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Abstract

Changes in dietary habits and lifestyles associated with rapid economic growth have
dramatically increased the incidence of diabetes and related vascular complications.
Diabetic retinopathy (DR), a microvascular complication of diabetes, is associated with
both environmental and genetic factors. Several metabolic abnormalities are implicated
in its pathogenesis; however, the exact mechanism remains to be determined. Among
them, oxidative stress is expected to play an important role.

Environmental, genetic, and epigenetic factors affecting the oxidative stress responsi‐
ble for DR are reviewed in this paper. The knowledge about genetic biomarkers of DR is
quite extensive, whereas the awareness about epigenetics and epigenetic markers is only
beginning to be understood.

Modulation of epigenetic changes by pharmaceutical means may provide a potential
strategy to retard the progression of DR. In addition to the intense medical management,
these strategies include dietary measures (antioxidants) and the introduction of
epigenetic drugs, such as inhibitors of DNA methylation and histone demethylases.

Keywords: oxidative stress, diabetic retinopathy, gene polymorphisms, epigenetics,
medical management

1. Introduction

Diabetes mellitus is a group of metabolic diseases characterized by hyperglycemia resulting
from defects in insulin secretion, insulin action, or both [1]. The prevalence of diabetes has
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reached global epidemic proportions. According to the Internal Diabetes Federal (IDF) data,
there were 382 million people living with diabetes in 2013, whereas a further 316 million with
impaired glucose tolerance are at high risk of the disease—an alarming number that is set to
reach 471 million by 2035. Type 2 diabetes (T2DM) is the most prevalent type of diabetes. It is
by far the most common form of diabetes in elderly people, but is increasingly seen in children
and adolescents IDF, 2013 as well. The causes of the T2DM epidemic are embedded in a very
complex group of genetic and epigenetic systems interacting within an equally complex
societal framework that determines behavior and environmental influences [2]. The chronic
hyperglycemia of diabetes is associated with long-term damage, dysfunction, and failure of
various organs, especially the eyes, kidneys, nerves, heart, and blood vessels [1].

2. Pathogenesis of DR

Chronic elevation in circulating blood glucose damages blood vessels, which results in many
micro- and macrovascular complications. DR is one of the major microvascular complications
affecting the vision and is the leading cause of blindness in working-age adults [3]. It progresses
from mild nonproliferative abnormalities, characterized by increased vascular permeability,
to nonproliferative diabetic retinopathy (NPDR), characterized by vascular closure, to
proliferative diabetic retinopathy (PDR), characterized by the growth of new blood vessels in
the retina and the posterior surface of the vitreous [4] (Figure 1).

Figure 1. Major pathways implicated in the development of diabetic retinopathy.

It is a multifactorial condition for which the pathophysiology is incompletely understood [5].
There are many pathophysiological mechanisms through which diabetes might affect the
initiation and promotion of the many underlying pathologies associated with DR [6]. The
strong impact of hyperglycemia on DR incidence was confirmed by the Diabetes Control and
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Complications Trial (DCCT) and the UK Prospective Diabetes Study (UKPDS) clinical trials
[7,8]. Hyperglycemia activates several well-characterized biochemical pathways that play a
significant role in the development of DR [9]. Major pathways implicated in the development
of DR are the polyol pathway, protein kinase C (PKC) activation, accumulation of advanced
glycation end products (AGEs), oxidative stress, activation of the hexosamine biosynthesis
pathway, and growth factors (Figure 1) [3,6,9–11]. The activation of these pathways, in turn,
leads to the secondary production of reactive oxygen species (ROS) and the consequent
increase in oxidative stress that affects carbohydrates, lipids, proteins, and nucleic acids [9].
The oxidative stress plays a pivotal role in cellular injury from hyperglycemia.

3. Biomarkers

A biomarker is a measurable indicator of a specific biological state, usually one relevant to the
risk, presence, severity, prognosis, or predicted therapeutic response of the disease. In
medicine, biomarkers are often compounds isolated from serum, urine, or other fluids that can
be used as an indicator of the presence or severity of a particular disease state. Molecular
biomarkers can themselves take many forms, and as a consequence there are many strategies
available for their discovery and validation. Transcriptional profiling, DNA methylation
studies, and kinase sequencing have shown a strong potential for biomarker discovery in
several disorders; metabolomics approaches are beginning to show promise for metabolic
diseases, such as DR. Molecular biomarkers (DNA gene polymorphisms, RNA gene polymor‐
phisms, proteins) hold special promise for a wide range of clinical and biomedical applications
in several disorders, including DR [12].

4. Oxidative stress and its role in the development of DR

Oxidative stress may be defined as an imbalance between the level of ROS or oxygen radicals
and the antioxidant defenses in a biological system [10]. The term “ROS” includes all unstable
metabolites of molecular oxygen (O2) that have a higher reactivity than O2, such as the
superoxide radical (O2′•) and the hydroxyl radical (HO•), and nonradical molecules, such as
hydrogen peroxide (H2O2) [13]. To counteract the harmful effects of ROS, the cell has developed
antioxidant defense mechanisms. Antioxidants may be classified according to their structure
(enzymes or small nonenzymatic protein molecules) and antioxidants according to their source
(endogenous or exogenous). There are many enzymes with an antioxidant role in the organism,
such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), gluta‐
thione S-transferases (GSTs), and the thioredoxin (Trx) system [14,15].

Increasing data indicate that oxidative stress is involved in the development of DR [16–19].
The retina has a high content of polyunsaturated fatty acids and has the highest oxygen uptake
and glucose oxidation relative to any other tissue. This phenomenon renders the retina more
susceptible to oxidative stress [20]. Oxidative stress-induced biochemical changes contribute
to either functional or structural changes in the microvasculature in the retina [6]. Structural
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changes range from basement membrane thickening and microvascular cell loss to capillary
closure and acellular capillary formation [6]. ROS mediate these changes by both direct and
indirect mechanisms. Structural changes may both contribute to and result from functional
changes, such as altered blood flow, loss of intercellular junctions, and increased vessel
permeability. Thus, oxidative stress-induced structural and functional changes appear to be
highly interrelated in the pathogenesis of diabetic retinopathy (DR) [6].

Since long-term exposure to oxidative stress is strongly implicated in the pathogenesis of
diabetic complications, polymorphic genes of detoxifying enzymes may be involved in the
development of DR.

5. Polymorphisms in oxidative stress genes and risk for DR

Gene Polymorphism Relation
to DR
(significance
level)

Population Number of
patients

Author Year

MnSOD rs4880 VV genotype
(V16A)

Positive
association
(p = 0.006)

Slovenian 426 Petrovič
et al.

2008

AA genotype
(V16A)

Positive
association
(p = 0.03)

Finnish 755 Kangas-
Kontio
et al.

2009

C allele
(C47T)

No significant
association

Different
ethnic origins

(17 articles)
meta-analysis

Tian et al. 2011

(V16A) No significant
association

North Indian 758 Vanita 2014

AV genotype
(V16A)

Positive
association
(p < 0.0001)

Northern
Iranian

280 Haghighi
et al.

2015

CAT rs1001179 −262C/T No significant
association

Brazilian 520 Dos Santos
et al.

2006

GPx rs1050450 Pro197Leu No study on DR / / / /

GSTM1,
T1

Null
genotype

GSTT1null Positive
association
(p = 0.01)

Scottish 2015 Doney et al. 2005

GSTT1null
GSTM1null

Positive
association
(p < 0.0001)
Positive
association

Slovenian 604 Cilenšek
et al.

2012
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Gene Polymorphism Relation
to DR
(significance
level)

Population Number of
patients

Author Year

(p = 0.01)

GSTM1null Positive
association
(p = 0.04)

Iranian 115 Dadbinpour
et al.

2013

GSTM1null
GSTT1null

No significant
association

Iranian 404 Moasser
et al.

2014

GSTT1null Positive
association

Caucasian 3563 (meta-
analysis)

Sun et al. 2015

GSTP1 rs947894 Ile105Val No significant
association

Slovenian 604 Cilenšek
et al.

2012

A313G No significant
association

Egyptian 105 Zaki et al. 2015

Trx rs4485648 CT genotype
(T9921C)
TT genotype
(T9921C)

Positive
association
(p = 0.028)
Positive
association
(p = 0.026)

Slovenian 953 Mankoč
Ramuš
et al.

2015

Table 1. Genes affecting oxidative stress and diabetic retinopathy.

5.1. Manganese superoxide dismutase (MnSOD)

SOD catalyzes the breakdown of superoxide into H2O2 scavenging superoxide, and, because
of its mitochondrial localization, MnSOD is considered as the first line of defense against
oxidative stress [19]. A number of polymorphisms in the mitochondrial targeting sequence of
MnSOD have been described, but only the A16V (C47T; rs4880) evokes functional consequen‐
ces [21–24]. In fact, the alanine variant of MnSOD is thought to have an α-helical mitochondrial-
targeting domain, whereas the valine variant of MnSOD appears to have a β-pleated sheet
conformation. This conformational difference is thought to result in a more efficient transport
of the alanine variant of MnSOD into mitochondria than the valine variant [25]. Thus, the valine
variant has been associated with a 30–40% lower activity and an increased susceptibility to
oxidative stress [22].

There are only a few studies indicating the association of the V16A polymorphism of the
MnSOD gene with DR (Table 1). A meta-analysis comprising 17 studies, including type 1 and
type 2 diabetic patients from different ethnic origins, implied that the C (Ala) allele of the C47T
polymorphism in the MnSOD gene had a significant protective effect against microvascular
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complications (DR an diabetic nephropathy), although the aforementioned C allele had no
significant effect on the risk for DR alone [26]. Petrovič et al. have reported that the ValVal
genotype of the Val16Ala polymorphism of the MnSOD might be a risk factor for DR [27]. In
contrast, Kangas-Kontio et al. [24] could not confirm such association in their study, as they
found a significantly higher frequency of the AlaAla genotype in diabetics (type 1 or type 2)
with DR [24]. Furthermore, a study of northern Iranian T2DM patients revealed that the
heterozygosity in codon 16 of the MnSOD is considered as a risk factor for DR in T2DM [28].
However, another study from north India did not confirm an association between this SNP
and DR in T2DM patients [29].

These conflicting results may be due to the ethnical differences, different genetic backgrounds,
and sizes of the study populations.

5.2. Catalase (CAT)

CAT is a potent scavenger of H2O2 and provides a powerful antioxidant defense in the retina.
It prevents the formation of the more toxic hydroxyl radical (HO•) resulting from the reaction
of H2O2 and ferrous ions [30]. In structures like the eye, a significant contribution of CAT to
H2O2 detoxification was reported. The inhibition of catalase activity in the rabbit eyes increased
the H2O2 concentration 2.5-fold, which was not compensated for by GPx activity [31].

It has been shown that genetic variations in the CAT gene and its promoter may play a role in
a number of diseases associated with oxidative stress (e.g., atherosclerosis, hyperlipidemia,
diabetes mellitus, hypertension, and neurodegenerative diseases) [32]. Although catalase is
broadly studied, to the best of our knowledge, there is only one report in which no association
was observed between the −262C/T polymorphism in the promoter region of the CAT gene
and DR in Caucasian-Brazilian T2DM patients (Table 1) [33].

5.3. Glutathione peroxidases (GPxs)

GPxs are selenocysteine-containing enzymes that catalyze the reduction of H2O2 and lipid
hydroperoxides to H2O and lipid alcohols, respectively, in a reaction that utilizes reduced
glutathione (GSH) as a reducing co-substrate. There are five known forms of GPx: cellular
(GPx-1), gastrointestinal (GPx-2), plasma (GPx-3), phospholipid (GPx-4), and sperm (snGPx)
[34]. The most abundant intracellular isoform is GPx-1; it is known as the classical or cytosolic
antioxidant enzyme and is ubiquitously expressed. GPx-1 deficiency has been shown to
promote endothelial dysfunction, heart failure, and abnormal structural changes in vascula‐
ture and myocardium [2,34].

GPx-1 has four SNPs that change the amino acid produced, but only one has been studied
extensively in human disease [35]. This missense polymorphism changes the amino acid from
proline (Pro) to leucine (Leu) at position 197 (rs1050450) and was associated with a reduction
in transcription and enzyme activity of GPx‐1 [36].
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The GPx-1 Pro/Leu genotype has been linked to lung cancer, bladder cancer, and complications
in T2DM. Studies assessing the association between GPx-1 Pro197Leu SNP genotypes and
diabetes, stroke, brain tumors, and prostate cancer are inconclusive [35].

An abundance of GPx has been localized in the rabbit retina through immunohistochemistry
[37]. However, to date, there has been no study to show the association between GPx gene
polymorphisms and DR in T2DM patients (Table 1).

5.4. Glutathione S-transferases (GSTs)

The human glutathione S-transferases (GSTs) are a family of enzymes known to act in the body
as a defense system for neutralizing free radicals. They play an important role in the detoxifi‐
cation of electrophiles by glutathione conjugation [38]. GST enzymes are coded by at least eight
distinct loci: α (GSTA), μ (GSTM), θ (GSTT), π (GSTP), σ (GSTS), k (GSTK), o (GSTO), and τ
(GSTZ), each containing one or more homodimeric or heterodimeric isoforms. Three loci in
particular, GSTM1, GSTT1, and GSTP1, have received most of the attention. The GSTM1 locus
has been mapped on chromosome 1p13.3, while the GSTT1 and GSTP1 loci can be found on
chromosomes 22q11.2 and 11q13. Persons with homozygous deletions of either the GSTM1 or
GSTT1 loci have no enzymatic functional activity of the respective enzyme [39,40]. A GSTP1
variant with a substitution in the active site of valine for isoleucine at codon 105 (Ile105Val)
has a reduced ability to conjugate reactive electrophiles with glutathione and may therefore
sensitize cells to free radical-mediated damage. The Val105 variant has been associated with
susceptibility to smoking-related cancer and cardiovascular disease [41].

Numerous GST polymorphisms have been associated with an increased or decreased sus‐
ceptibility to several diseases [39,42–45], but only a few studies examined the association of
GST polymorphisms and DR in T2DM patients (Table 1). Cilenšek et al. proposed a protective
effect for the GSTM1-null genotype against retinopathy [46], explained by an up-regulation of
other antioxidant enzymes, such as MnSOD [47]. On the contrary, the result of the aforemen‐
tioned study is inconsistent with the study that showed a significant correlation between the
GSTM1-null genotype and DR [38]. The study carried out by Doney et al. demonstrated that
GSTT1-null individuals have a more generalized vasculopathy with an increased risk of
progression of both retinopathy and nephropathy [41]. These findings are in agreement with
the reports by Cilenšek et al., who recently reported that individuals homozygous for the
deletion of GSTT1 are at an ≈ 2-fold-greater risk of DR [46]. There is only one report suggesting
that GST allelic variants are not associated with individual susceptibility to DR [48].

Since the results of studies were conflicting and inconclusive, Sun et al. [49] performed a meta-
analysis. A total of five studies were included, all of which were conducted in Caucasians; one
study used T1DM patients, while other studies used T2DM patients. They reported that an
increased risk of DR was associated with the null genotype of GSTT1 and GSTT1 polymor‐
phisms, respectively [49].

As regards the GSTP1 gene polymorphism (rs947894), the domination of the G allele results
in the reduction of GSTP1 enzyme activity. Consequently, the cell becomes more susceptible
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to mutation and damage from exposure to electrophiles and ROS [50]. Despite the significance
noted in the G allele in the GSTP1 gene polymorphism among diabetic cases [51,52], two
studies failed to demonstrate any significant association between the GSTP1 polymorphism
and DR in T2DM patients [46,50].

5.5. Trx system

The Trx system is one of the central antioxidant systems in mammalian cells, maintaining a
reducing environment by catalyzing electron flux from NADPH through Trx reductase to Trx,
which reduces its target proteins using highly conserved thiol groups [53]. In mammals, both
Trx and TrxR are expressed as dedicated isoforms for either predominantly cytosolic (Trx1
and TrxR1) or mitochondrial (Trx2 and TrxR2) localization [54].

Up-regulation of thioredoxin-interacting protein (TXNIP), an endogenous inhibitor of Trx,
compromises cellular antioxidant and antiapoptotic defenses and stimulates pro-inflamma‐
tory cytokines expression [55]. Moreover, it is highly induced in the diabetic retina and plays
a critical role in DR pathogenesis [56–59]. Mankoč Ramuš et al. searched for a connection
between genetic variants within the mitochondrial Trx antioxidant defense system and DR
(Table 1). The aforementioned study was the first to explore the association between seven
single nucleotide polymorphisms (SNPs), including rs8140110, rs7211, rs7212, rs4755,
rs1548357, rs4485648, and rs5748469, in the Trx2/TXNIP and TrxR2 genes, and the risk of DR
in a case–control study of Slovenian patients with T2DM. They found an association between
the rs4485648 polymorphism of the TrxR2 gene and DR in Caucasians with T2DM [60].

6. The role of epigenetics in the pathogenesis of diabetic retinopathy

The heritable, yet reversible changes in the gene expression that are independent of the order
of the nucleotides within a gene are called epigenetic modifications. An organism’s genome
can be modified by naturally occurring ROS which are regularly produced as an inevitable by-
product of the normal oxygen metabolism. Oxidative stress is defined as a condition associated
with an aberrant increase in ROS generation in a cell.

In diabetes, oxidative stress is increased in the retina and its capillary cells and is considered
as one of the major metabolic abnormalities associated with the development of DR [61–63].
Arguably, the resulting hyperglycemia-induced ROS production may also promote epigenetic
alterations in DR. Fundamental epigenetic mechanisms include DNA cytosine methylation,
histone post-translational modifications (PTMs) in the chromatin, and noncoding RNAs
(ncRNAs), all of which can affect gene expression individually or cooperatively and modulate
disease states [64].

DNA methylation is considered to be one of the most important modifications leading to
disease [65]. In general, DNA methylation at 5′ cytosine of the CpG dinucleotides forms 5-
methylated cytosine (5mC). The formation of 5mC in the promoter regions leads to gene
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repression, whereas in genes bodies it might regulate transcription elongation and alternative
splicing [66]. DNA methylation is brought about by DNA methyltransferases (Dnmts), and
these enzymes use S-adenosyl methionine (SAM) as the methyl donor [67,68]. It is noteworthy
that some studies have begun to uncover the role of DNA methylation in diabetes and its
complications. In animal models, epigenetic silencing due to increased promoter DNA
methylation has been linked to islet dysfunction and development of diabetes [69,70]. In a case-
controlled study of 168 patients with type 2 DM, the global DNA methylation status was shown
to be associated with DR. Additionally, the DNA methylation status exhibited a strong
correlation with the progression of DR [71,72]. Apart from the increased activity of Dnmts in
the retina and its capillary cells [73], histone-modifying machinery is also affected in diabetes.

In mammalian cells, chromosomal DNA is packed into chromatin, and chromatin is made up
of subunits called nucleosomes. Each nucleosome consists of an octamer protein complex,
containing two copies each of core histone proteins H2A, H2B, H3, and H4 with 147 bp of
chromosomal DNA wrapped around it [74]. Despite such sophisticated DNA packaging, the
N-terminal of histones remains vulnerable for PTMs and can be acetylated, methylated, and
phosphorylated. Such epigenetic modifications alter the chromatin structure which subse‐
quently affects the binding of transcription factors and can regulate the selective expression
of genes in a particular tissue by acting as switches to control gene activity [75–79]. Acetylation,
the most common histone modification, which is generally associated with gene activation, is
regulated [80] by fine-tune between histone-acetylating and histone-deacetylating enzymes;
histone acetyltransferases (HATs) add the acetyl group, while histone deacetylase (HDAC)
removes the acetyl group. Histone K acetylation (Kac) is enzymatically mediated by HATs,
such as p300, the CREB-binding protein (CBP), and the Tat-interactive protein 60 kDa (Tip60).
In general, histone Kac (such as H3K9ac, H3K14ac, and H4K5ac) at gene promoters correlates
with transcriptional activation, whereas its removal is associated with gene repression [81].
Experimental evidence using in vitro and in vivo models of DR has shown increased HDACs
and decreased HAT activities and global acetylation [82]. However, Kadiyala et al. have
discovered an increased histone acetylation [83]. The reason for the divergence of the published
data is not yet known.

Histone methylation is the most complex modification, since its function depends on the
precise methylation site and the degree of modification. Lysine residues can have up to three
methylation sites, whereas arginines (R) can have up to two methylation sites [84]. Lysine
methylation (Kme) is mediated by histone K methyltransferases (HMTs) and removed by K
demethylases (KDMs) [85,86]. H3K4me1/2/3 and H3K36me2/3 are generally associated with
transcriptionally active genome regions, whereas H3K9me3, H3K27me3, and H4K20me3 are
related with repressed domains [81]. In the development of DR, superoxide levels are elevated
in the retina, antioxidant defense system is compromised, MnSOD is inhibited, and mitochon‐
dria are swollen and dysfunctional [77,87–90]. Overexpression of MnSOD protects diabetes-
induced mitochondrial damage and the development of DR [19,91]. Furthermore, SOD2 is
epigenetically modified with increased H4K20me3, H3K9ac, and p65 subunit of NF-kB at its
promoter/enhancer [77]. Besides, Zhong and Kowluru revealed that the exposure of retinal
capillary cells to high glucose decreases H3K4me at SOD2 promoter and enhancer regions,
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suggesting the role of H3K4 methylation in SOD2 repression [78]. The possible mechanism for
such decrease of methylation is the activation of lysine-specific demethylase-1 (LSD1).

Apart from histone epigenetic modifications, the role of ncRNA has evoked great interest
because gene expression can vary due to the function of RNA molecules themselves as well
as their interactions with DNA and/or proteins [92]. NcRNAs with less than 200 nucleotides
are generally classified as short (i.e., microRNAs), while all larger transcripts are regarded as
long ncRNA (lncRNA). There are several subtypes of long and short ncRNA species, many of
which are involved in the regulation of gene expression, and these can be further grouped
according to their genomic origins and biogenic processes [92]. Specifically, increasing
emphasis is being placed on the ability of miRNAs and lncRNAs to regulate gene expression
and modulate the actions of growth and inflammatory factors related to diabetic complications
[64]. MicroRNAs are a class of highly conserved 19–25 nucleotide single-stranded ncRNAs
that regulate gene expression at the posttranscriptional level [93,94]. They block gene transla‐
tion via binding to complementary regions of the mRNA. Micro-RNAs are also able to initiate
the degradation of mRNA strands to which they are bound [95]. Various recent reports have
demonstrated alterations in miRNA expression in diabetic eyes. Subjects with proliferative
and nonproliferative DR have different serum levels of miR-21, miR-181c, and miR-1179 [96].
Downregulation of miR-200b was observed in the retina in diabetes. In parallel, VEGF (target
of miR-200b) mRNA and protein were elevated [97]. It is now becoming clear that oxidative
stress causes the activation of the redox-sensitive transcription factors and altered expression
of a number of genes, including VEGF. Under diabetic conditions, it acts to increase vascular
permeability in the early stages of DR and fluid accumulates in the retinal tissue, causing
macular oedema and exudate [98]. Up-regulation of miR-195 is shown to downregulate
deacetylase Sirtuin 1(Sirt 1) [99], and in DR, the inhibition of Sirt 1 in the retina activates NF-
kB, a redox-sensitive proapoptotic factor [100]. On the other hand, up-regulation of miR-29b
exerted an antiapoptotic function in the retinal ganglion cells [101]. In addition, miRNAs are
stable in biological fluids, such as urine and serum [64], in this view; miRNAs appear to
represent valuable noninvasive biomarkers and a promising tool of new approaches for the
treatment of DR.

LncRNAs participate in a variety of biological processes, such as chromosome imprinting,
epigenetic regulation, cell-cycle control, cell apoptosis, and reprogramming of induced
pluripotent stem cells [102,103]. Recently, a human β-cell transcriptome analysis had indicated
that lncRNAs are dynamically regulated and abnormally expressed in type 2 diabetes [104].
The field of lncRNA research in ocular diseases is expanding rapidly. Notably, lncRNAs are
involved in the pathogenesis of DR through the modulation of multiple pathogenetic path‐
ways. Metastasis-associated lung adenocarcinoma transcript 1, a conserved lncRNA, may
become a potential therapeutic target for the prognosis, diagnosis, and treatment of DR [105].
The following year, Yan et al. revealed a regulatory role of the lncRNA myocardial infarction-
associated transcript (MIAT) in diabetes mellitus-induced microvascular dysfunction [106].

In the pathogenesis of DR, retinal mitochondria become dysfunctional, and capillary cell
apoptosis precedes the development of retinal histopathology associated with DR [107–109].
Mitochondrial homeostasis is maintained by a close cooperation between nuclear DNA and
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mitochondrial DNA (mtDNA) [110]. Due to the lack of supporting histones, and the close
proximity to the superoxide-generating electron transport chain, mtDNA is prone to oxidative
damage [111,112]. In diabetes, the activity of retinal Dnmts is increased, and the mtDNA
replication enzyme, the polymerase γ-1 (POLG1) gene, is hypermethylated and its binding at
the D-loop is impaired, resulting in decreased mtDNA biogenesis [73].

Lately, it is becoming apparent that small interfering RNAs ameliorated the hyperglycemia-
induced decrease in mtDNA transcription and the increase in apoptosis. In fact, Mishra and
Kowluru have recently discovered that modulation of Dnmt1 by pharmaceutical or molecular
means could help maintain mitochondrial integrity and serve as a potential strategy to inhibit/
halt the development of DR [113].

The “new antioxidant” concept represents the benefit of the consumption of fresh fruit and
vegetables in diabetic patients. Research on foods of plant origin shows that they contain many
non-nutritional compounds with an oxidative stress-protective effect (green tea, α-lipoic acid,
carnitine, glucosinolates, carotenoids, epigallocatechin, flavonoids, resveratrol, etc.) [100,114–
118]. It has been suggested that these compounds regulate free radical over-generation at the
mitochondrial level, increase intracellular defenses, and secrete and activate detoxifying
enzymes [100,118]. The same principles work for the aforementioned novel compounds.

7. Antioxidants and diabetic retinopathy

So far, oxidative stress has been demonstrated to play an important role in the development
and progression of DR; therefore antioxidants are expected to be helpful in preventing DR and
its progression [100,114–118]. Lipid peroxidation (LPO) is considered to be a major harmful
consequence of ROS formation, as it reflects irreversible oxidative changes of membranes.
Moreover, it must be emphasized that retinal cells are highly sensitive to oxidative damage
caused by the constant photochemical reactions, and the high concentrations of polyunsatu‐
rated fatty acids that constitute their membranes are directly affected by LPO.

Several antioxidants have so far been considered helpful in terms of prevention of DR and its
progression; however, only a few research groups demonstrated an important effect of
antioxidants in a few ocular disorders, such as in macular degeneration and in DR [119,120].

The administration of combined antioxidant therapy is helpful by improving antioxidant
capacity against ROS and protecting photoreceptors against radiation. Vitamins C and E act
by normalizing numerous chemical reactions to diminish aging and degeneration caused by
ROS. CAT is recommended in macular degeneration [119]. Just recently an interesting study
has been reported to demonstrate the effect of an adjunctive antioxidant treatment in subjects
with DR [120]. Either coenzyme Q10 (400 mg/day) or combined antioxidant therapy (composed
of 10 mg of lutein, 4 mg of astaxanthin, 1 mg of zeaxanthin, 180 mg of vitamin C, 30 mg of
vitamin E, 20 mg of zinc, and 1 mg of copper) proved to be effective and safe for improving
the oxidative stress in DR [120]. Moreover, ingestion of coenzyme Q10 and combined antiox‐
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idant therapy was significantly superior for decreasing the LPO levels, to values closer to
normal, an outcome similar to that reported recently in vitreous humor [120,121].

8. Pespectives

Changes in dietary habits and lifestyles associated with rapid economic growth have dramat‐
ically increased the incidence of diabetes and related chronic microvascular complications, i.e.,
DR. So far, several studies have demonstrated the importance of several environmental,
genetic, and epigenetic factors. Modulation of epigenetic changes by pharmaceutical means
may provide a potential strategy to retard the progression of DR. Besides intense medical
management, these strategies include dietary measures and the introduction of epigenetic
drugs, such as inhibitors of DNA methylation and histone demethylases. We presume that
intense medical management may be especially helpful with subjects having increased genetic
risk according to the findings of genetic studies.

To conclude, the impact of nutritional factors is still insufficiently understood for patients
with DR and well-designed prospective randomized clinical trials are needed to address the
role of nutritional factors, including antioxidants. Genetic biomarkers (DNA and RNA gene
polymorphisms) may be especially helpful in risk prediction, prognosis, or prediction of re‐
sponse of DR on drugs or nutritional factors. Finally, personalized medicine will most prob‐
ably have an important part in managing subjects at increased risk for DR according to
clinical, genetic, and epigenetic information providing that genetic tests (i.e., cost) become
more widely available and that the genetic markers will be confirmed in prospective studies.
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