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Abstract

Atomic force microscopy (AFM) has proven itself to be a powerful and diverse tool for
the study of microbial systems on both single and multicellular scales including complex
biofilms. This chapter will review how AFM and its derivatives have been used to
unravel the nanoscale forces governing the structure and behavior of biofilms, thus
providing unique insight into the control of microbial populations within clinical and
industrial environments. Diversification of AFM‐based technologies has allowed for the
creation of a truly multiparametric platform, enabling the interrogation of all aspects of
microbial systems. Advances in traditional AFM operation have allowed, for the first
time, insight into the topographical landscape of both microbial cells and spores, which,
when combined with high‐speed AFM's  ability  to  resolve the structure  of  surface
macromolecules, have provided, with unparalleled detail, visualization of this complex
environmental interface. The application of AFM force spectroscopies has enabled the
analysis  of  many  microbial  nanomechanical  properties  including  macromolecule
folding pathways, receptor ligand binding events, microbial adhesion forces, biofilm
mechanical  properties,  and  antimicrobial/antibiofilm  affectivities.  Thus,  AFM  has
offered an outstanding glimpse into the biofilm, how its inhabitants create and use this
complex adaptive interface, and perhaps most importantly what can be done to control
this.

Keywords: atomic force microscopy, imaging, force measurement, nanomechanical
properties, adhesion

1. Introduction

Biofilms remain a primary concern in industrial and clinical fields. The tendency of plankton‐
ic cells to form these structures in moist environments and the resulting increase in resistance
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to antimicrobials, in combination with an increasing frequency of innate antimicrobial resist‐
ance, demonstrates the continued need for novel biofilm control strategies and innovative
methods to unravel the fundamental properties of biofilms. Atomic force microscopy (AFM)
has proven to be a useful addition to the microscopy family providing imaging and force
measurement capabilities that can interrogate the nanoscale properties of surfaces. Indeed, AFM
has been used with great success to provide novel insight into the structure of biofilms and the
interplay of interaction forces and mechanical properties that govern the behavior of biofilms
and their response to chemical and physical attack as part of control strategies. AFM can be used
to study whole biofilms or the influence of their component parts, from bacterial surface proteins
to extracellular polysaccharides (EPSs) and individual cells. This chapter will first introduce the
reader to the basic operation of the instrument relevant to the study of biofilms. The different
capabilities of the instrument and their application to biofilm will be then reviewed with examples
from the authors’ laboratory.

2. AFM basic principles

AFM was first developed as part of the family of scanning probe microscopies in 1986 [1]. It
was very quickly applied to the imaging of biological materials, including DNA, bacteria,
viruses, and mammalian cells [2]. The components of atomic force microscope is shown in
Figure 1. A very small, sharp tip held at the free end of a cantilever systematically scans a
surface of interest to generate a topographical image. The tip is held in intimate contact with
the surface, and its apex has a radius of curvature in the range of nanometers, which sets the
image resolution. As the tip is systematically scanned across the surface, it encounters surface
forces that cause the cantilever to be deflected. The deflection of the cantilever is monitored

Figure 1. A schematic representation of the AFM instrument.
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by the displacement of a reflected laser beam and used to create a topographical image. In
contact mode, the forces of the bent cantilever keep the tip in intimate contact with the surface.

When imaging a soft sample such as a bacterial cell surface or biofilm, the tapping mode or
intermittent contact mode is used. The intermittent contact of this imaging mode reduces the
degree of friction or drag on a sample compared with imaging in contact mode. To achieve the
intermittent contact, a vibrating cantilever technique is used, and the changes in the vibrational
parameters are monitored as the cantilever scans the surface. In response to changes in
topography, the piezo‐scanner moves up and down to maintain a constant vibration of the
cantilever, and the feedback signal is used to produce the image data set. A further advantage
of this imaging mode is that measurement of the phase angle between the free oscillation at
the end of the cantilever and the imposed driving vibration provides a map of phase angle
across a surface; this data, referred to as phase imaging, is captured simultaneously as the
standard topographical data. This phase angle is often used to qualitatively distinguish
between materials on the surfaces of heterogeneous samples as the phase angle change is a
function of the mechanical properties of the surface and the area of contact between the AFM
tip and the surface.

The advantages of tapping mode have meant that this is the most frequently used method
when imaging soft biological samples. The authors have found tapping mode in combination
with phase imaging extremely useful in identifying structures on the cells and within biofilm.

Figure 2. AFM tapping mode images of microbial biofilms: (a) Candida tropicalis (50 µm2), (b) Staphylococcus aureus (10
µm2), (c) Pseudomonas aeruginosa (10 µm2), (d) mixed species biofilm at an industrially fouled reverse osmosis mem‐
brane (10 µm2).
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Figure 2 presents AFM tapping mode images of a range of microbial biofilms. When imaging
biofilms, the mechanical robustness of a biofilm should be considered; it is simpler to image
model biofilms with minimum components, which have been grown on adhesion‐promoting
substrates, compared to biofilms that have been sampled from natural or industrial settings
that consist of multiple components (Figure 2d). As AFM imaging is a technique that relies on
surface contact, the imaging of a hydrated diffuse biofilm is very difficult without fixation
methods.

Figure 3. A typical force measurement between an AFM cell probe (Saccharomyces cerevisiae) and a surface in a process‐
relevant environment (10-2 M NaCl).

The AFM can measure the forces of interactions between surfaces, which have obvious
implications in the study of biofilms. AFM has been added to the group of instruments that
can be used to study microbial interactions involved in biofilm formation. Such instruments
include flow chambers, micropipette aspiration, and centrifugation devices. However, AFM
has the advantage of allowing the imaging and identification of points of interest on a surface
prior to the measurement of the forces of interaction. AFM also allows the direct measurement
of forces as opposed to techniques that estimate force from the application of shear to a cell
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population. In addition, surface forces are measured over very small contact areas, minimizing
contamination problems. To generate a force–distance curve, the deflection of the cantilever
is recorded as a function of tip‐to‐sample separation, as the piezo‐scanner of the AFM brings
the sample and tip together. The deflection of the cantilever is converted to a value of force
using Hooke's law. Force–distance curves are characteristic of the system under study. For
biofilms, they have features that reflect the chemical and physical properties of the surfaces
that are interacting, including the substrate, the cells, EPS, and the AFM probe. Figure 3 shows
a typical force measurement between an AFM cell probe (Saccharomyces cerevisiae) and a surface
in a process‐relevant environment (10-2 M NaCl) [3]. The force is plotted as a function of
separation distance and shows some key features for the characterization of the surfaces
involved. At position D (referring to Figure 3), the cantilever and probe are moving inde‐
pendently of the surface, as the probe is brought into contact with the surface, until at position
F it encounters physiochemical forces, which in this case are repulsive and likely to be
dominated by electrostatic forces. The extension of the scanner continues to push the cell into
contact (F–G) until a predefined loading force is reached, whereupon the movement is reversed
and the probe is retracted away from the surface by the retraction of the piezo‐scanner. At
position C, the bending of the cantilever is inflected and the forces in the bent cantilever begin
to rupture the adhesion between the cell and the surface. If this was an inorganic hard particle,
a sudden break in contact would be observed. However, with the yeast cell with macromo‐
lecular tethers (and any deformable surface), a sequential breaking of contact is observed as
the forces in the bent cantilever peel the cell from the surface, until at position E the cell probe
is moving independently of the surface. The adhesion measurement is determined from the
difference in force between positions C and D. Integration between the approach and diffrac‐
tion curves gives an estimate of the energy of adhesion. The mechanical properties of the
system can be determined from the contact region (F–G and A–C) and the adhesion component
of the curve (C–D).

Operating the AFM as a nanoindenter allows the measurement of microbial cell and biofilm
mechanical properties, which include elastic moduli and turgor pressure [2]. Figure 4 shows
how the indentation depth is measured by comparison between force curves measured at a
reference hard surface and at the softer sample surface. The indentation depth can then be
plotted as a function of applied force and compared with a theoretical framework to quantify
sample mechanical properties. The most commonly used theoretical framework is based on
the Hertz model, which describes the elastic deformation of two perfectly homogeneous
smooth bodies touching under load. The geometry of the system is assumed to consist of an
indenter with a parabolic shape and a sample that is of much greater thickness than the
indentation depth. The Hertz model that describes force on the cantilever F(δ) as a function of
indentation depth is:
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Figure 4. The measurement of indentation depth (δ) by comparison of the slope of the contact region of force curves at
hard and soft surfaces.

where the tip is approximated with the radius R, the depth of indentation is denoted by δ, E
is the Young's modulus of the sample surface, and ν is the Poisson ratio for the sample material
(assumed to be a value of 0.5 for biological samples). Other theoretical frameworks have been
used to interrogate AFM nanoindentation curves such as the JKR (Johnson, Kendall, Roberts)
model. When choosing which model to use and interpreting the data, a number of consider‐
ations should be taken into account. The mechanical properties of microbial cells and biofilms
will not be homogeneous across their surface and will be a convolution of whole cell com‐
pression as well as material close to the tip. In addition, nanoindentation is an invasive
technique which applies a disruptive force to the surface. Repeated indentation at the same
location on the cell or biofilm will disrupt the structure and its mechanical robustness render‐
ing subsequent measurements invalid.

3. Imaging

Examination of microbial systems in native, aqueous environments is central to the validity of
the data collected. However, AFM imaging in such environments is often difficult due to a
number of factors. For instance, microbial cells are often attached to the surface via week
Lifshitz‐Van der Waals forces, and as a result are easily disrupted by the scanning of an AFM
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cantilever, resulting in the destruction of the sample [4, 5]. Additionally, microbial cells are
often motile with some recent papers suggesting that motility may even be the largest
governing factor in the physiological imaging of microbes [6]. Consequently, immobilization
of microbial cells prior to analysis has become imperative to the application of AFM in the
imaging of microbial systems.

3.1. Cell immobilization for single‐cell analysis

Immobilization of microbial cells has often proven to be the most problematic step in the
imaging of microbial samples under aqueous conditions. The immobilization must be secure
enough to withstand the lateral forces exerted by the tip during scanning, but benign enough
to not force physiochemical, physiological, or nanomechanical changes in the sample. As a
result, a number of different techniques have arisen; these protocols can be broadly divided
into two categories: mechanical, whereby microbial cells are physically trapped within a
porous media, and chemical, whereby chemical treatment of the substrate is used to facilitate
binding.

Initial studies into the use of mechanical protocols to immobilize microbes utilized agar or
membranes with pore diameters similar to the cell diameter of the organism to be captured [4,
7–9] (Figure 5). Later work expanded upon this through the use of more complex or function‐
alized surfaces such as lithographically patterned silica [5, 10–12]. Though, while mechanical
entrapment offers immobilization secure enough to alleviate the destructive scanning of the
cantilever, the immobilization is sporadic and unpredictable, reducing the reproducibility of

Figure 5. A yeast cell (Saccharomyces cerevisiae) trapped in a microfiltration membrane prior to AFM study.
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the results. Recent work by Formosa et al. [13] developed a protocol in which selective tuning
of polydimethylsiloxane (PDMS) stamps were used to immobilize spherical microorganisms
of various sizes. The protocol requires the creation of a glass and chromium blank that holds
the microstructure, from which the pattern is transferred to a silicon wafer by deep reactive
ion etching. The dimensions of the silicon master can be varied with the group reporting
dimensions of 1.5–6 µm wide, a pitch of 0.5 µm, and a depth of 1–4 µm, accommodating a
variety of target cell sizes. A PDMS stamp is then cast from the silicon wafer master and cells
deposited through the use of convective and capillary forces. Further work by the group has
shown this immobilization technique to be an effective way to immobilize spherical cells, in
this case S. cerevisiae and Candida albicans, and, spore of Aspergillus fumigatus with no effect on
viability [14–17]. Additionally, the technique allows for the rectification of one of AFMs
greatest flaws, analysis of multiple cells to achieve statistical significance. Previously, this has
not been feasible using other immobilization techniques due to the relatively low rate and
sporadic nature of deposition; thus, the development of a platform capable of producing arrays
of uniform cells for multiparametric analysis will increase the reliability of AFM analysis.
However, this technique is limited due to its inability to immobilize nonspherical organisms.

A number of chemical fixation methods for the immobilization of microbial cells have been
used, including, poly‐L‐lysine, trimethoxysilyl‐propyl‐diethylenetriamine, mica, and carbox‐
yl group cross‐linking [18–22]. While these techniques offer a high level of immobilization,
some cross‐linking agents have been shown to negatively impact the nanocharacteristics and
viability of the immobilized cells [23]. Despite this, some techniques, such as the use of
photocatalytically active silicon, also offer a high level of cell orientation and organized
immobilization not offered by conventional mechanical techniques, which, depending on
application may be favorable over the associated reduction in viability [24]. Other recent
advances also indicate that the addition of divalent cations, such as Mg2+ and Ca2+, and glucose
may provide optimal attachment without the associated reduction in viability. In one such
study, Lonergan et al. [25] reported that Escherichia coli cells immobilized on poly‐L‐lysine in
0.01× PBS‐S, with a rehabilitation period in minimal media were sufficiently immobilized to
perform AFM analysis while maintaining membrane integrity.

3.2. Cell topography

Analysis of the topography of single cells has proven to be a powerful addition in the real‐time
visualization of cellular surface structures. However, the structural landscape of metabolical‐
ly active cells exists in a constant state of flux; thus, the ability to image surface morpholo‐
gies under physiological conditions is vital for characterization. Previous studies have utilized
AFM to image a number of key microbial features. In 2010, negative mutants of cell wall
polysaccharide (WPS-) of Lactococcus lactis were shown by AFM imaging to exhibit a 25 nm
corded like structure perpendicular to the long axis of the cell; further mutagenesis studies
confirmed that these structures were not due to hydrolysis, and AFM chemical spectroscopy
(imaging with a functionalized tip) using LysM confirmed that the bands consisted of
peptidoglycan [26]. In a more recent study, an in‐depth analysis of Streptococcus agalactiae
(Group B Streptococci) peptidoglycan confirmed the presence of approximately 25 nm corded
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structure running perpendicular to the long axis of the cell [27]. However, during this study
the bands were found to periodically interlink to form a net‐like structure. Imaging of other
Group B Streptococci showed that this net‐like structure, while exhibiting some variation in
pore dimensions, remained constant. The group then imaged a number of cell wall deficient
mutants in an attempt to identify structural abnormalities associated with other surface
macromolecules; however, no significant alterations in the peptidoglycan net to suggest
macromolecular anchoring were observed. Significant alterations in the solute concentration
were found to alter the net‐like structure with the group observing a near doubling (∼25 to
∼47 nm) of the peptidoglycan bands, suggesting that the net‐like structure may influence
adaptation of the cell to changes in turgor pressure. Similarly, the growth phase of the organism
was found to have a significant effect on peptidoglycan structure; topographical images of a
high proportion of Group B Streptococci grown to stationary were shown to exhibit a tenden‐
cy to express a rough peptidoglycan layer as opposed to the previously described net‐like
structure. Upon further investigation, this roughness was shown to consist of highly or‐
dered strands aligned in parallel with the divisional plane having a periodicity of approxi‐
mately 4.5 nm; the group suggests that these may in fact be glycan strands; however, the
structure and density of the strands prevented the researchers from coming to a clear
conclusion.

As outlined above, in vitro AFM has been used to map the topography on cellular structures
at a number of cell life stages, as in the work of Abscali et al. [28] who examined changes in
the macromolecular structure of the cell wall of Streptomyces coelicolor during its life cycle from
vegetative hyphae to spores. Yet, such studies merely offer a snapshot of cellular processes.
Thus, several studies have aimed to image the dynamics of cellular processes. Germination of
Bacillus atrophaeus has been successfully imaged; post exposure to a germination solution, the
rodlets comprising the spore coat were shown to disassemble and form 2–3 nm etched pits [29].
The pits were subsequently shown to mature into highly orientated fissures perpendicular to
the rodlet orientation, beneath which a highly ordered hexagonal structure was observed. The
study continued to image the germinating spore through to the emergence of the germling
cell, and the spore fissures were observed to form apertures of approximately 70 nm that
dilated with germination. In vitro analysis of the germling confirmed the presence of vegeta‐
tive cell wall structures prior to emergence, which were similar to those of mature vegeta‐
tive cells.

3.3. Microbial cellular surface layers

Microbial membranes consist of a number of surface layers, the outermost of which, the S‐
layer, consists of a monomolecular layer composed of self‐assembling single proteins, or
glycoprotein monomers exhibiting oblique, square, or hexagonal symmetry. Due to its self‐
assembling nature and its role in many innate immunities associated with microbes, S‐layers
have become the focus of many AFM studies. Initial studies into S‐layers successfully imaged
PS2 monomers of Corynebacterium glutamicum and in the process highlighted the presence of
a bilayer of hexagonally arranged monomers and a nanogrooved substrate; further work
suggests that this substrate may be involved in the creation of the monolayer [30, 31].
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In a recent study, the nanomechanical and structural properties of Propionibacterium freuden‐
reichii surface layer protein A (SlpA) was characterized [32]. SlpA was found to consist of a
hexagonal p1 monomer with a high level of disorder; upon heating to 45°C, SlpA was found
to maintain structural integrity post recrystallization. However, a marked reduction in the
elasticity of the SlpA layer from 4.2 ± 0.9 MPa at 25°C to 1.8 ± 0.3 and 0.9 ± 0.1 MPa for 35
and 45°C, respectively, demonstrate that while topographically comparable, the nanomech‐
nical properties of SlpA had altered. Additional work conducted by the group showed the
SlpA exhibited the same, albeit less pronounced, behavior in response to alteration in pH. The
topographical characteristics of SlpA were maintained to pH 3; however, a corresponding
reduction in the elastic properties was observed: 5.7 ± 1.4 MPa and 5.5 ± 1.6 MPa at pH 6.7
and 5, respectively, followed by a reduction to 2.2 ± 0.3 MPa at pH 3. The group attributes this
reduction in the elastic properties to be a result of a number of physiochemical interactions
such as the reduction in pH below that of the theoretical pI of SlpA and protonation of the
disordered regions.

3.4. High‐speed AFM

While spatial resolution using AFM has remained high, the lack of high temporal resolution
has limited the application of topographical studies of microbial systems. Optimal scan speed
varies; however, the minimum is restricted to the order of approximately 30 s for an AFM
image. This level of temporal resolution is sufficient for the imaging of relatively low
fluctuating structures and processes, such as S‐layers and cell division. The high‐resolution
imaging of surface macromolecules has remained elusive due to the limited speed of standard
AFM imaging. However, the recent development of high‐speed AFM (HS‐AFM) has enabled
the resolution of such structures primarily due to HS‐AFMs to show exceptional temporal
resolution (>100 ms) and significantly reduced scanning forces [33–35].

In one such series of studies, the dynamics of conformational changes of bacteriorhodopsin
(bR) was successfully imaged in response to electrochemical radiation stimulation [33, 36, 37].
During initial studies, the group observed conformational changes in the form of a 0.69 ± 0.15
nm displacement of the center mass of the trimer structure when exposed to green light.
Furthermore, the group was able to ascertain that these changes in the center mass were
actually the result of the displacement of trimer monomers into close proximity with mono‐
mers of neighboring trimers via displacement of the E–F loop. Through combination of
selective mutagenesis and HS‐AFM, Yamashita et al. [33] were able to characterize the
monomer association of bR trimers. During the study, five bR mutants were created: W10I,
Y131I, W12I, F135I, and W12F, and HS‐AFM used to image the structure of each trimer within
the membrane. The study showed that W12I and F135I mutants were unable to form mem‐
brane‐stable trimers, with only a small number of trimers assembling and quickly dissipat‐
ing. Conversely, W10I, Y131I, and W12F were able to form a stable trimer structure, suggesting
the presence of an aromatic residue at positions 12 and 135, which is essential to the forma‐
tion of a stable trimer.

Further HS‐AFM studies have been able to track the motion of membrane‐bound macromo‐
lecules through three‐dimensional space. In one such study, the rotational and translational
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membrane dynamics of outer‐membrane protein F (OmpF) were imaged to an optical
resolution of approximately 750 Å [38].

While initial studies using HS‐AFM revolved around its ability to resolve surface macromo‐
lecules, some focus has shifted to topographical analysis. In the first such study, the surface of
Magnetospirillum magneticum was found in contradiction to initial models to consist of a very
highly ordered series of nanometer‐sized pores consistent with that of porin molecules [34].
Further work set out to ascertain if this was in fact a characteristic of all Proteobacteria, wherein
Oestreicher et al. [39] imaged the surfaces of the E. coli and Rhodobacter sphaeroides. This was
shown to be the case, and nanometer‐sized pores of 8 and 6.6 nm were observed for E. coli and
R. sphaeroides, respectively. Oestreicher et al. [39] concluded that due to the similarities in
distribution and size when compared to M. magneticum (7 nm), and with the crystal struc‐
ture size estimation of the outer membrane proteins of E. coli (OmpF and OmpC)––7.5 and 7.38
nm, respectively––that they must also be porins.

4. Force spectroscopy

AFM force measurement has been used extensively to study biological systems. In the past,
AFM was limited to physics laboratories, and microbiologists focused on the benefits of AFM
to imaging of single bacteria; bacterial studies were restricted to model surfaces, and the
heterogeneity inherent to natural systems compromised quantification and discouraged the
use of AFM force measurement. However, AFM technology has been disseminated to
microbial laboratories that have the advantage of prior knowledge to guide AFM research
strategies. In addition, the advent of improved data capture rates has permitted statistically
viable AFM measurements to quantitatively characterize biological systems including
biofilms. Modern AFM studies of biofilm orchestrate AFM imaging of microbial surfaces with
force spectroscopy to unravel structure function relationships. The force‐curves measured at
surfaces have a number of components which can be used to characterize the mechanical and
interaction properties of biofilms that are now discussed.

4.1. Microbial surface proteins

Surface macromolecules play an essential role in a number of physiological processes essential
to the success of microbes including adhesion and existence within a biofilm; the activity of
these molecules has been shown to be dependent on a number of environmental conditions
[40–45]. Consequently, research into the nanomechanical and physiological properties of
surface macromolecules has expanded over the last decade with the fundamentals of AFM tip‐
molecule binding forces in vitro having become well documented [46–48].

Several models have been described to interpret the nanomechanical properties of long‐chain
surface macromolecules. Typically, these models revolve around the use of the Worm‐Like
Chain (WLC) and Freely Jointed Chain (FJC) models, as these allow for the description of force‐
curve profiles and the definition of tether and binding partner interaction entropy, thus leading
to contour length (L0) definition [49, 50]. Defining L0 offers a number of advantages, such as
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the filtering of noise and predictions in the unfolding pathways of uncharacterized protein
complexes [51, 52]. If the structure is unknown, L0 allows collaboration of experimentally
derived data to a theoretical value defined from the estimation of the sum of individual
components fitted to a normal (Gaussian) distribution, therefore acting as a confirmation that
the interaction is the one of interest, while offering a level of insight into the unbinding
pathway. Studies conducted by Farrance et al. [53] expanded on traditional models, where‐
by a physical basis for the prediction of L0 was described. The model, through the use of
theoretically idealized tethering surfaces and the probability of two such chains meeting, is
able to predict the distributions expected from experimentally derived data with a high level
of agreement to existing studies.

4.2. Functional proteins at microbial surfaces

Microbial adhesion to biotic and abiotic surfaces is reliant on a number of macromolecular
interaction including binding of small microbial peptides (SMPs), capsules, recognition
proteins, fimbriae, and flagella. Single‐molecule force spectroscopy (SMFS) has been used to
characterize a number of microbial surface‐bound receptors including antibiotic receptor
ligand sites, fimbriae, flagella, and adhesins [54–56]. In an interesting example of the use of
SMFS, the holdfast proteins of Caulobacter crescentus were characterized for adhesion to
surfaces of varying polarities [57]. Holdfasts were allowed to adhere to each surface for an
extended period of time greater than 16 h and imaged via AFM to determine the height and
diameter; it was found that the holdfast height varied independently of the surface polarity;
from 5 to 100 nm, however, the average height varied between 30.6 ± 2.4 nm and 21.5 ± 0.9 nm
for mica and graphite, respectively. Holdfast foot diameter was also found to vary on both
surfaces: 90.2 ± 2.7 nm for mica and 119.2 ± 4.1 nm for graphite; however, both showed large
distributions in the data––30–280 nm and 45–450 nm, respectively. The group then proceed‐
ed to access the binding strength on holdfast‐coated cantilevers to mica, graphite, clean glass,
and 3‐TMSM‐treated glass, and the maximum adhesion force was measured––0.05, 0.08, 0.13,
and 0.66 nm, respectively. Adhesion was concluded to be primarily a result of residence time
and surface polarity.

4.3. Microbial mechanical properties

One of the distinct features of AFM over other SPMs is its ability to quantifiably resolve
physiochemical properties of materials at the nanoscale. To date, AFM has been used to resolve
the nanomechanical behaviours of a bacteria in a number of ways, from single‐cell indenta‐
tion studies to the characterization of molecular appendages such as pili and flagellum [58].
A number of techniques can be employed dependent on the type of nanomechanical meas‐
urement that is required, with most alterations involving functionalization of the cantilever.
All nanomechanical studies revolve around the use of the force‐curve analysis as detailed
earlier in this review.
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5. Adhesion studies

Biofilm adhesion qualities have been measured through AFM in a number of ways. EPS has
been confirmed as a major mechanism controlling biofilm adhesion [59–62]. As a result, a
number of studies have been undertaken to assess the effect of growth conditions, chemical
treatments, and novel antimicrobials on the production of EPS and the reduction in adhe‐
sion. Oh et al. [61] used AFM force spectroscopy to study the influence of nutrient concentra‐
tions on E. coli biofilm maturation. The adhesion of an AFM tip at the surface of the biofilm
increased as biofilms matured, indicating a release and accumulation of extracellular poly‐
meric substances over the cell surface after primary colonization. Nunez et al. [63] used AFM
imaging and force measurement to study the action of Bdellovibrio bacteriovorus on E. coli
biofilms. AFM characterized the change in E. coli cells, as they were attacked by the predato‐
ry bacterium with cells changing from rod‐shaped to a round shape, with a shrunken texture
and the visible coil of B. bacteriovorus growing inside. Bdellovibrio bacteriovorus was shown to
prevent biofilm formation and destroy established biofilms. This work was extended by Volle
et al. [64] who used force spectroscopy to observe that the spring constant of predated E. coli
cells was three times softer than that of normal cells and that there was change in cell wall
morphology on predation, as there was much larger adhesion forces between an AFM tip and
predated cells. This important work demonstrates that dynamic events in living unfixed cells
can be characterized and investigated using AFM. Rodriguez et al. [65] used AFM force
measurements to study the formation of Listeria monocytogenes biofilms at stainless steel
surfaces. They found that the adhesiveness of biofilms was not influenced by contact time,
loading force, or relative humidity, but surface chemistry is important; force measurements
using SiO2 and polyethylene colloid probes showed that L. monocytogenes cells within a biofilm
adhered more strongly to hydrophobic surfaces. The mechanical properties of the surface that
biofilms form at are important determinants on the properties of the biofilm.

Oh et al. [66] studied the formation of Pseudomonas aeruginosa biofilms at a range of surfaces
including steel, rubber, and polypropylene. Biofilms were treated with hot water, and all
surfaces with and without biofilms were characterized using AFM. Force spectroscopy
revealed that adhesion was greatest at the untreated biofilm surfaces and that the reduction
of adhesion after hot water treatment indicated the removal of extracellular matrix from the
biofilm.

6. Indentation studies

AFM has been implemented to analyze several mechanical properties of microbial cells, such
as elasticity and hardness [56, 67, 68]. Typically, this is done using the Hertz model, wherein
the indentation of a material by a nonadherent probe can be used to calculate the elastic
modulus of the substrate. Volle et al. [69] measured cell spring constants and AFM tip adhesion
on cells within the biofilms of E. coli, Pseudomonas putida, Bacillus subtilis, and Micrococcus luteus.
Gram‐positive bacteria were observed to have largest spring constants with all cells having
values in the range 0.16 ± 0.01 to 0.41 ± 0.01 N/m. These workers also demonstrated that the
mechanical properties of chemically fixed cells are significantly different. Fang et al. [60] also
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used AFM force spectroscopy to quantify tip‐cell adhesion and surface elasticity of sulfate‐
reducing bacteria (SRB) biofilms. To achieve this, they used a force volume technique to map
forces across the biofilm surface. Greater adhesion was measured at the cell–cell and cell–
substratum interfaces; this was compared to a smaller and constant force at the bacterial cell
surfaces and argued to be due to the accumulation of EPS at the interfaces. Another interest‐
ing study conducted by Longo et al. [70] demonstrated that AFM can be used to characterize
the variations in nanomechanical properties across a single cell membrane. In the study,
nanoindentation was performed across the surface of an immobilized E. coli cell, and it was
found that there was a variation in the Young's modulus of the cell membrane. Upon further
analysis, this heterogeneity was attributed to the presence of submembranous structures,
hinting at the possibility that AFM may be capable of resolving the organization of such
structures.

As confidence in the technique grew, focus of nanoindentation studies shifted from single cells
to biofilms. However, use of the classic Hertz model to interpret the viscoelastic properties of
biofilms, until recently, remained problematic [71, 72]. In a recent example of one such study,
the elastic moduli of P. aeruginosa was found to be heterogeneous in nature, varying between
approximately 40 and 45 kPa [73]. SEM and AFM topographical studies of the same sample
showed variations in packing density of the cells throughout the biofilm, offering possible
insight into the cause of the variation in mechanical properties. However, these variations may
also be the result of underlying physiological structures such as nutrient channels. Finite
element analysis performed by the group showed that the variation may be a result of the
combined effect of the EPS and cell orientation.

There have been further studies into the nanomechanical properties of biofilms that have
focused on the effect of growth conditions and novel antimicrobials on the nanostructure of
biofilms. One such study showed that increasing concentrations of CaCl2 resulted in not only
an increase in EPS production but also alterations in EPS structure of Pseudomonas fluoro‐
scenes biofilms [74]. Consequently, a reduction in stiffness and increase in both viscosity and
adhesive forces were observed. In another study, AFM was used to assess the changes in the
nanomechanical properties of P. aeruginosa and Acinetobacter baumannii biofilms after treat‐
ment with OligoG. During the study, OligoG was found to significantly lower Young's moduli
and increase the surface roughness (Ra) when compared to untreated biofilms [75]. However,
this study highlights one of the main challenges facing the characterization of biofilms via
AFM: continuity of sample preparation. In the aforementioned study, the biofilms were dried
prior to analysis, while others made use of hydrated samples. While both techniques remain
valid, interstudy comparisons will remain difficult until a level of interstudy continuity is
achieved.

7. Single‐cell force spectroscopy

Single‐cell force spectroscopy (SCFS) has become an essential tool in unravelling the forces
involved in intermicrobial, host–microbe, and substrate–microbe binding. This is of particu‐
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lar importance in the field of biofilm formation as the forces governing such interactions are
pertinent in the initiation of a biofilm. The research was pioneered by Bowen et al. [76] who
first constructed a cell probe to measure the adhesion of S. cerevisiae cells at surfaces (Figure 6).
The author then moved this on to look at the adhesion of fungal and bacterial spores [77, 78].
Protocols for the construction of cell probes have varied in the method of cantilevers func‐
tionalization: electrostatic compounds; poly(ethyleneimine) (PEI), poly‐L‐lysine, or hydropho‐
bic substances, and the use of glue, chemical fixation, and bio‐inspired wet adhesives have all
been used, and in the type of probe that was created: single versus multicellular [3, 79–85].
While all methods succeeded in the creation of a cellular functionalized tip and the acquisi‐
tion of adhesive force‐curve data, the results and validity of the techniques varied.

Figure 6. Scanning electron images of AFM probes used in single cell force spectroscopy (SCFS). (a) Saccharomyces cere‐
visiae and (b) Aspergillus niger.

Recently, a method for the direct immobilization of single microbial cells was developed [86].
A colloidal probe was attached to the tip of a cantilever and coated in polydopamine, and a
single microbial cell was then attached to the colloid particle. Fluorescence microscopy
validated the viability and orientation of the microbial cell, and force‐curve analysis was
performed across a number of surfaces and a number of probes to ensure reproducibility of
results. The technique was shown to offer a high level of cell orientation; thus, a high level of
control of the surface area, ensuring reproducibility of results and enabling statistical analy‐
sis of force curves. The group went on to create cellular probes functionalized with Lactococ‐
cus plantarum, C. albicans, and Staphylococcus epidermidis to prove the versatility of the
technique [84].

Studies using SCFS have characterized a number of microbial binding structures, such as
bacterial pili, to show how these structures influence microbial adhesion. During one such
study, the nanomechanical binding of P. aeruginosa type IV pili to a hydrophobic substrate was
examined. During the study, type IV pili were shown to have the same constant force plateaus
associated with a nanospring‐like mechanism; this may be explained by the fracturing of
internal amino acid bonds and the unravelling of the three‐dimensional structure to resist the
increase in mechanical force. This model is consistent with the previous interpretations of
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Gram‐negative pili structure [87–89]. In a similar study, strains of Lactococcus lactis were
immobilized onto polyethyleneimine (PEI)‐coated cantilever, and adhesion to a pig gastric
mucin‐coated substrate was characterized [90]. In the study, long‐range adhesion was found
to be predominantly the result of pili‐mediated binding, while surface adhesion was primar‐
ily mediated by mucus‐binding adhesins.

The implementation of SCFS has not been limited to the characterization of microbial binding
to surfaces. While uncommon, the use of SCFS to characterize microbial aggregation and the
formation of heterogeneous biofilms has grown as a field in recent years. One such interac‐
tion to be studied is the common co‐colonization of S. epidermidis and C. albicans; a recent study
attempting to characterize such an interaction showed that despite the complex nature, SCFM
is able to offer a window of insight into the adhesion forces at work [91]. During the study, the
group was able to establish that S. epidermidis adhesion was strongly influenced by the life
stage of C. albicans and primarily mediated by the binding of long‐range macromolecules.

SCFS techniques have been used to study the mechanisms of biofilm control agents. Chaw et
al. [92] measured the adhesion between S. epidermidis‐coated AFM tips and a substrate before
and after addition of silver ions (50 ppb) to the liquid medium. For both S. epidermis strains
studied, the adhesion decreased and was argued to demonstrate how the biofilm matrix is
destabilized in the presence of silver ions.

8. Conclusion

AFM has provided researchers with the tools necessary to unravel the intimate, complex, and
traditionally illusive processes governing the formation and resilience of biofilms. AFM has
provided the platform necessary for the application of classical engineering techniques, such
as indentation analysis in the exploration of microbial nanomechanics with unprecedented
resolution. Nanoindentation studies have elucidated the heterogeneity of the microbial
membrane landscape. Studies utilizing nanoindentation have provided evidence of the
variation in Young's moduli of both single cells and biofilms, while also hinting at the possible
application of the technique in the visualization of the assembly of submembranous struc‐
tures. AFM studies have also demonstrated the importance of such measurements in the
evaluation of novel antimicrobial and other therapeutics.

Through the use of functionalized cantilevers, SMFS has revolutionized our understanding of
microbial cell surface topography and nanomechanical properties. Tips functionalized with
ligands or with alterations in hydrophobicity have been used to not only map the receptor
landscape at the macroscale, but also to visualize the structure of individual membrane‐bound
protein complexes. AFM quantification of the nanoscale forces of adhesion has offered
unparalleled insight into the forces governing microbial adhesion, a crucial event in biofilm
formation, and how these individual forces may be manipulated to promote dissolution. The
formation of cellular probes has been a mainstay of microbial‐based AFM, and this contin‐
ues with the recent development of protocols for the immobilization of a singular, highly
orientated bacterial cells.
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In conclusion, microbiology and the study of biofilms is no longer a microscience. The
elucidation of microbial behavior at the nanoscale has now become an essential avenue of
research in the understanding of the complex interplay of the microbial world, and AFM has
proved itself to be an essential tool in this endeavor. The increase in sensitivity and analyti‐
cal power, as well as ingenuity shown by researchers in the creation of more imaginative probes
will ensure that unique insights into biofilms through AFM will continue.
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