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Abstract

This  chapter  is  about  the  minimum  time  evolution  between  two  quantum  states
considering the dynamics obeying either time-invariant Hamiltonians or time-varying
ones. Merit figures are defined to help quantum control designers to define optimiza‐
tion parameters. The expressions are derived from the time-energy uncertainty relations
and a practical case is studied as an example.

Keywords: merit figures, minimum time, quantum control, quantum evolution, un‐
certainty relations

1. Introduction

One of the most important problems in quantum control [1, 2], as well in quantum informa‐
tion processing and quantum computing [3, 4], is the transition from an initial state to a target
state in minimum time. In fact, the existence of the Decoherence phenomenon in quantum systems,
characterized by extremely short coherence times, presents serious difficulties on implement‐
ing quantum information devices [3, 5].

Indeed, one of the difficulties of the operational nature in quantum systems lies in the fact that
they are very sensitive to the presence of the external environment, which often destroys its
main quantum characteristics, which are essential, for example, for the implementation of
systems processing quantum information, as well as for the viability of quantum computing.
This is the problem of quantum decoherence. Thus, it is widely desirable for expedients and
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Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



methods of optimal control of time minimization, applied to quantum systems, be the most
efficient possible accordingly, whether of analytical nature, or of algorithmic and computa‐
tional nature. However, there are physical limitations inherent by quantum dynamics, which
relate to the minimum time, physically possible, so that a transition from quantum states
occurs.

Therefore, it is natural to ask, what is the shortest physically possible time for a quantum state
to evolve to another? The answer is provided by time-energy uncertainty relations. Opposing the
famous quantum uncertainty relations regarding non-commuting operators, for example,
position and momentum, time-energy uncertainty relations have a different mathematical and
physical nature; they are deeply rooted in quantum dynamics.

The Soviet physicists Leonid I Mandelstam and Igor E. Tamm carried out the first successful
theoretical approach addressing this issue, in the 1940s [6]. Under the hypothesis of time-
independent Hamiltonian, Mandelstam and Tamm deduced a quantum dynamical inequality
for time-energy, which sets up the temporal lower bound for a quantum state transition.

It is our goal, in the first section of this Chapter, to follow the theoretical steps of [6], translating
the deductions to the modern quantum mechanical formalism, and to perform detailed
analyses of the dynamical issues. Thereafter, we wish to apply the Mandelstam-Tamm time-
energy inequality to a quantum system of interest, for example, the Fahri-Gutmann model of
digital quantum computation [7], in order to obtain an analytical expression for the minimal
time required for a state transition in such a quantum system. These analyses allow us to
ultimately introduce a quantitative measure for the performance of time-optimal quantum
controls [8].

In a subsequent section, we shall drop the time-independent Hamiltonian hypothesis of
the original time-energy uncertainty relation and generalize it in the case of a time-
dependent Hamiltonian Ĥ = Ĥ (t).  This is a type of Hamiltonian operators one finds in
quantum control systems. In fact, appropriately shaped time-dependent electromagnetic
fields or laser beams act as control efforts u(t)  [1]. The theoretical starting point for such
generalization is to take into account the time evolution operator Û (t , t0)  for the time-
dependent Hamiltonian operator Ĥ = Ĥ (t).  Other approach to minimal time in quantum
dynamical evolution is when one considers time-dependent Hamiltonians to employ the
time-energy uncertainty relation obtained by Pfeifer [9].

2. Minimum time for quantum state transitions

Before tackling the control problem in quantum systems with respect to minimum time, that
is, to make a given state transfer from a prescribed initial state to a desired target state as quickly
as possible, one must take into account a fundamental issue of physical nature, which can be
stated as follows. Given an initial state |ψI , which evolves over time according to the
Schrödinger picture of quantum dynamics, that is, by means of the action of the time-evolution
operator, dependent on the Hamiltonian of the system, how fast is the transition to a final state
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-|ψF ? In other words, what is the shortest possible time so that a transition of quantum states
can occur?

This problem of a theoretical nature has been widely studied and it is closely linked to
dynamical characterizations derived from time-energy uncertainty relations. Such relation‐
ships differ fundamentally from the Heisenberg’s uncertainty principle (e.g., the simultaneous
measurement uncertainty of the position and the linear momentum of a quantum particle),
which comes from the incompatibility between the quantum observables, a physical fact that
arises, within the mathematical and theoretical framework of quantum mechanics, from the
non-commutability of the quantum observables involved in the measurement process. The time-
energy uncertainty, on the other hand, finds its roots in quantum dynamics, as we are about
to see.

From a historical point of view, since the so-called “old quantum theory,” pioneered by Max
Planck, Albert Einstein, Niels Bohr, among others, comprising the first two decades of the last
century and firmly established, was the Planck-Einstein equation, which relates the energy
and frequency of a photon through the Planck’s fundamental constant h:

E hn= (2.1)

As we know, such relationship is fundamental not only for the pioneering and groundbreaking
Planck’s hypothesis of quantization of radiation emission by an ideal black body, written in
1900 but also for the explanation given by Einstein for the photoelectric effect in 1905. More‐
over, the atomic model introduced by Bohr in 1913, which explained the stability of the
hydrogen atom by means of quantized energy levels corresponding to the stable possible orbits
for the electron; postulated in addition that, when jumping to an energy level (or orbit) more
or less energetic, the electron absorbed or emitted a quantum of energy, respectively, following
the relationship (2.1), corresponding to a photon with frequency ν.

So, given a trivial variation in frequency at a given time interval, such as

. ~ 1TnD D (2.2)

providing the same account of an “uncertainty” Δν for the frequency measurement of a
monochromatic radiation at the ΔT  time interval, by making use of the expression (2.1), we
are led to the following:

. ~E T hD D (2.3)

This “uncertainty relation” deduction is eminently heuristic, although expression (2.3) still has
experimental support within the physical conditions one has evoked to get it. Nevertheless, if
one tries to generalize it as something of the form:
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. ~H T hD D (2.4)

because the Hamiltonian corresponds to the energy of a mechanical system (classical or
quantum), one will run into serious difficulties. If H represents a quantum observable in the
current quantum mechanical sense, in the same way Paul Dirac had formally stated in the very
first edition of his famous treatise [10], dating back to 1930, we can no longer identify the energy
with the frequency of the monochromatic radiation times the Planck’s constant. Moreover,
expression (2.4) becomes inherently invalid and devoid of meaning for any quantum system
when properly mathematically treated.

The Soviet physicists Leonid I. Mandelstam and Igor E. Tamm in the 1940s carried out the first
successful theoretical approach addressing this quantum dynamical issue, the statement of a
meaningful time-energy uncertainty relation [6].

So, let us try to present their theoretical starting point drawing on modern quantum mechanical
formalism and its current notation, and finally arrive at the desired time-energy uncertainty
relation through rigorous deductions combined with detailed analyses. The goal is also to
modify it, in order to obtain variants of it and alternative expressions suitable for some
purposes, which will become clear in the sections ahead.

Let R
⌢

 and S
⌢

 be two generic Hermitian operators (quantum observables). The following
relationships hold [6]:

1ˆ ˆ ˆ.
2

S R RS SRD D ³ -
) ) )

(2.5)

ˆd 1 ˆ ˆ,
d

R
R H

t i
é ù= ë ûh

(2.6)

where ΔS
⌢

 and ΔR̂ are the square root of the mean square deviations (or variances) of operators

S
⌢

 and S
⌢

, respectively, also known as “dispersion operator,” or simply “standard deviation”
in statistics terminology. Expression (2.6) is nothing but the dynamical evolution equation in

the Heisenberg picture for the expectation value of observable R
⌢

. If we impose Ŝ ≡ Ĥ  on (2.5)
and apply the result of (2.6), the following inequality is obtained:

ˆd
ˆ ˆ.

2 d

R
H R

t
D D ³

h
(2.7)
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This expression provides, therefore, the connection between the standard deviation ΔĤ  of the
total energy and the uncertainty in determining the energy of an isolated system, the standard
deviation ΔR̂ (uncertainty) of some other dynamical quantity, relating them to the rate of
change of the expectation value of the same physical amount.

Relationship (2.7) may be expressed otherwise. Since the modulus of an integral is less than
or equal to the integral of the integrand modulus [11], upon performing an integration of (2.7)
from t to t + Δt, and taking into account that ΔĤ  is constant, one derives inequality:

ˆ ˆ
ˆ .

ˆ2
t t tR R

H t
R

+D -
D D ³

D

h (2.8)

in which the denominator of the right side of the inequality denotes the average value of ΔR̂
during the amount of time Δt.

It is appropriate to introduce, at this point, a special notation, ΔT, for the shortest time, during
which the average value of a certain physical quantity is changed by an amount equal to the
standard deviation thereof. Thus, ΔT can be called standard deviation (uncertainty) of time;
making use of this notation, (2.8) can be rewritten as follows:

ˆ .
2

H TD D ³
h

(2.9)

Now, let us consider a projection operator of form Λ̂≡ |ψ0 ψ0 | . One can immediately notice
that only one of its eigenvalues is unitary (when the projection operator is applied to the
eigenstate |ψ0 ) and all the others are zero. Thus, we have:

2ˆ ˆ ˆ ˆL = LL = L (2.10)

Indeed, Λ̂ is an idempotent operator, as one can easily verify.

Furthermore, the expectation value Λ̂  may be interpreted as the probability of finding the
quantum system in a specific quantum state |ψ , considering the initial state |ψ0 , since from
the average value (or expectation value) definition, we have
Λ̂ ψ ≡ ψ | Λ̂|ψ = ψ |ψ0 ψ0 |ψ = | ψ |ψ0 | 2 = Pψ. Of course, Λ̂  has its values within the

interval 0≤ Λ̂ ≤1. According to (2.10), it follows that

2 22ˆ ˆ ˆ ˆ ˆDL = L - L = L - L (2.11)
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Therefore, making use of the expressions (2.7) and (2.11); then, applying operator Λ̂ in the place
of R̂, we obtain

2 ˆd
ˆ ˆ ˆ.

2 d
H

t

L
D L - L ³

h
(2.12)

This inequality contains only one-time variable quantity, Λ̂=Λ̂(t), and its time derivative, so
that it can be integrated with respect to time. If, for example, Λ̂(t)= Λ̂(0)=1, that is, at the instant
of time t =0, we were certain that the system was in the initial state |ψ0 , then it follows from
(2.12) that, for t ≥0,

ˆ .ˆarcsin ( )
2

H ttp D
- L £

h
(2.13)

From (2.13), by using basic trigonometric properties and simple algebraic manipulations, it
leads to the following expression:

2
ˆ .ˆ ( ) cos H tt

æ öD
L ³ ç ÷ç ÷

è øh
(2.14)

for t ≥0.

Here, an important fact should be noted. Although the projection operator Λ̂ as Λ̂≡ |ψ0 ψ0 |
has been defined with the outer product given by the ket and the bra corresponding to a state
ψ0, we could have also defined it, in a more general manner, such as Λ̂≡ |ψt ψt | ; that is, for a
generic quantum state ψt evolved in time, for any instant of time t, so that the idempotency
property of Λ̂, as well as all the expressions, arguments, and previous deductions are analo‐
gous, remaining valid, thus, enjoying full generality.

From (2.14), two expressions relevant to our purposes shall be deduced. Since the average
value of the projection operator Λ̂ corresponds to the probability of observing the system at a
given quantum state |ψ , more generally, at a certain state |ψt  evolving over time, having
been (or been prepared) at an initial state |ψ0  of the system, then inequality (2.14) shall be
rewritten as

2
ˆ .cost
H tP

æ öD
³ ç ÷ç ÷

è øh
(2.15)
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where Pt = | ψt |ψ0 | 2 is the probability of finding the system in |ψt  from |ψ0 ; indeed,
Λ̂(t) = ψ0 | Λ̂(t)|ψ0 = ψ0 |ψt ψt |ψ0 = | ψt |ψ0 | 2 = Pt .

Finally, from (2.15), it can be deduced that the lowest physically possible time, or more
generally, the inferior time limit,1 physically needed to perform a transition between quantum
states, under the assumption of a time-independent Hamiltonian, is given by the following
inequality, which takes into account the uncertainty in determining the energy (dispersion or
standard deviation of Ĥ ):

arccosˆ tt P
H

³
D
h

(2.16)

in which t is the necessary time for a quantum transition of states that its associated probability
is Pt = | ψt |ψ0 | 2.

From (2.16), it is immediately noticed that the time t is always a real number, despite the
internal product (“bracket”) of states being, in general, a complex number. Likewise, as any
quantum observable, ΔĤ  always results in a real number. Moreover, since Pt = | ψt |ψ0 | 2 is
defined in [0,1], when the state normalization conditions are taken for granted, ensuring that
the obtained probabilities vary always in the real interval [0,1]; it follows that the range of
arccos function for this specific domain and, therefore, the values of t, will always be positive.

Some remarks about technological issues and its terminology are in order here. In quantum
control literature, inequality (2.16) is also known as the “Bhattacharyya limit,” after a paper
by the Indian physicist Kamal Bhattacharyya, in which the author revisits the Mandelstam-
Tamm’s time-energy uncertainty relations, in order to apply them in decay or non-decay
problems in quantum systems [12].

Inequality (2.16) gives a strong motivation to introduce a quantitative measure for the
evaluation of the quantum control systems performance, with special interest on the time-
optimal quantum control, for example, [1] and [13]. Lets then define the following figure of merit,

min

CQS
t

t
t

h º (2.17)

where tmin is the shortest physically possible time to obtain a desired transition of quantum
states, and tCQS is the time by which such transition can be effectively accomplished in the
controlled quantum system, hence, the notation chosen is [8].

In general, analytical solutions to problems of optimal quantum control are rare, and in most
cases, control algorithms and numerical simulations are employed to obtain the desired results

1 Mathematically speaking, one can say it is the inf or greatest lower bound (GLB) of the subset S of the physically possible
times for quantum states transitions.
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[1]. Indeed, in an article by Caneva and other authors [13], the Krotov algorithm is employed,
for example, [14] and [15], and applied on the Landau-Zener system, as well as on a theoretical
scheme of quantum information transfer in a spin chain (“One dimensional Heisenberg spin
chain of length N”). The authors obtained state transition times close to the “Bhattacharyya
limit,” which is equivalent to inequality (2.16) for both systems studied [13].

Regarding the figure of merit ηt, it is easy to notice that ηt is a real number and a dimensionless
quantity, defined on the interval [0,1]: ηt∈R : 0≤ηt ≤1, such that the extremal values correspond,
respectively, to the cases in which the transition of quantum states has not been accomplished;
in other words, the employed control algorithm did not converge to the desired target state
(or mathematically speaking, it took an “infinite time”); on the other hand, there has been an
ideal temporal state transfer: the control algorithm has achieved maximum efficiency in terms
of the demanded time to perform the desired quantum state transition.

Combining the expressions (2.16) and (2.17), ηt can be more explicitly expressed as

CQS

.arccos
ˆ .

t
t

P
H t

h =
D

h
(2.18)

or, alternatively as

F I

CQS

arccos
ˆ .T H t
y y

h =
D

h
(2.19)

where |ψI  and |ψF  correspond, respectively, to some initial state and a certain desired final
state (or target state, in control terminology).

From the dimensional analysis point of view, it is straightforward to verify that ηt, as expressed
by (2.18) and (2.19), is consistent with the adimensionality requirement, since the constant ℏ
has dimension of action (energy × time), and the dispersion operator (or standard deviation)
of the system’s Hamiltonian ΔĤ  has natural dimension of energy.

Frequently, in practical applications, it is not always possible to obtain the “exact transition”
of quantum states by the use of control algorithms and numerical simulations per se, from an
initial state to the desired goal state, such as |ψG . Instead, one looks for optimal control actions
that maximizes the measure of quantum fidelity:

2
G TF y y= (2.20)

or, in dual form, which minimize the amount of quantum infidelity:
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2
G1 TI y y= - (2.21)

that is, control actions such that, once elapsed control time T, the probability for the evolved
state in time |ψ(T )  to be found at the target state |ψG  gets arbitrarily close to unity. Therefore,

one can analyze the performance of the iterative process as a function of T and show that the
algorithmic method in question is capable of producing infidelities arbitrarily close to zero [13].

3. Application to a particular quantum state transition

Now, consider the application of the time-energy uncertainty relations (2.15) and (2.16) to a
specific and very important quantum state transition, namely the transition between two
orthogonal states.2 By rewriting inequality (2.15), in order to make explicit the probability
associated to the transition from an initial state to a time-evolving state, on the left side of the
expression, we have

2 2
0

ˆ .cost
H ty y

æ öD
³ ç ÷ç ÷

è øh
(3.1)

where ΔĤ = Ĥ 2
ψ − Ĥ ψ2 is the dispersion of Ĥ  or the uncertainty for determining the energy.

Let us consider a quantum dynamical evolution, starting from a generic state |ψ , which the
system dynamics leads it to the orthogonal state |ψ ⊥ , by means of the actuation of the time-
evolution operator Û (t , t0). Schematically, we have

0
ˆ ( , )U t ty y ^® ®

with Û (t , t0)= e
−i H

^
(t −t0)

ℏ —the time-evolution operator for a time-independent Hamiltonian Ĥ ,

upon which t0 = 0 can be imposed without loss of generality.

Adapting the expression (3.1) for such a case, results in

2 2
0

ˆ .ˆ ( , ) cos H tU t ty y
æ öD

³ ç ÷ç ÷
è øh

(3.2)

2 Or orthonormal states, once the normalization condition is taken for granted.

Minimum Time in Quantum State Transitions: Dynamical Foundations and Applications
http://dx.doi.org/10.5772/63025

119



which its associated probability amplitude, ψ | Û (t , t0)|ψ , can be regarded as a survival
amplitude of the state |ψ , evolving in time according to Û (t , t0) and ΔĤ , the energy uncer‐
tainty is given by

22ˆ ˆ ˆH H Hy y y y yD = - (3.3)

If a state transition from |ψ  to |ψ ⊥  occurs, the probability amplitude of (3.2) becomes zero,
being able to define formally the first instant of time t, for which such transition takes place as
follows:

0
ˆinf{ 0 : ( , ) 0}t U t ty yt y y® ^ º ³ = (3.4)

Therefore, it is straightforward to conclude from (3.2) that τψ→ψ⊥ is inferiorly bounded by the
inequality:

ˆ2 Hy y
pt ® ^ ³ D
h

(3.5)

Furthermore, the quantitative measure of temporal transfer efficiency can be defined for this
specific case, figure of merit ηψ→ψ⊥ for such quantum state transfer, as

CQS

y y
y y

t
h

t
® ^

® ^ º (3.6)

or, more explicitly, taking into account (3.5),

CQS
ˆ2 Hy y
ph
t® ^ = D
h

(3.7)

where τψ→ψ⊥ is the shortest physically possible time, such that the first transition to the
orthogonal state occurs, and τCQS can be stated as the time effectively spent by the controlled
system or control algorithm, in order to perform such state transfer.

Finally, it is worthwhile mentioning the transitions or transfers between orthogonal (ortho‐
normal) quantum states are of paramount importance to any schemes or devices, whether
theoretical, experimental, or of technological nature, aimed at implementing quantum
information processing, or quantum computing. The interested reader is referred to standard
and authoritative sources like [3,4].
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4. An analytical case study: The Fahri-Gutmann system

In this section, an application example is presented for illustrating the ideas and theoretical
concepts developed so far. The Fahri-Gutmann system is a digital quantum computing model,
which in its turn can be interpreted as a variation of the quantum search algorithm, similar to
the well-known Grover’s algorithm [16]. Here, we follow the steps of [17].

Let |a  and |b  be the initial and the target state, respectively, and the system’s Hamiltonian
defined as:

ˆ
a bH E a a E b b= + (4.1)

where Ea and Eb are positive constants.

As already stressed, there can be computational difficulties to achieve the exact desired transfer
of states, that is, from the initial state to the target one over the time evolution. Nevertheless,
one can think of formulating the quantum control problem in a less restrictive manner, namely
in terms of a state transition, as fast as possible, such that one can ensure maximum fidelity.
Translating it into quantum mechanical language, we want to maximize the quantity:

2

0
ˆ ( , )tF P b U t t aº = (4.2)

Firstly, let us impose a |b = s. Without loss of generality, is assumed that s is a real number,
since a phase factor can be associated to |a  or |b . Given the Fahri-Gutmann Hamiltonian
expression (4.1), it is evident that it acts non-trivially only on the subspace spanned by the
eigenstates |a  and |b , so it suffices to consider only this two-dimensional subspace. The
computational basis of this quantum model is as follows:

{ } ( )
2

,such that 1, ' '
1

b b b a s b
s

= -
-

(4.3)

which, in fact, consists of an orthonormal basis for the subspace spanned by |a  and |b .

Considering E = Ea + Eb, x = Ea – Eb, and defining the quantity:

( )
2

2 21xs s
E

m æ öº + -ç ÷
è ø

(4.4)
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We shall assume that Ea >0 and Eb >0. It is evident that s ≤μ ≤1 and s =μ if, and only if, Ea = Eb.
In the computational basis {|b , |b' }, states |a  and |b  are represented, respectively, by the
vectors:

2
:

1

s
a

s

æ ö
= ç ÷ç ÷-è ø

(4.5a)

1
:

0
b æ ö

= ç ÷
è ø

(4.5b)

By defining the auxiliary constant λ as follows:

2 2(1 )xs s
E

l = - - (4.6)

the Hamiltonian Ĥ = Ea |a a | + Eb |b b | , considering the basis given by (4.6), has its matricial
representation, with E being an arbitrary constant:

2 2 2
2 2

2 2
2 2 2

1 (1 ) 1 1
1ˆ :

2 11 1 1 (1 )

x xs s s s
E E EH

x xs s s s
E E

l m l

m l l

æ öæ ö+ - - + -ç ÷ç ÷ æ ö+ -è øç ÷ ç ÷= =
ç ÷ ç ÷æ ö - -è ø+ - - + -ç ÷ç ÷
è øè ø

(4.7)

so that this matrix can be diagonalized as follows:

( )

( )
1

1 0
2ˆ

0 1
2

E

H U U
E

m

m

-

æ ö+ç ÷
ç ÷=
ç ÷-ç ÷
è ø

(4.8)

with the U matrix given by

1 1
1
2

1 1
U

l l
m m

l l
m m

æ ö
+ -ç ÷

ç ÷= ç ÷
ç ÷- - +ç ÷
è ø

(4.9)

Research Advances in Quantum Dynamics122



corresponding to the diagonalization unitary operator built up with the eigenvectors of Ĥ  as
given by its matrix representation (4.7).

After performing some cumbersome, but straightforward calculations, to diagonalize Ĥ , given
by (4.7), making use of (4.8) and (4.9), one finally obtains from (4.5a) and (4.5b) the time
transition probability Pt, which can be regarded as a fidelity measure between the “search

state” e
−i H

^
(t −t0)

ℏ |a  and the target state |b :

2

2 2
2

ˆ 1exp( ) 1 sin 1
2t

iHt EtP b a s m
m

æ öæ ö- æ ö= = - +ç ÷ç ÷ ç ÷
è øè øè øh h

(4.10)

where we have imposed t0 = 0 on the time-evolution operator Û (t , t0)= e
−i H

^
(t −t0)

ℏ .

Noting that s ≤ μ ≤ 1, it is easy to see that the maximum value of the probability Pt is

2

max 0
max tt

sP P
m³

æ ö
= = ç ÷

è ø
(4.11)

indeed, it suffices to impose that the value of the function sin2( μEt
2ℏ ) must be 1 in the expression

(4.10) to obtain (4.11).

In the same way, once achieving sin2( μEt
2ℏ )=1 in (4.10), it can be conclude that the first instant

of time t, for which maximum probability (or maximum fidelity), is given by

first maxinf{ 0 : }tt t P P
E
p
m

= ³ = =
h

(4.12)

Thus, for the Fahri-Gutmann’s quantum computing model, the particular figure of merit that
quantifies the time transition efficiency can be stated as

FG
CQSE

ph
mt

=
h

(4.13)

where τCQS is the time effectively spent to drive the search state Û (t , t0)|a  to the target state

|b .
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5. Quantum systems with time-dependent Hamiltonians: Two theoretical
approaches to minimum time in quantum state transitions

Let us consider, a time-evolution operator Û (t , t0) characterized by a time-dependent Hamil‐

tonian Ĥ = Ĥ (t), such that Ĥ (t1), Ĥ (t2) =0, ∀ t1, t2∈ I ⊂R+, t1≠ t2; that is, the Hamiltonian
operator of the quantum system of interest varies with time; however, it always commutes for
any distinct instants of time t1 and t2, t1 ≠ t2.

In quantum control, this is by far the most commonly found and studied case regarding the
attempts to find control laws u(t) to achieve a certain control goal of interest, which involves,
for example, the minimization or maximization of dynamical variables to perform desired state
transitions. Here, we are interested in minimizing transfer times between quantum states.
Physically speaking, for example, a spin ½ system (e.g., an electron) subjected to a magnetic
field which magnitude varies in time, but not in direction.

The time-evolution operator Û (t , t0) associated with such a time-dependent Hamiltonian is
given by [18]

0

0
ˆ ˆ( , ) exp d ' ( ')

t

t

iU t t t H t
é ùæ ö= -ê úç ÷
è øê úë û

òh
(5.1)

Therefore, given an initial state |ψI  and a final state |ψF  (or “target state”), the shortest
physically possible time (or minimum time) can be formally defined such that this transition
of states occurs as follows:

2

min F 0 I
ˆinf{ 0 : ( , ) 1}t t U t ty yº ³ = (5.2)

where Û (t , t0) is given by the expression (5.1).

In an applied point of view, given the vector representations of |ψI  and |ψF  expressed in
terms of a suitable basis (built up of linearly independent and orthonormal vectors), as well a
matrix representation of Ĥ = Ĥ (t), by calculating the integral of (5.1), expression (5.2) will
provide the necessary formula to obtain the minimum time value.3

Now, the focus is on another possible formulation addressing this quantum dynamical issue.
The goal is to directly employ a time-dependent energy uncertainty (or standard deviation)
Δ(Ĥ (t)) to formally obtain an expression for the minimum time associated with transitions of
states in quantum systems with dynamics governed by a time-dependent Hamiltonian
Ĥ = Ĥ (t). The Schrödinger equation taking into account such a Hamiltonian is written as

3 In [8], we present an analytical case study of a time-dependent Hamiltonian, namely the Landau-Zener system.
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with a time-evolving state |ψ(t) , from an initial state |ψ0 .

From this particular Schrödinger equation, Pfeifer proposed the following expression for a
time-dependent energy uncertainty [9]:

( ) ( )ˆˆ( ( ), ( ) , ( ) ) 1 ( ) ( )
t

H t t t t t
t

y
y y y y

¶
D = -

¶
& h (5.4)

in which we can immediately notice the dependency on the time-evolved state |ψ(t) , as well
on its time derivative. From the original expression (5.4), some manipulations are carried out
to deduce an alternative expression for the time-dependent energy uncertainty
Δ(Ĥ (t), |ψ(t) , | ψ̇(t) ), such that it may be more useful for our purposes:

( ) 1ˆˆ ˆ( ( ), ( ) ) 1 ( ) ( ) ( ) ( )H t t t t H t t
i

y y y yæ öD = - =ç ÷
è ø

h
h
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( )1ˆ ˆ ˆ( ( ), ( ) ) ( ) ( ) ( ) ( ) ( ) ( )H t t H t t t H t t t
i

y y y y yD = - =h
h

( )
ˆ ˆ ˆ( ( ), ( ) ) ( ) ( ) ( ) ( )

t
H t t H t t H t t

y
y y yD = - (5.5)

wherein, at the first step, we replaced the time derivative of |ψ(t)  making use of (5.3), so that
we could eliminate the dependency on | ψ̇(t) , the outer product |ψ(t) ψ(t)| , and the constant
ℏ, as well (second and third steps, respectively). As a result, we were able to express
Δ(Ĥ (t), |ψ(t) ) as a functional of vector Ĥ (t)|ψ(t)  and of the time-evolving state |ψ(t) ,
multiplied by the scalar quantity correspondent to the expectation value of the Hamiltonian
Ĥ (t).

Now, let us consider a time-energy uncertainty relation of the form ΔE .Δt ≈ℏ, similar to those
one can find in the time-independent Hamiltonian case, in terms of stationary states of energy
[18]. Afterwards, through methods and concepts from the time-dependent perturbative
theory, Sakurai shows that such relation remains valid for the time-dependent case [18]. So, it
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becomes natural to evoke one of the Mandelstam-Tamm’s time-energy uncertainty relations,
namely

ˆ .
2

H TD D ³
h

(5.6)

Furthermore, to achieve the perspective of our chain of theoretical reasoning so far, we restate
it in the following way:

ˆ( ( ), ( ) ).
2

H t t tyD ³
h

(5.7)

in which the energy uncertainty is now considered as depending on a time-dependent
Hamiltonian Ĥ (t), and, without loss of generality, t0 = 0 in ΔT  is imposed.

Finally, the minimum time for a generic quantum state transition, between an initial state
|ψ0 , which begins to evolve over time, and a final state |ψF = |ψ(T ) , can be formally defined
in such a way that it can also be defined in function of an instant of time T. Its final state is
achieved or characterized by

2
min 0inf{ 0 : ( ) ( , ) 1}Ft t P t t t Ty yº ³ = = = (5.8)

or, in terms of the maximum possible quantum fidelity, also by

2
min 0inf{ 0 : ( , ) 1}Ft t F t t Ty yº ³ º ® = (5.9)

Finally, taking into account expressions (5.7) and (5.5), we have

min
/ 2

ˆ( ( ), ( ) )
t

H t ty
³
D

h
(5.10)

min
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/ 2
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y y

³
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obtaining an alternative expression for the greatest temporal lower bound for a generic
transition of states, that occurs in a quantum system with dynamics governed by a time-
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dependent Hamiltonian Ĥ (t), thus, without relying on the approximative hypothesis of time
independency in the characteristic Hamiltonian of the system.
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