-free, and vegetarian cuisine in Western countries, increasing grain legume
consumption represents an important public health opportunity for chronic disease
prevention.

A research focus is the use of legumes for cancer prevention, specifically colorectal cancer
(CRC) [4]. Globally, CRC is the third most common cancer in men and the second most
common in women [13]. Two recent A meta-analysis study reported a protective effect of
legume consumption for colorectal adenomas (CRAs) in case-control and cohort studies
(combined odds ratio (OR) = 0.83; 95% confidence interval (CI): 0.75–0.93) and CRC in cohort
studies (OR = 0.91; 95% CI: 0.84–0.98) [14, 15]. Both meta-analysis studies, however, included
studies in which participants consumed legumes primarily as soy products (i.e., studies
conducted in China, Japan, Malaysia, and South Korea), as opposed to grain legumes (i.e.,
studies conducted in Africa, North and South America, and Europe). Moreover, the meta-
analysis of CRC showed a protective effect for soybeans (OR = 0.85; 95% CI: 0.73–0.99) but
not for other beans (OR = 1.00; 95% CI: 0.89–1.13) [15]. A third meta-analysis study published
in 2010 reported no statistically significant association between legume fiber consumption
and CRC in four prospective U.S. and European studies combined (OR = 0.89; 95% CI: 0.78–
1.02) [16].

The objective of this chapter is to evaluate the evidence of a chemo-preventive role of grain
legume consumption in colorectal tumorigenesis in human (ecological, case-control, and
cohort studies) and animal studies by conducting a literature review and meta-analyses. The
goal is to suggest areas of future research and provide up-to-date scientific evidence for dietary
recommendation of legume consumption.
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2. Colorectal cancer: incidence, mortality, and risk factors

Worldwide, annually 1.361 million new CRC cases and 0.694 million deaths due to CRC accrue,
according to GLOBOCAN in 2012 [13, 17]. In the U.S., the lifetime risk of being diagnosed with
CRC is 5% and the treatment costs were estimated to be over $14 billion [18, 19], highlighting
CRC prevention as a public health priority. CRC development is a multistep process over many
years, often decades, involving usually random genetic mutations in colorectal epithelial cells
causing the activation of tumor-promoting genes and the loss of tumor suppressor gene
function [20, 21]. Starting often as aberrant crypt foci (ACF), most CRC arise from benign,
adenomatous polyps (i.e., adenomas) that grow from glandular cells of the colorectal epithelial
lining into advanced adenomas and then adenocarcinomas [22–24]. Over 50% of the Western
population will develop colorectal adenomas (CRAs) by the age of 70 [23]. Less than 10% of
adenomas, however, progress to become invasive and spread to adjacent blood or lymph
vessels [25]. Success of CRC treatment depends on early detection. If CRC has not spread
beyond the colorectal wall (i.e., localized stage), 5-year survival rates are 90.3%; however,
survival rates decline when CRC has spread to lymph nodes and/or nearby tissue (i.e., regional
disease; a 5-year survival of 70.4%) and are low when CRC has spread to other organs (i.e.,
distant disease; a 5-year survival of 12.5%) [26]. Currently, only 40% of CRC patients are
diagnosed with localized stage, highlighting that importance of early detection and treatment
of CRC and its precursors [27].

Genetics is an important CRC risk factor. About 20% of CRC patients have a family history of
CRC (10–15% lifetime risk for patients with one first-degree relative; 20% lifetime risk for
patients with at least two first-degree relatives or one first-degree relative diagnosed with CRC
before age 45) and 2–4% have a well-defined genetic syndrome (i.e., Lynch syndrome and
familial polyposis; 80–90% lifetime risk) [19]. Chronic inflammation, specifically inflammatory
bowel disease (IBD), is another important CRC risk factor with a 10–20% lifetime risk, which
is increased among patients with a longer IBD history [19, 28]. Other important medical CRC
risk factors are obesity, insulin resistance, and diabetes mellitus; CRC risk increases linearly
with duration and severity of those morbidities [19, 29–33]. Modifiable CRC risk factors include
smoking, heavy alcohol consumption, and sedentary behavior, each with a 6% lifetime risk
[19], whereas medications such as aspirin and nonsteroidal anti-inflammatory drugs (NSAIDs)
and hormone-replacement therapy in postmenopausal women can decrease CRC risk [19].

Food and nutrition play an important part in the etiology and prevention of CRC and may
account for 70–90% of all cases [34–36]. A panel of experts, primarily epidemiologists organized
by the World Cancer Research Fund (WCRF) and the American Institute for Cancer Research
(AICR), evaluated the scientific evidence on food, nutrition, and physical activity on cancer
risk [34]. Human studies were ordered according to the quality of the study design as follows:
(1) ecological studies (lowest quality; most susceptible to confounders; i.e., factors that are
associated with both disease status and the evaluated food); (2) case-control studies (very
susceptible to recall bias; i.e., selective reporting of the diet after disease diagnosis); (3)
Prospective cohort studies; and (4) clinical trials (gold standard and least susceptible to bias).
In the case of substantial amount of evidence available, the panel focused on studies using

Grain Legume Consumption Inhibits Colorectal Tumorigenesis: A Meta-Analysis of Human and Animal Studies
http://dx.doi.org/10.5772/63099

143



high-quality designs. Evidence from animal and cell culture studies was taken into account to
demonstrate plausible mechanism for diet and cancer association. Based on the evidence, an
individual food, food group, or individual nutrient was classified for each cancer site as
“convincing”, “probable”, “limited-suggestive”, or “limited-no conclusion” decreases the risk
or increases the risk [34].

In 2007, the panel classified red and processed meat consumption as convincingly increases
CRC risk, whereas calcium and foods containing fiber were classified as probably decreases
CRC risk, and selenium and foods containing folate were classified as limited-suggestive
evidence for decreasing CRC risk [34]. No conclusion was made for legumes and CRC risk
because of the limited data available in 2007 [34]. As in the last 8 years more data have been
collected, we reevaluate in this chapter the evidence on the relation between grain legume
consumption and CRC risk. We hypothesized a protective effect of grain legume consumption
on CRC risk because grain legumes are an excellent dietary source of fiber (5.7–9.0 g/100 g of
cooked legumes) and folate (83–174 μg/100 g of cooked legumes) [7], both of which were
classified as decreasing CRC risk in 2007 [34].

3. Grain legumes and colorectal neoplasia in human studies

Ecological studies examine the association between diet and disease on the population level;
five studies evaluated the relation between legume intake and risk of CRC incidence or
mortality on the population level and observed inconsistent relations [9, 37–40]. Correa
reported that countries with higher bean consumption in 1964–1966 had lower colon cancer
mortality rates 7–9 years later (r = −0.68) [40]. Similarly, Bejar et al. stated that the decrease in
legume consumption between 1960 and 1990 coincided with an increase in CRC incidence and
mortality rates 10 years later in Spain [37, 39]. In follow-up studies, Bejar et al. extended the
analysis to 15 European and 13 non-European countries [9, 38]. Whereas the strong inverse
relation between legume intake and CRC incidence rates held true for some countries (i.e.,
Norway, Spain, Germany, and France), other countries (i.e., Australia, Italy, and Colombia) had
positive relations, as a result of a slight increase in legume consumption between 1965 and
2005. Thus, changes in legume consumption alone cannot explain the temporal changes in CRC
incidence rates; rather, changes toward a Western diet were associated with an increased CRC
risk (depending on country of origin, adoption of a westernized diet either increased or
decreased grain legume consumption). In support, Monroe et al. reported in a migrant study
that an increase of CRC incidence rates (men: 85%; women: 95%) coincided with a 46% decrease
in dry bean or pea consumption (57.0–26.6 g/d) from first- to second-generation Mexico-born
U.S. Americans in the Multiethnic Cohort Study [41], and Haentzel et al. showed a detrimental
effect of grain legume consumption on CRC incidence in Japan-born Hawaiian [42].

In case-control studies, participants with (cases) or without (controls) a disease recall their diet.
Besides recalling a diet from past years, participants try to make sense of their disease outcome
based on their lifestyle choices. Thus, foods and food groups that have been known to be
associated with disease outcomes by the public are often erroneously associated with the
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disease outcome (i.e., selective reporting bias). Nineteen peer-reviewed publications (46,769
controls and 14,567 cases; two studies had each two publications [43, 44] and [45, 46]) evaluated
in 17 case-control studies the relation between legume consumption and colorectal neoplasia;
six studies reported prevalent adenomas as endpoint [47–52] and 11 studies reported carcino-
mas as endpoint [42–46, 53–60] (Table 1). Most case-control studies were from the U.S. (n = 8),
five were from Europe, two were from South America, and one each from Australia and Jordan.
Risk estimates specific to the intake of legumes (including soybeans and their products), grain
legumes, and grain legume fiber were reported in six, 11, and two case-control studies,
respectively. Gender-specific risk estimates were reported in five case-control studies, and
cancer-site–specific risk estimates were reported for colon and rectum in seven and four case-
control studies, respectively. Half of the studies showed a protective legume effect on CRA
(Table 1), one of which was statistically significant [50]. A distinct clustering was observed for
CRC. Seven of 11 case-control studies had significant risk estimates of 0.5 or lower [45, 46, 50,
53, 55, 56, 59, 60]; three of the six low-risk estimates were from women and, for the remaining
three, no gender-specific risk estimates were reported. In contrast, the risk estimates of the
other studies were around 0.9 (Table 1).

Reference, region

(country)

Study

period

Study design, no.

controls/cases

Sex, age Diet assessment Grain legume, quantity for comparison,

risk estimates (95% CI)

Matching/adjusting for confounders

Prevalent colorectal adenoma

Sandler et al., 1993 [47]

North Carolina (U.S.)

1988–

1990

Colonoscopy

Cases: 236

Controls: 409

Both,

≥30 years, no

CRC, IBD

history

Phone interview: FFQ with

>100 food items for

previous yr 

Grain legume fiber

Men:

≥3.14 vs. <0.97 g/d OR = 0.99 (0.43–2.29)

Women:

≥2.17 vs. <0.61 g/d OR = 1.26 (0.63–2.51)

No matching specified

Adjusted for age, alcohol intake, BMI,

and total energy intake

Witte et al., 1996 [48]

California (U.S.)

1991–

1993

Sigmoidoscopy

Cases: 488

Controls: 488

Both

50–74 years; no

CRA, IBD

history

Personal interview: FFQ

with 126 food items for

previous yr

Legumes (beans, lentils, peas, lima beans,

tofu, soybeans, peanut butter)

Mean 8.5 vs. 0.5 servings/wk OR: 0.85

(0.56–1.28)

Matched by age, sex, day of

sigmoidoscopy, Kaiser center

Adjusted by race, BMI, physical

activity, smoking, and intake of total

energy and saturated fat

Smith-Warner

et al., 2002 [49]

Minnesota Cancer

Prevention Research

Unit Study (U.S.)

1991–

1994

Colonoscopy

and population

Cases: 564

Controls: 682

colonoscopy,

535 population

Both, 30–74

years, no CRA,

IBD history

Self-administered FFQ

precolonoscopy with >153

food items for previous yr

Legumes (alfalfa sprouts, beans, peas)

Men: Mean 5.0 vs. 1.0 servings/wk

Colonoscopy: OR = 0.96 (0.62–1.49)

Population: OR = 1.15 (0.77–1.72)

Women: Mean 5.5 vs. 1.1 servings/wk

Colonoscopy: OR = 1.08 (0.68–1.74)

Population: OR = 0.96 (0.58–1.59)

Matched by age, sex, and residence

Adjusted for age, total energy and fat

intake, BMI, smoking, alcohol,

NSAID use, multivitamin use, and

hormone replacement therapy

Agurs-Collins

et al., 2006 [50]

African-American

(U.S.)

2001–

2003

Colonoscopy

Cases: 53

Controls: 133

Both,

29–81 years

FFQ with 39 food items

(Rate Your Diet Quiz)

Grain legumes (dry beans, split peas,

lentils)

≥3× vs. ≤1×/wk OR = 0.19 (0.04–0.91)

No matching specified

Adjusted for age, smoking, alcohol,

sex, weight, aspirin use, alcohol,

family CRC history, and exercise

Millen et al., 2007 [51]

Prostate, Lung,

Colorectal, and Ovarian

Cancer Screening Trial

(PLCO)

1993–

2001

Sigmoidoscopy

Cases: 3057

Controls: 29,413

Both, 55–

74 years; no

CRA, IBD

history

Self-administered FFQ pre-,

on, or post-sigmoidoscopy

with 137 food items for

previous yr

Legumes

(beans, peas,

tofu, and soybeans)

Median 0.4 vs. 0.05 energy-adjusted

servings/wk OR = 0.92 (0.81–1.03)

Sex and age adjusted: OR = 0.85 (0.75–0.96)

Matching not specified

Adjusted for age, sex, race,

education, family CRC history,

smoking, alcohol use, aspirin use,

replacement hormone use, physical

activity, BMI

Wu et al., 2009

[52] Tennessee

Colorectal

Polyp Study (U.S.)

2003–

2005

Colonoscopy

Cases: 764

Controls: 1517

Both, 40–

75 years, no

CRA, IBD

history

FFQ with >108 food items

for previous yr

Grain legumes (green beans and peas, dry

and canned beans)

Tertile T3 vs. T2 Quantity N/A

OR = 0.95 (0.74–1.24)

No matching specified

Adjusted for age, sex, race, study

location, BMI, smoking, alcohol

consumption, NSAID use, physical

activity, education level, family

income, family CRC history, and

intake or total energy and red meat
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Reference, region

(country)

Study

period

Study design, no.

controls/cases

Sex, age Diet assessment Grain legume, quantity for comparison,

risk estimates (95% CI)

Matching/adjusting for confounders

Colon Cancer

Iscovich et al., 1992 [56]

La Plata (Argentina)

1985–

1987

Population

Cases: 110 Controls:

220

Both, 35–

80 years

Personal

interview FFQ with 140

food items for previous 5

yrs

Grain legumes (beans, lentils, peas, and

chick peas)

Quartile 4 vs. 1 OR = 0.52 (0.24–1.12)

Quartile 3 vs. 1 OR = 0.32 (0.14–0.73)

Quantity N/A

Matched by age and gender

Adjustment not specified

Steinmetz et al., 1993

[60]

Adelaide (Australia)

1979–

1980

Population

Cases: 220 Controls:

438

Both,

30–74 years

Self-administered FFQ with

141 food items a yr ago

Legumes (green, dry and broad beans,

lentils, dry and chick peas, and soybeans)

Men: >1 vs. 0 servings/wk OR = 0.74 (0.38–

1.45); Women: >0.6 vs. 0 servings/wk OR =

0.43 (0.20–0.93)

Matched by age and gender

Adjusted for protein intake,

occupation, Quetelet’s index, alcohol

consumption, and age at first live

birth (only women)

Kampman et al., 1995

[57]

(Netherlands)

1989–

1993

Population

Cases: 232 Controls:

259

Both,

≤75 years, no

history of CR

tumors

Personal

interview: FFQ with 289

food items for previous yr 

Legumes

Quartile 4 vs. 1 (infrequent legume

consumption) OR = 1.08 (0.67–1.76)

Matched by age, gender, and degree

of urbanization

Adjustment not specified

Colorectal Cancer

Haenszel et al., 1973

[42]

Hawaiian born in Japan

(U.S.)

1966–

1970

Hospital

Cases: 179 Controls:

357

Both

Age N/A

Personal

interview: four legumes,

soybeans excluded

Grain legumes (green and red beans, peas,

and Chinese peas)

>21× vs. <8×/mo legumes RR = 3.5 95% CI

N/A

Matched by sex and birth place

Adjustment not specified

La Vecchia et al., 1988

[58]

Milan

(Northern Italy)

1985–

1987

Hospital

Cases: 339

colon, 236 rectal

Controls: 778

Both,

<75 years

Personal

interview: 29 food items

prior to disease diagnosis

Grain legumes

Tertile 3 vs. 1 Quantity N/A

Colon: RR = 1.04; Rectum: RR = 0.94

95% CI N/A

Matching not specified

Adjusted for social class, age, sex,

and area of residence

Benito et al., 1991 [53]

Majorca (Spain)

1984–

1988

Population and

Hospital

Cases: 286 Controls:

203 hospital

286 population

Both,

<80 years

Personal

interview: FFQ with 99

food items for previous yr

Grain legume fiber

Quartile 4 vs. 1 Quantity N/A

RR = 0.40 95% CI N/A

Matched by age and gender

Adjusted for age, sex, body weight,

and total energy intake

Bidoli et al., 1992 [54]

Pordenone (North

Eastern Italy)

1986–

1990

Hospital

Cases:

123 colon, 125 rectal

Controls: 699

Both

Age not

specified

Personal

interview: FFQ (number of

food items N/A before

disease) onset

Grain legumes

Tertile 3 vs. 1 Quantity N/A

Colon: RR = 1.2 Rectum: RR = 0.8

95% CI N/A

Matched by hospital

Adjusted for age, gender, and social

status

Le Marchand et al.,

1997 [59]

Hawaii Multiethnic

(U.S.)

1987–

1991

Population

Cases: 1192

Controls: 1192

Both

<85 years, no

history of

colorectal

tumors

Personal

interview: FFQ with 282

food items 3 yrs before

disease onset

Legumes (including soy products)

Men: >46 vs. <11 g/d OR = 0.8 (0.5–1.2)

Women: >44 vs. <9 g/d OR = 0.5 (0.3–0.9)

Matched by age, sex, and race

Adjusted for age, family CRC history,

alcohol consumption, smoking,

physical activity, Quetelet index, and

intake of total calories, eggs, and

calcium

Franceschi et al., 1998

[55]

(Italy)

1991–

1996

Hospital

Cases:

1225 colon 728 rectal

Controls: 5155

Both

Age not

specified

Personal

interview: FFQ with 98

food items 2 yrs before

disease diagnosis

Grain legumes (beans and peas)

>3 vs. <0.5 servings/wk

Colon: OR = 0.5 (0.4–0.7)

Rectum: OR = 0.7 (0.5–0.9)

Matching not specified

Adjusted for age, sex, center, year of

interview, education, physical

activity, alcohol consumption, and

total energy intake

Deneo-Pellegrini et al.,

2002 [46]

Montevideo (Uruguay)

1996–

2002

Hospital

Cases: 484 Controls:

1452

Both

30–89 years

Personal

interview: FFQ with 64

food items a yr before

disease diagnosis

Grain legumes

(kidney beans and lentils)

Quartile 4 vs. 1 Quantity N/A

Overall: OR = 0.7 (0.5–0.9)

Men: OR = 0.8 (0.5–1.2)

Women: OR = 0.5 (0.3–0.9)

Colon: OR = 0.9 (0.9–1.1)

Rectum: OR = 0.8 (0.7–0.9) 

Matched on age, sex, residence, and

urban/rural status

Adjusted for age, sex, rural/urban

status, education, first-degree family

CRC history, BMI, and intake of total

energy and red meat

Aune et al., 2009 [45]

Montevideo (Uruguay)

1996–

2004

Hospital

Cases: 3539

Controls: 2032

Both

26–89 years

Personal

interview: FFQ with 64

food items a yr before

disease diagnosis

Grain legumes (kidney beans and lentils)

Legume: Median 14.38 vs. 1.35 g/d OR =

0.43 (0.32–0.59)

Beans: Median 9.44 vs. 0 g/d OR = 0.44

(0.31–0.61)

Lentils: Median 11.68 vs. 0 g/d OR = 0.53

(0.38–0.75)

Matching not specified

Adjusted for age, sex, residence, BMI,

education, income, interviewer,

smoking status and history, alcohol

consumption, mate drinking status,

and intake of total energy, dairy

products, fatty foods (eggs, cake,
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Reference, region

(country)

Study

period

Study design, no.

controls/cases

Sex, age Diet assessment Grain legume, quantity for comparison,

risk estimates (95% CI)

Matching/adjusting for confounders

custard, butter), fruits and

vegetables, and total meat

Abu Mweis et al., 2015

[43]

(Jordan)

2010–

2012

Hospital

Cases: 167

Controls: 240

Both

>18 years

Self-administered

FFQ with 109 food and

beverage items (DHQ 1) a

yr before disease diagnosis

Lentils

>1× vs. <1×/wk OR = 1.49 (0.80–2.79)

Matched by age, sex, occupation, and

marital status

Adjusted for age, sex, family CRC

history, physical activity, smoking,

education level, marital status, work,

income, and total energy intake

Tayyem et al., 2015 [44]

(Jordan)

2010–

2012

Hospital

Cases: 220

Controls: 281

Both

>18 years

Self-administered FFQ with

109 food and beverage

items (DHQ 1) a yr before

disease diagnosis

Lentils

1×/wk vs. <1×/mo OR = 1.3 (0.72–2.4)

White beans

1×/wk vs. <1×/mo OR = 0.86 (0.37–2.1)

Green beans

1×/wk vs. <1×/mo OR = 1.0 (0.57–2.2)

Peas

1×/wk vs. <1×/mo OR = 1.0 (0.44–2.0)

Matched by age, sex, occupation, and

marital status

Adjusted for age, sex, family CRC

history, physical activity, smoking,

education level, marital status, work,

income, and total energy intake

*Statistically significant association of legume consumption and colorectal neoplasia.
CRA: colorectal adenoma; CRC: colorectal cancer; FFQ: food frequency questionnaire; IBD: inflammatory bowel
disease; mo: month; N/A: not available; OR: odds ratio; RR: relative risk; wk: week; 95% CI: 95% confidence interval.
1 serving of legume equals 0.5 cup of cooked legumes (~90 g) [7].

Table 1. Description of retrospective case-control studies of grain legume consumption and colorectal neoplasia.

Figure 1. Forest plot of legume consumption (highest vs. lowest category) and colorectal neoplasia risk in retrospective
studies stratified by type of neoplastic lesion and gender (only for cancer studies). The dot in each study indicates the
estimated risk ratio, vertical bars represent 95% CI, and the size of gray square box reflects the study’s weight in the
random effects meta-analysis. The straight line indicates no association and the dashed line indicates the summary risk
estimate across all studies. The open diamond on the bottom indicates the pooled risk estimate and the right vertices of
the diamond reflect the 95% CI. CC: colon cancer; RC: rectal cancer; CRC: colorectal cancer; CRA: colorectal adenoma;
GrLeg: grain legume; GrLegF: grain legume fiber; Leg: legume; LegF: legume fiber.
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Meta-analysis using a random effects model of natural log odds ratios (OR) in STATA was
possible for 12 case-control studies [46–52, 55–57, 59, 60] that included 12,408 cases and 42,473
controls. We had to exclude the four oldest case-control studies [42, 53, 54, 58] because the 95%
CIs were not reported and two case-control studies [43, 44] provided only estimates of
individual grain legumes. We checked for heterogeneity of estimates, influential risk estimates,
and publication bias using funnel plots and Egger’s method. When comparing the highest
versus the lowest legume intake group, we observed a protective effect of legume consumption
on CRA (relative risk (RR) = 0.93; 95% CI: 0.84–1.03; P = 0.15) and CRC (RR = 0.65; 95% CI: 0.54–
0.77; P <0.001). There was moderate heterogeneity (30.2%) among studies for CRC risk (P =
0.17), but <0.01% for CRA risk. The range of risk estimates was 0.56–0.65 for CRC after removing
one study at a time. No significant publication bias was observed (P = 0.11). The heterogeneity
among CRC risk estimates could be explained by gender-specific differential dietary recalls
(Figure 1); the protective effect of legume consumption on CRA was in men, RR = 0.79 (95%
CI: 0.84–1.03; P = 0.10; <0.01 heterogeneity), in women, RR = 0.49 (95% CI: 0.34–0.69; P <0.0001;
<0.01% heterogeneity), and intermediate RR = 0.67 (95% CI: 0.48–0.93; P = 0.02; 63.1% hetero-
geneity) in studies that did not provide gender-specific estimates.

In prospective cohort studies, dietary information of cohorts or groups of healthy individuals
at the time of study recruitment is linked to subsequent disease outcomes. We evaluated the
relation between legume consumption and colorectal neoplasia in 15 peer-reviewed publica-
tions from 11 prospective cohorts (1,621,519 participants with 13,546 cases), 11 reported cancer
as endpoint [61–71] and the remaining four studies reported incident and/or prevalent
adenomas as endpoint [72–75] (Table 2). All, except for two European cohorts, were U.S.
cohorts. Risk estimates were reported for men in six and for women in eight prospective
cohorts. Risk estimates specific to colon and rectum were reported in two and one cohorts,
respectively. Risk estimates specific to the intake of legumes, legume fiber, grain legumes, and
grain legume fiber were reported in three, three, three, and two cohorts, respectively. Two
cohorts (Adventist Health Study and Polyp Prevention Trial) showed significant protective
effects of grain legume consumption [69, 72, 75]. Four cohorts (Breast Cancer Detection
Demonstration Project, Women’s Health Study, Multiethnic Cohort Study, and NIH-AARP
Study) showed a protective effect on CRC risk, the effect was statistically significant in some
statistical models in the latter three cohorts [63, 64, 66–68]. Two cohorts (Nurses’ Health Study
and Health Professionals’ Follow-up Study) showed a protective effect of legume consumption
for CRA only [65, 73, 74]. Only three of the 11 cohorts (Iowa Women’s Health Study and two
European cohorts) showed no effects of legume consumption on CRC risk [61, 62, 70, 71].

Reference,

cohort, country

Follow-up

period

Study

size, case

no.

Sex, age Diet

assessment

Grain legume,

quantity for

comparison, risk

estimates (95% CI)

Adjustment for

confounders

Incident colorectal adenoma

Lanza et al., 2006

[72]

1991–1994;

4-yr trial;

1905,

629

Both,

>35 years

Four annual

self-

Grain legumes (dry

beans and lentils)

Adjusted for age,

NSAIDs, sex,
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Reference,

cohort, country

Follow-up

period

Study

size, case

no.

Sex, age Diet

assessment

Grain legume,

quantity for

comparison, risk

estimates (95% CI)

Adjustment for

confounders

U.S., Polyp

Prevention Trial

(PPT)

incident

CRA <3

yrs old

No CRC,

IBD

history

administered

FFQ with 27

food items and

one grain

legume

question for

previous yr

Mean: 45.1 vs. 3.1

g/d

Any: OR = 0.78

(0.58–1.04)

Men: OR = 0.69

(0.48–0.99)

Advanced: OR =

0.30 (0.15–0.60)

intervention group,

and sex by

intervention group

Michels et al.,

2006 [73]

U.S., Nurses’

Health Study

(NHS)

Diet: 1980–

1994,

incident

CRA >2

yrs old

9735,

633

No CRA,

IBD

history

Women

30–55 years

in 1976

Self-

administered

FFQ with 61

food items for

previous yr

Legumes (beans,

lentils, peas, lima

beans, tofu,

soybeans)

≥5 vs. ≤ 1

serving/wk

New Incidence

only: OR = 0.67

(0.51–0.90) Trend:

OR = 0.92 (0.87–

0.98)

Adjusted for age,

family CRC history,

height, BMI, regular

vigorous exercise,

regular aspirin use,

pack-years of

smoking, current

multivitamin

supplement use,

alcohol consumption,

menopausal status,

postmenopausal

hormone use, and

intake of total energy,

red meat, and

calcium

Tantamango

et al., 2011 [75]

U.S., Adventist

Health Study

(AHS)

Diet: 1976–

1977,

Endpoint:

2002–2004

incident

CRA <20

yrs old

2818,

441

No CRC,

IBD

history

Both, All

underwent

colonoscopy,

no age

exclusion

Self-

administered

FFQ with 55

food and

beverage items

Grain legumes

(beans, lentils, split

peas)

≥3×/wk vs. <1×/mo

OR = 0.67 (0.44–

1.01)

Trend: P = 0.02

Adjusted for age, sex,

education, BMI, and

red meat intake

Prevalent colorectal adenoma

Platz et al., 1997

[74]

U.S., Health and

Professionals’

Follow-up Study

(HPFS)

1986–1994 16,448,

690

No CRA,

IBD

history

Men

40–75 years

All

underwent

colonoscopy

Self-

administered

FFQ with 127

food items for

previous yr

Legume fiber

(beans, lentils,

peas, lima beans,

tofu, soybeans)

Median 2.6 vs. 0.5

g/d

Adjusted for age,

family CRC history,

prior endoscopy,

BMI, smoking,

multivitamin use,

physical activity,
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Reference,

cohort, country

Follow-up

period

Study

size, case

no.

Sex, age Diet

assessment

Grain legume,

quantity for

comparison, risk

estimates (95% CI)

Adjustment for

confounders

RR = 0.82 (0.60–

1.11) Trend: P =

0.06

regular aspirin use,

and intake of energy,

alcohol, red meat,

folate, and

methionine

Michels et al.,

2006 [73]

U.S., Nurses’

Health Study

(NHS)

Diet: 1980–

1994

Endpoint:

1980–1998

34,467,

1720

No CRC

and IBD

history

Women

30–55 years in

1976

Self-

administered

FFQ with 61

food items for

previous yr

Legumes (beans,

lentils, peas, lima

beans, tofu,

soybeans)

≥5 vs. ≤1

serving/wk

OR = 0.89 (0.75–

1.05)

Trend: OR = 0.96

(0.93–1.00)

Adjusted for age,

family CRC history,

height, BMI, regular

vigorous exercise,

regular aspirin use,

pack-years of

smoking, current

multivitamin

supplement use,

alcohol consumption,

menopausal status,

postmenopausal

hormone use, and

intake of total energy,

red meat, and

calcium

Colon cancer

Steinmetz et al.,

1994 [70]

U.S., Iowa

Women’s Health

Study (IWHS)

1986–1990 41,837,

212

Women, 55–

69 years at

baseline, no

CRC history

Self-

administered

FFQ with 127

food items for

previous yr

Legumes (beans,

lentils, peas, lima

beans, tofu,

soybeans)

≥1.0 vs. 0

servings/wk

RR = 0.95 (0.66–

1.36)

Adjust for age and

total energy intake

Singh and Fraser,

1998 [69] U.S.,

Adventist Health

Study (AHS)

1976–1982 32,051

157

Non-

hispanic

white

Both

>25 years

Self-

administered

FFQ with 55

food items

Grain legumes

(beans, lentils, split

peas)

>2× vs. <1×/wk

RR = 0.53 (0.33–

0.86)

Adjusted for age, sex,

BMI, physical

activity, parental

CRC history,

smoking, alcohol

consumption, and

aspirin use
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Reference,

cohort, country

Follow-up

period

Study

size, case

no.

Sex, age Diet

assessment

Grain legume,

quantity for

comparison, risk

estimates (95% CI)

Adjustment for

confounders

Colorectal cancer

Michels et al.,

2000 [65]

U.S., Nurses’

Health

Study (NHS)

1980–1996 88,764,

724

Women

30–55 years

Self-

administered

FFQ with 127

food items for

previous yr

Legumes (beans,

lentils, peas, lima

beans, tofu,

soybeans)

≥4 vs. <1

serving/wk

RR = 1.26 95% CI

N/A

RR = 1.49 (1.04–

2.12) per additional

serving/wk

Adjusted for age,

family CRC history,

sigmoidoscopy,

height, BMI, pack-

years of smoking,

alcohol consumption,

physical activity,

intake of total energy

and red meat, and

use of menopausal

hormones, aspirin,

and vitamin

supplements

Michels et al.,

2000 [65]

U.S., Health and

Professionals’

Follow-up Study

(HPFS)

1986–1996 47,325,

457

Men

40–75 years

Self-

administered

FFQ with 127

food items for

previous yr

Legumes (beans,

lentils, peas, lima

beans, tofu,

soybeans)

≥4 vs. <1

serving/wk

RR = 0.97 95% CI

N/A

RR = 0.90 (0.57–

1.42) per additional

serving/wk

Adjusted for age,

family CRC history,

sigmoidoscopy,

height, BMI, pack-

years of smoking,

alcohol consumption,

physical activity,

intake of total energy

and red meat, and

use of menopausal

hormones, aspirin,

and vitamin

supplements

Voorrips et al.,

2000 [71]

Netherlands

Cohort Study on

Diet and Cancer

(NCSDC)

1986–1992 Male:

58,279,

514

Women:

62,573,

396

Both,

55–69 years

Self-

administered

FFQ with 155

food items for

previous yr

Grain legumes

(green and lima

beans)

Male: Median 62

vs. 11 g/d

Colon RR = 1.13

(0.77, 1.64)

Rectum: RR = 0.92

(0.58–1.47)

Female: Median 58

vs. 11 g/d

Adjusted for age,

alcohol consumption,

and family CRC

history
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Reference,

cohort, country

Follow-up

period

Study

size, case

no.

Sex, age Diet

assessment

Grain legume,

quantity for

comparison, risk

estimates (95% CI)

Adjustment for

confounders

Colon RR = 0.79

(0.52, 1.20)

Rectum: RR = 1.01

(0.53–1.94)

Mai et al., 2003

[64] U.S., Breast

Cancer Detection

Demonstration

Project (BCDDP)

1987–1998 45,491,

487

Women

Age range

N/A

Self-

administered

FFQ with 62

food items for

previous yr

Grain legume fiber

>1.38 vs. <0.20 g/

1000 kcal/d

RR = 0.84 (0.63–

1.10)

Unadjusted

Bingham et al.,

2003 [61]

10 EU countries,

EPIC

1992–2002 519,978,

1065

Both, 35–70

years

Country-

specific FFQ

with 300–350

food items

Legume fiber

Mean: 1.73 vs. 0.45

g/d

HR = 1.04 (0.84–

1.30)

Adjusted for age,

weight, height, sex,

intake of nonfat and

fat energy, and

stratified by center

Bingham et al.,

2005 [62]

10 EU countries,

EPIC

1992–2004 519,978,

1721

Both, 35–70

years

Country-

specific FFQ

with 300–350

food items

Legume fiber

Mean: 1.9/1.0 vs. 0

g/d

HR = 0.94 (0.79–

1.14)

Adjusted for age,

weight, height, sex,

intake of nonfat and

fat energy, and

stratified by center

Lin et al., 2005

[63]

U.S., Women’s

Health Study

(WHS)

1993–2003 39,876,

223

Women

≥45 years

Self-

administered

FFQ with 131

food items for

previous yr

Legumes (dry

beans, lentils, peas,

lima and green

beans, tofu,

soybeans)

Median 0.9 vs. 0.1

serving/d

RR = 0.83 (0.54–

1.28)

Legume fiber

Median 1.8 vs. 0.4

g/d

RR = 0.60 (0.40–

0.91)

Adjusted for age,

randomized

treatment

assignment, BMI,

first-degree CRC

family history, colon

polyp history,

physical activity,

smoking status,

baseline use of

aspirin, hormone

replacements,

menopausal status,

alcohol consumption,

and intake of total

energy and red meat

Nomura et al.,

2007 [66]

U.S., Multiethnic

1993–2001 191,011,

2110

Both,

45–75 years

Self-

administered

Legume fiber Adjusted by age,

ethnicity, time since
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Reference,

cohort, country

Follow-up

period

Study

size, case

no.

Sex, age Diet

assessment

Grain legume,

quantity for

comparison, risk

estimates (95% CI)

Adjustment for

confounders

Cohort Study

(MEC)

FFQ with 180

food items

Men: Median 7.6

vs. 0.3 g/1000

kcal/d

CRC: RR = 0.81

(0.65–1.01)

Ptrend = 0.04

Women: Median

5.8 vs. 0.2 g/1000

kcal/d

CRC: RR = 1.02

(0.82–1.27)

cohort entry, and age

at cohort

Park et al., 2007

[67]

U.S., NIH–AARP

Diet and Health

Study

1995–2000 488,043,

2972

Both,

50–71 years at

baseline

Self-

administered

FFQ with 124

food items for

previous yr

Grain legumes

(dried beans, green

beans, and peas)

Men: Median 0.69

vs. 0.08 servings/d

RR = 0.95 (0.83–

1.09)

Significant for age

adjusted RR = 0.85

(0.74–0.97) Women:

Median 0.81 vs.

0.09 servings/d

RR = 1.13

(0.91–1.40)

Adjusted for

education, physical

activity, smoking,

alcohol consumption,

and intake of total

energy, red meat, and

calcium

Schatzkin et al.,

2007 [68]

U.S., NIH–AARP

Diet and Health

Study

1995–2000 489,611,

2974

Both,

50–71 years at

baseline

Self-

administered

FFQ with 124

food items for

previous yr

Grain legume fiber

Median 2.3 vs. 0.2

g/1000 kcal/d

RR = 0.93 (0.83–

1.04) Significant

for age-and sex-

adjusted RR = 0.89

(0.79–0.99)

Adjusted for sex,

physical activity,

smoking,

menopausal

hormone therapy,

and intake of total

energy, red meat,

calcium, and folate

*Statistically significant association of legume consumption and colorectal neoplasia.
CRC: colorectal cancer; CRA: colorectal adenoma; FFF: food frequency questionnaire; HR: hazard ratio; IBD:
inflammatory bowel disease; N/A: not available; OR: odds ratio; RR: relative risk; 95% CI: 95% confidence interval.
1 serving of legume equals 0.5 cup of cooked legumes (~90 g) [7].

Table 2. Prospective cohort studies of grain legume consumption and colorectal neoplasia.
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For the meta-analysis, we had to exclude the CRC risk estimates of two cohorts because the
risk estimates did not include 95% CI [65], leaving us with 1,533,527 participants including
12,408 cases. When comparing the highest versus the lowest legume intake group, we ob-
served, as shown in Figure 2, a protective effect of grain legume consumption on colorectal
neoplasia (RR = 0.89; 95% CI: 0.59–0.88; P = 0.001). The protective effect attenuated from incident
CRA (RR = 0.72; 95% CI: 0.60–0.87; P <0.001) over prevalent CRA (RR = 0.87; 95% CI: 0.75–1.01;
P = 0.07) to CRC (RR = 0.93; 95% CI: 0.86–1.01; P = 0.08). There was little heterogeneity (18.3%)
among studies, which was further decreased after stratifying for neoplastic endpoint (Figure
2). No significant publication bias was observed (P = 0.13). We observed a nonlinear relation-
ship between legume consumption and colorectal neoplasia, as the protective effect of legume
consumption for incident CRA (Table 2) was limited to the highest legume intake group, which
corresponds to daily consumption of at least 0.5 servings of legumes (~45 g/d). In comparison,
the 2015 U.S. dietary guidelines recommend three servings/wk (~39 g/d), which is lower than
six servings/wk of the 2005 guidelines [7, 76].

Figure 2. Forest plot of legume consumption (highest vs. lowest category) and colorectal neoplasia risk in prospective
studies stratified by type of neoplastic lesion. The dot in each study indicates the estimated risk ratio, vertical bars rep-
resent the 95% CI and the size of gray square box reflects the study’s weight in the random effects Meta-analysis stud-
ies. The straight line indicates no association and the dashed line indicates the summary risk estimate across all
studies. The open diamond on the bottom indicates the pooled risk estimate and the right vertices of the diamond
reflect the 95% CI. CC: colon cancer; RC: rectal cancer; CRC: colorectal cancer; CRA: colorectal adenoma; GrLeg: grain
legume; GrLegF: grain legume fiber; Leg: legume; LegF: legume fiber.
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Our risk estimates (Table 3) are similar to those obtained previously from meta-analyses be-
tween legume consumption (including soybeans) and CRA (RR = 0.73; 95% CI: 0.61–0.88)
and CRC (RR = 0.91; 95% CI: 0.84–0.98) [14, 15], as well as legume fiber consumption and
CRC (RR = 0.89; 95% CI: 0.78–1.02) [16]. Thus, we conclude that there is limited evidence
suggesting that daily grain legume consumption decreases CRC risk in humans, all of which
are based on observational studies. This is consistent with what has been previously con-
cluded for the evidence on the relation between stomach or prostate cancer risk and legume
consumption [34].

Factor Studies Pooled risk ratio Heterogeneity  Eggers  References

(estimates)  RR (95% CI) P I2 (%) P P

Overall 23 (36) 0.84 (0.78–0.90) 0.005 41.9 <0.001 0.02 [46–52, 55–57, 59, 60, 62–64,
66, 67, 69–75]

Endpoint

Incident
adenoma

3 (3) 0.72 (0.60–
0.87) 

<0.001 0 0.76 0.90 [72, 73, 75]

Prevalent
adenoma

8 (10) 0.91 (0.84–
0.99) 

0.03 0 0.73 0.60 [47–52, 73, 74]

Cancer 14 (23) 0.82 (0.74–
0.91) 

<0.001 54.4 0.001 0.02 [46, 55–57, 59, 60, 62–64, 66,
67, 69–71]

Study type

Retrospective 12 (18) 0.77 (0.66–
0.89) 

<0.001 53.3 0.004 0.11 [46–52, 55–57, 59, 60]

Prospective 11 (18) 0.89 (0.83–
0.96) 

0.001 18.3 0.24 0.13 [62–64, 66, 67, 69–75]

Gender

Men 10 (11) 0.89 (0.81–
0.97) 

0.009 0 0.80 0.40 [46, 47, 49, 59, 60, 66, 67, 71,
72, 74]

Women 11 (13) 0.86 (0.75–
0.98) 

0.03 50.7 0.02 0.14 [46, 47, 49, 59, 60, 64, 66, 67,
70, 71]

Legume type

Legume 13 (17) 0.88 (0.82–
0.94) 

<0.001 4.5 0.40 0.10 [48, 49, 51, 57, 59, 60, 62, 63,
66, 70, 73, 74]

Grain legume 11 (19) 0.80 (0.71–
0.92) 

0.001 58.1 0.001 0.09 [46, 47, 50, 52, 55, 56, 64, 67,
69, 71, 72, 75]

Legume part

Grain 18 (29) 0.82 (0.74–
0.89) 

<0.001 49.6 0.001 0.01 [46, 48–52, 55–57, 59, 60, 63,
67, 69–73, 75]

Fiber 6 (8) 0.92 (0.85–
0.99) 

0.02 0 0.78 0.92 [47, 62, 64, 66, 68, 74]
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Factor Studies Pooled risk ratio Heterogeneity  Eggers  References

(estimates)  RR (95% CI) P I2 (%) P P

Cancer site

Colon 8 (10) 0.69 (0.54–
0.88) 

0.003 63.6 0.003 0.94 [45, 55–57, 60, 69–71]

Rectum 3 (4) 0.70 (0.49–
1.00) 

0.05 63.9 0.04 0.69 [45, 55, 71]

Continent/country

Europe 4 (8) 0.83 (0.67–
1.03) 

0.09 64.9 0.006 0.77 [55, 57, 62, 71]

USA 16 (23) 0.88 (0.82–
0.94) 

<0.001  24.5 0.14 0.04 [47–52, 59, 63, 64, 66, 67, 69,
70, 72–75]

Pooled risk estimates with 95% confidence intervals in parentheses compare risk of developing colorectal cancer/
adenoma of the highest versus the lowest grain legumes intake group. Study number will not add up to overall
number because for overall study we used most combined risk estimates available. Eggers P-value indicates
probability for publication bias.

Table 3. Higher grain legume consumption decreases risk of colorectal tumorigenesis: meta-analysis of 23 human
studies.

The next step needs to be a long-term intervention study of daily grain legume consumption
in a high CRC risk cohort. Dietary compliance will be a major challenge in Western countries
because <10% of the population consumes grain legumes on a daily basis [6, 10, 11]. Moreover,
it is much easier to take a daily supplement or a medication than consuming a chemo-
preventive diet. At the same time, it is unrealistic to expect a chemo-preventive effect of a food,
supplement, or medication when it is sporadically consumed. We previously identified
markers of dietary compliance for grain legume consumption in human and animal studies
[77], which allows for compliance monitoring. Intention-to-treat analysis, the gold standard
for statistical evaluation of intervention studies, assumes high compliance. Statistical methods
that account for dietary exposure markers and low compliance are needed when evaluating
the evidence from dietary intervention studies.

4. Grain legumes and colorectal neoplasia in animal studies

As shown in Table 4, 14 animal studies evaluated the effect of grain legume consumption on
colorectal tumorigenesis using 253 animals (248 males and five females) on control diets and
355 animals (350 males and five females) on 19 different grain-legume-containing diets [78–
89]. Eight diets contained whole dry beans, seven contained dry bean fractions (three fiber
factions, three ethanol extract, and one ethanol extract residue); two diets each contained lentils
or chickpeas, and one diet each contained black-eyed peas or dry peas. In three studies, the
animals were intragastrically tubed with dry beans and/or dry bean fiber [85, 87], whereas in
the remaining 11 studies grain legumes or their fractions were included in the diet. Ten studies
were conducted with rats and four with mice. All but one study [79] used azoxymethane
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(AOM), which is commonly used in animal models of human CRC to induce DNA mutations
by alkylating DNA primarily at the O6-guanidine residues [90, 91]. After AOM induction, we
promoted tumor formation in two unpublished studies with the colon irritant dextran sodium
sulfate (DSS); this is an established inflammation-associated animal model of human CRC [92].
Bean treatment started before tumor induction in nine studies, after tumor induction in three,
and after tumor induction and promotion in two studies. Study endpoints were ACF in seven
studies, adenomas and adenocarcinomas in five, and tumors in two studies.

Reference Animal Diet, animals/diet Experimental design Tumor endpoints

Colorectal tumors:

Hughes et al.,

1997 [78]

F344 male

rats

Control: casein diet, n =

20

Treatment:

Pinto beans (59% of diet)

n = 21

2× AOM (15 mg/kg BW) a wk

apart

First AOM: 6 wk of age

Diet Start: 1 wk

after last AOM

Study End: 34 wk

after last AOM

Colon adenomas,

adenocarcinomas

(incidence and

multiplicity)

McIntosh et al.,

1998 [79]

Sprague-

Dawley

male rats

Control: modified

AIN-1976, n = 18

Treatment:

Chickpeas (45% of diet)

n = 18

3× DMH (15 mg/kg BW) a wk

apart

First DMH: 9 wk of age

Diet start: 4 wk before

first DMH Study End: 22 wk

after last DMH

Colon adenomas +

adenocarcinomas

(incidence and

multiplicity)

Hangen &

Bennink, 2002

[80]

F344 male

rats

Control: modified

AIN-93G, n = 28

Treatments:

Black beans (75% of diet)

n = 32

Navy beans (75% of diet)

n = 28

2× AOM (15 mg/kg BW) a wk

apart

First AOM: 7 wk of age

Diet Start: 4 wk before

first AOM Study End: 31 wk

after last AOM

Colon adenomas,

adenocarcinomas

(incidence and

multiplicity)

Bobe et al., 2008

[81]

Ob/Ob

male mice

Control: modified

AIN-93G, n = 40

Treatments:

Navy beans (74% of diet)

n = 34

Navy bean ethanol

residue (74% of diet) n =

38

Navy bean ethanol

extract (9% of diet) n=39

2× AOM (7 mg/kg BW) a wk

apart

First AOM: 7 wk of age

Diet Start: 1 wk

after last AOM Study End:

27 wk after last AOM

Colon adenomas,

adenocarcinomas,

tumors (incidence and

multiplicity)

Grain Legume Consumption Inhibits Colorectal Tumorigenesis: A Meta-Analysis of Human and Animal Studies
http://dx.doi.org/10.5772/63099

157



Reference Animal Diet, animals/diet Experimental design Tumor endpoints

Rondini &

Bennink, 2012

[82]

F344 male

rats

Control: modified

AIN-93G, n = 25

Treatment:

Black beans (74% of diet)

n = 25

2× AOM (15 mg/kg BW) a wk

apart

First AOM: 4 wk of age

Diet Start: 1 wk

after last AOM

Study End: 31 wk

after last AOM

Colon adenomas +

adenocarcinomas

incidence

Bobe et al.

(unpublished)

FVB/N

male mice

Control: AIN-93G, n = 32

Treatment:

Navy bean ethanol

extract (10% of diet) n =

33

AOM (10 mg/kg BW)

6 wk of age

DSS (2% drinking water) 1

week starting 1 wk after

DSS Diet Start: 10 days after

AOM

Study End: 102 days after

AOM

Colorectal tumor

multiplicity

Bobe et al.

(unpublished)

FVB/N

male mice

Control: AIN-93G, n = 20

Treatment:

Navy bean ethanol

extract (10% of diet) n =

20

AOM (10 mg/kg BW)

6 wk of age

DSS (2% drinking water) 1

week starting 1 wk after

DSS Diet Start: 10 days after

AOM

Study End: 53 days after AOM

Colorectal tumor

multiplicity

Colon aberrant crypt foci (ACF):

Rijken et al., 1999

[83]

Sprague-

Dawley

male rats

Control: AIN-93M, n = 15

Treatment:

Dry peas (5.9% of diet) n

= 15

2× AOM

(15 mg/kg BW) 3 d apart

First AOM: 10 wk of age

Diet Start: 2 wk before

first AOM Study End: 11 wk

after last AOM

Colon aberrant crypt foci

(total, multiplicity)

Murillo et al.,

2004 [84]

CF-1

female

mice

Control: Harland Teklad

4% Diet 7001, n = 5

Treatment:

Chickpea flour

(10% of diet) n = 5

2× AOM (10 mg/kg BW) a wk

apart

First AOM: 5 wk of age

Diet Start: 2 wk before

first AOM Study End: 7 wk

after last AOM

Control: 1.13 ACF/cm2

colon 0 >4 foci ACF

Chickpea: 0.41 ACF/cm2

colon 2.2 ± 0.37 >4 foci

ACF

Boateng et al.,

2007 [89]

F344 male

rats

Control: AIN-93G, n = 8

Treatments:

Pinto beans (20% of diet)

n = 8

2× AOM (15 mg/kg BW) a wk

apart

First AOM: 7 wk of age

Diet Start: 3 wk before

Control: 183 ± 23 ACF

Pinto: 64 ± 8 ACF

Peas: 40 ± 4 ACF
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Reference Animal Diet, animals/diet Experimental design Tumor endpoints

Black-eyed peas (20% of

diet) n = 8

first AOM Study End: 9 wk

after last AOM

Feregrino-Perez

et al., 2008 [85]

Sprague-

Dawley

male rats

Control:2018S Harland

Teklad n = 10

Treatments: Daily

intragastric tubing

Dry bean Negro 8025 (3.2

g/kg BW) n = 10

Dry bean Negro 8025

fiber fraction (1.84 g/kg

BW) n = 10

2× AOM (15 mg/kg BW) a wk

apart

First AOM: 5 wk of age

Diet Start: 1 wk before

first AOM Study End: 5 wk

after last AOM

Distal colon zone:

Control: 4.2 ± 0.6 ACF

Dry bean: 2.2 ± 0.6 ACF

Fiber fraction: 2.0 ± 0.8

ACF

Using DAPI stain

Faris et al., 2009

[86]

F344 male

rats

Control: AIN-93G, n = 10

Treatments:

Whole lentils (5% of diet)

n = 10

Split lentils (5% of diet) n

= 9

2× AOM (15 mg/kg BW) a wk

apart

First AOM: 10 wk of age

Diet Start: 5 wk before

first AOM Study End: 17 wk

after last AOM

Control: 178 ± 24 ACF

12.0 ± 1.04 >3 foci ACF

Dry bean: 70 ± 8 ACF

2.66 ± 0.09 >3 foci ACF

Fiber fraction: 94 ± 17

ACF

5.56 ± 1.05 >3 foci ACF

Vergara-

Castaneda et al.,

2010 [87]

Sprague-

Dawley

rats male

Control:2018S Harland

Teklad n = 12

Treatments: Daily

intragastric tubing Dry

bean

Bayo Madero (5.7 g/kg

BW) n = 12

Dry bean Bayo Madero

fiber fraction (2.5 g/kg

BW) n = 10

2× AOM (15 mg/kg BW) a wk

apart

First AOM:

6 wk of age

Diet Start: 1 wk before

first AOM Study End: 7 wk

after last AOM  

Distal colon zone:

Control: 6.6 ± 0.40 ACF

Dry bean: 0.8 ± 0.20ACF

Fiber fraction: 1.5 ± 0.72

ACF

Feregrino-Perez

et al., 2014 [88]

Sprague-

Dawley

male rats

Control:2018S Harland

Teklad n = 10

Treatments: Daily

intragastric tubing

Dry bean Negro 8025

fiber fraction (1.84 g/kg

BW) n = 10

2× AOM (15 mg/kg BW) a wk

apart

First AOM: 5 wk of age

Diet Start: 1 wk before

first AOM Study End: 5 wk

after last AOM

Distal colon zone:

Control: 21.0 ± 3.25 ACF

Fiber fraction: 7.20 ± 2.95

ACF

AOM: azoxymethane; BW: body weight; DMH: dimethylhydrazine; DSS: dextran sodium sulfate. ACF were measured
using methylene blue staining unless otherwise noted.

Table 4. Experimental design and endpoints in animal studies of grain legume intake and colorectal tumorigenesis.
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Table 5 shows individual and pooled risk estimates of the seven studies with tumor endpoints.
For calculating risk estimates of tumor and ACF multiplicity, we calculated standardized mean
differences and variation from reported means and standard errors. Grain legume consump-
tion inhibited colorectal tumorigenesis. The protective effect of dry bean consumption
attenuated with progressive tumor stage from tumor incidence (OR = 0.21; 95% CI: 0.11–0.43)
over combined adenoma and adenocarcinoma incidence (OR = 0.32; 95% CI: 0.17–0.60) to
adenocarcinoma incidence (OR = 0.38; 95% CI: 0.20–0.74). Similarly, the protective effect of
grain legume consumption attenuated from ACF multiplicity (OR = 0.07; 95% CI: 0.03–0.14
with stronger effect on larger ACFs; Table 4) over tumor multiplicity (OR = 0.24; 95% CI: 0.16–
0.36) to combined adenoma and adenocarcinoma multiplicity (OR = 0.52; 95% CI: 0.31–0.89)
and adenocarcinoma multiplicity (OR = 0.52; 95% CI: 0.27–0.98; P = 0.04). Given that the chemo-
preventive effect of legumes was reported when grain legumes were fed before as well as after
tumor induction and/or tumor promotion, we conclude that grain legumes inhibit colorectal
tumorigenesis at different tumor stages.

Reference, Legume Adenocarcinoma Adenoma + adenocarcinoma Tumor
Year Incidence Multiplicity Incidence Multiplicity Incidence Multiplicity
Hughes1997 PintoBW 0.38

(0.10–1.45)
0.19
(0.06–0.60)

0.31
(0.08–1.19)

0.20
(0.06–0.66)

Hangen2002 BlackBW 0.19
(0.05–0.77)

0.25
(0.09–0.75)

Bennink2012 BlackBW 0.15
(0.04–0.52)

Hangen2002 NavyBW 0.30
(0.08–1.11)

0.22
(0.07–0.68)

Bobe2008 NavyBW 1.55
(0.38–6.31)

1.11
(0.48–2.55)

0.59
(0.18–1.98)

0.90
(0.39–2.07)

0.32
(0.11–0.95)

0.29
(0.12–0.68)

Bobe2008 NavyBER 0.24
(0.03–2.28)

0.56
(0.25–1.26)

0.23
(0.07–0.71)

0.61
(0.27–1.36)

0.23
(0.07–0.71)

0.22
(0.09–0.51)

Bobe2008 NavyBEE 0.23
(0.02–2.16)

0.45
(0.20–1.01)

0.09
(0.01–0.74)

0.46
(0.21–1.04)

0.08
(0.02–0.38)

0.17
(0.07–0.39)

BobeUnpubl NavyBEE 0.20
(0.05–0.74)

BobeUnpubl NavyBEE 0.34
(0.14–0.85)

McIntosh1998 ChickpeaW 2.50
(0.65–9.65)

Pooled odds ratio 0.38
(0.20–0.74)

0.52
(0.27–0.98)

0.32
(0.17–0.60)

0.52
(0.31–0.89)

0.21
(0.11–0.43)

0.24
(0.16–0.36)

For multiplicity, odds ratios and their 95% confidence intervals were estimated from reported means and standard
errors by calculating standardized mean differences. B: bean; BEE: bean ethanol extract; BER: bean ethanol residue; W:
whole beans; multiplicity: number of tumor/animal.
The P-values are in this order from left to right: P=0.004; P = 0.04; P< 0.001; P = 0.02; P< 0.001; P< 0.001

Table 5. Risk estimates with 95% confidence intervals (in parentheses) for colorectal tumors in animal studies.
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The animal studies have limitations: first, in four of the seven tumor endpoint studies, grain
legumes made up the majority of the diet (45–75%; Table 4) [78–80, 82], concentrations that are
not relevant for human consumption. However, three studies showed a protective effect of the
ethanol extract of navy beans fed at 10% of the diet (Table 4); the 2015 U.S. dietary guidelines
for legume consumption are equivalent to ~2–5% of the diet [76], concentrations that should
be evaluated in future animal studies. Second, none of the reported studies included more than
one grain legume dosage (Table 4), demonstrating a need for dose-response studies in animal
CRC models. Third, only one study examined the chemo-preventive effect of grain legumes
other than dry beans at the tumor stage (Table 4), indicating a need to evaluate the chemo-
preventive effect of other grain legumes at the tumor stage. Fourth, further research is needed
to demonstrate a chemo-preventive response in female animals, as all but one study [84]
examined the response in male animals. Despite these limitations, there is sufficient evidence
to conclude that at least dry bean consumption probably decreases colorectal tumorigenesis
in male animal models of human CRC.

5. Chemo-preventive compounds in grain legumes

To elucidate which fractions of grain legumes have chemo-preventive properties against
colorectal tumorigenesis, we previously fractionated cooked navy beans using 60% ethanol
[81]. Both the ethanol extract and the residue inhibited colorectal tumorigenesis in AOM-
induced mice, indicating that both fractions contain chemo-preventive compounds. Several
studies conducted by Loarca-Piňa’s research group demonstrated that the non-digestible
fraction of dry beans inhibits colon ACF formation in AOM-induced rats [85, 87].

Grain legumes contain three major carbohydrate classes that inhibited colorectal ACF and
tumor formation in animal CRC models: resistant starches (cooked grain legumes contain 0.6–
4.2%), soluble fiber including the flatulence-inducing α-galacto-oligosaccharides stachyose,
verbascose, and raffinose (cooked grain legumes contain 0–3%), and insoluble fiber (cooked
grain legumes contain 15–23%); concentrations of those carbohydrate classes vary considera-
bly based on processing methods [1, 2, 7, 93–97]. Resistant starches can be effective at 5–10%
of the diet [7, 98–102]. Soluble fiber can inhibit ACF and tumor formation at 2.5–15% of the
diet [103, 104], and insoluble fiber can be effective at 5–15% of the diet [104–107].

Grain legumes contain lipid classes that inhibited colorectal ACF and tumor formation in
animal models of CRC. Plant sterols (e.g., β-sitosterol, campesterol, and stigmasterol; 0.13–
0.24% of grain legume dry weight) attenuate colorectal tumorigenesis in animal studies (gastric
intubation of 10–20 mg β-sitosterol/kg body weight or 0.2% of diet) [108–111]. Saponins (0.1–
0.5% of grain legume dry weight) are glycolipids, which inhibit ACF formation at concentra-
tions of 0.01–3% of the diets [112–116]; the lower concentrations are relevant for human diets
[117]. Processing can decrease saponin concentrations in grain legumes up to 40% [118].
Besides containing phytosterols and saponins, grain legumes are low in lipids and have a
favorable fatty acid composition for chemo-prevention (i.e., low in saturated fatty acids and a
low Ω3: Ω6 fatty acid ratio) [3, 119, 120].
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Grain legumes contain protein classes that inhibited colorectal ACF and tumor formation in
animal models of CRC. Trypsin and chymotrypsin protease inhibitors of the Bowman-Birk
family inhibit at dietary concentrations of 0.1–0.5% of the diet or 20 mg/kg of body weight for
colorectal ACF and tumor formation [121–125]. Lectins (i.e., agglutinins; 0.1–3.5% of grain
legume dry weight), which are glycoproteins that bind to epithelial cells, have been shown to
inhibit cancer growth in animal tumor transplant studies and colon cancer cells [126–128].
Grain legumes have significant α-amylase inhibitor activity, which may indirectly decrease
CRC risk by increasing microbial butyrate production and decreasing blood glucose and
insulin after starch consumption [129]. The importance of Bowman-Birk inhibitors, α-amylase
inhibitors, and lectins is debatable because 80–90% is lost and denatured during soaking and
cooking, respectively [7, 96, 117].

The mineral and vitamin content of grain legumes may confer chemo-preventive effects against
colorectal tumorigenesis. Grain legumes contain high concentrations of folate (83–174 μg/100
g of cooked legumes) and potassium (0.29–0.51% of cooked legumes) and low concentrations
of sodium (<0.01% of cooked legumes) [7]. A high ratio of potassium to sodium has been
reported to decrease CRC risk, and folate intake is established as a protective nutrient against
CRC [130, 131]. Chemo-preventive compounds associated with minerals are phytates (0.1–
1.9% of grain legume dry weight), the primary plant storage forms of phosphorus [117].
Processing decreases phytate content up to 50% [97, 132]. Phytates inhibit ACF formation at
dietary concentrations of 0.02–2% [133–136]; the lower concentrations are relevant for human
diets [137].

Grain legumes are a good dietary source of phenolic compounds (1–10 mg gallic acid equiv-
alents/g legume, which is ~0.1–1.0% of grain legume dry weight) [117, 118, 132, 138, 139], many
of which inhibited colorectal ACF and tumor formation in animal models of CRC. The three
major phenolic groups with chemo-preventive properties are flavonoids (0–5 mg catechin
equivalents/g legume), proanthocyanidins (i.e., condensed tannins; 0.2–12 mg catechin
equivalents/g legume), and phenolic acids (0.02–0.1% of cooked legume dry weight) [118, 132,
138, 139]. Flavonols (i.e., kaempferol and quercetin), anthocyanidins, and flavan-3-ols are major
flavonoid classes in grain legumes that have been demonstrated by us and others to inhibit
colorectal tumor multiplicity at concentrations of 0.05–0.3% of the diet [140–144]. Proantho-
cyanidins can inhibit ACF formation at concentrations of 0.002–1% of the diet or by gavage
[145–147]. Phenolic acids include ferulic acid (~0.003% of grain legume dry weight) that
inhibited ACF formation at concentrations of 0.25–1% [148–150] and sinapic acid that inhibited
ACF formation at concentrations of 20–80 mg/kg of body weight by gavage [151]. The con-
centrations of the phyto-estrogen group’s isoflavonoids (0.005–0.095 mg/kg grain legume) and
lignans (0.018–0.266 mg/kg grain legume) are relatively low in grain legumes [152] and, thus,
probably contribute little to the chemo-preventive effect of grain legumes. Processing and
cooking of grain legumes result in various losses of phenolic compounds, which decreased not
only their antioxidant activities but also their antiproliferative properties against colon cancer
cells [118, 132, 139]. Thus, food processing plays an important role for the chemo-preventive
role of grain legumes [117, 127].
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There is sufficient evidence that grain legumes contain various compounds that can exert
chemo-preventive effects against colorectal tumorigenesis in animal models of CRC at
concentrations that are relevant for human diets. One has to consider that several of the
aforementioned compounds are developed by plants as defense mechanisms against herbi-
vores and are at sufficiently high concentrations to be toxic. It has to be noted that most of the
aforementioned compounds do not show a consistent chemo-preventive effect in animal
models of CRC; further investigation is necessary to elucidate factors, including food proc-
essing, that affect the response. Further studies are also warranted to examine whether the
effect of the chemo-preventive compounds differs when they are consumed alone or in
combination.

6. Molecular mechanisms by which grain legumes inhibit colorectal
tumorigenesis

Given the complex mixture of chemo-preventive compounds in grain legumes, it comes to no
surprise that grain legumes inhibit hallmarks of cancer [153, 154] at multiple stages of the
colorectal tumorigenesis process. (A) Grain legumes can inhibit tumor induction (i.e., the
transition from normal to initiated colorectal epithelial cells). First, grain legumes can alter the
metabolism of carcinogens (i.e., increased degradation) and pre-carcinogens (i.e., decreased
activation). This is accomplished directly by activating the expression of cytochrome P450 and
UDP-glucuronosyltransferase (UGT) protein-encoding genes in the liver and indirectly by
altering microbiome metabolism of carcinogens (e.g., decreased β-glucuronidase activity) in
the colon [87, 155]. Second, grain legumes can act as antioxidants and induce genes involved
in the detection and repair of mutated genes [156, 157]. Third, grain legumes may prevent the
exposure of colorectal epithelial cells to carcinogens in food and bile by (a) binding carcinogens
with non-digestible grain legume compounds [87, 158] and by (b) increasing mucin production
of colorectal epithelial cells [159]. Fourth, grain legumes can decrease the colon pH [80] and
promote the growth of probiotic bacteria [160] and thereby inhibit the growth of genotoxic
bacteria [161, 162].

(B) Grain legumes can inhibit tumor promotion and progression (i.e., the transformation from
initiated to neoplastic colorectal epithelial cells). First, grain legumes can increase apoptosis
through the mitochondrial-mediated and death receptor-mediated pathways in neoplastic
colorectal epithelial cells [88, 156] and colon cancer cell lines [163–165]. Second, grain legumes
can inhibit survival of neoplastic colorectal epithelial cells by attenuating the NF-kB pathway
[163–165]. Third, grain legumes can decrease proliferation of neoplastic colorectal epithelial
cells [156, 163] by inducing genes that promote cell cycle arrest in G1/S and G2/M phases
through p53-mediated pathways [82, 156, 165]. Fourth, grain legumes can inhibit survival and
proliferation of neoplastic cells by suppressing the Akt (protein kinase B)/mTOR (mammalian
target of rapamycin) pathway and upregulating the AMPK pathway, as shown for mammary
carcinomas [166, 167]. In addition, upregulation of the AMPK and p53 pathway and suppres-
sion of the Akt/mTOR pathway may limit the nutrient and energy supply for the rapidly
growing cancer cells and thereby inhibit tumor growth and progression [168–170]. Fifth, grain
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legumes can inhibit survival and proliferation of neoplastic colorectal epithelial cells through
increased butyrate production in the colon [80, 163, 171].

(C) Grain legumes can inhibit tumor promotion and progression indirectly by limiting and/or
resolving inflammation. Inflammation creates a tumor microenvironment that encourages
neoplastic transformations and promotes survival and proliferation of neoplastic colorectal
epithelial cells. We previously showed in the Polyp Prevention Trial that the chemo-preventive
effect of grain legumes against CRA recurrence is linked to a decrease in serum interleukin
(IL)-6 [172]. Moreover, we demonstrated in AOM-induced ob/ob mice that navy beans and
their ethanol extract decreased concomitantly colorectal neoplasia and IL-6 in serum and colon
mucosa [173]. In support, others demonstrated that grain legumes can attenuate the DSS-
induced increase in serum cytokine concentrations [139, 159]. Multiple mechanisms are
involved in the anti-inflammatory effect of grain legumes: first, grain legume fractions can act
as antioxidants and inhibit NF-kB pathways and gene expression of COX-2 and tumor necrosis
factor (TNF)-α [165, 174]; second, grain legume consumption can increase mucin gene
expression in the colon and thereby preserve epithelial integrity during inflammation [82,
159]; third, grain legumes can promote microbial butyrate production in the colon, which has
anti-inflammatory and antitumor effects [175]; fourth, grain legumes can promote the growth
of probiotic bacteria [160] and thereby inhibit the growth of inflammation-inducing bacteria
[162, 176].

There is sufficient evidence in human studies, animal models, and colon cancer cell lines for
multiple molecular pathways/mechanisms by which grain legume consumption inhibits early
stages of colorectal tumorigenesis (i.e., tumor induction, promotion, and progression). The
main molecular mechanisms involved are preventing genotoxic hits, DNA repair, inhibiting
survival and proliferation of neoplastic colorectal epithelial cells, preventing, limiting, and/or
resolving inflammation, and limiting nutrient supply for neoplastic colorectal epithelial cells.
Identification of grain legume response biomarkers (i.e., indicators that are linked to both grain
legume consumption and inhibition of colorectal tumorigenesis such as IL-6) will be important
to evaluate the efficacy of grain legumes in future long-term intervention studies in humans.
Grain legume consumption alters the composition and metabolism of colon microbiota, cell
cycle kinetics, and metabolism of colorectal epithelial cells, as well as host immune response
and barrier function of the colon. Future studies are warranted to examine how grain legumes
and their components alter the interplay between microbiota and host. Furthermore, more
research is needed to understand the effect of grain legumes on the later stages of colorectal
carcinogenesis (i.e., metastasis and invasion).

7. Conclusions

The objective of this chapter was to evaluate the evidence of a chemo-preventive role of grain
legume consumption in colorectal tumorigenesis. Based on a literature review and meta-
analyses, we conclude that there is limited evidence from case-control and cohort studies
suggesting that daily grain legume consumption decreases CRC risk in humans. There is
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considerable preclinical evidence in animal models of CRC that supports a chemo-preventive
effect of dry beans in male animal CRC models. There is sufficient evidence that grain legumes
contain various compounds that can exert chemo-preventive effects against colorectal
tumorigenesis in animal models of CRC. This is accomplished at concentrations that are
relevant for human diets through multiple molecular pathways, which are critical for
induction and clonal expansion of neoplastic colorectal epithelial cells. In summary, on the
basis of the current evidence, daily grain legume consumption confers chemo-preventive
effects against CRC. The next step is to conduct a long-term grain legume CRC prevention
intervention study in humans to further elucidate the effects of daily grain legume consump-
tion using grain legume exposure biomarkers to validate compliance and grain legume
response biomarkers to monitor efficacy.
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