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Abstract

This chapter gives credence to the introduction of optimal control theory into oil spill
modeling and develops an optimization process that will aid in the effective decision-
making in marine oil spill management. The purpose of the optimal control theory is to
determine the control policy that will optimize (maximize or minimize) a specific per‐
formance criterion, subject to the constraints imposed by the physical nature of the
problem. A fundamental theorem of the calculus of variations is applied to problems
with unconstrained states and controls, whereas a consideration of the effect of control
constraints leads to the application of Markovian decision processes. The optimization
objectives are expressed as value function or reward to be optimized, whereas the opti‐
mization models are formulated to adequately describe the marine oil spill control,
starting from the transportation process. These models consist of conservation relations
needed to specify the dynamic state of the process given by the chemical compositions
and movements of crude oil in water.

Keywords: decision theory, marine oil spill, optimal control, sequential optimization,
Markov processes

1. Introduction

The degradation of aquatic ecosystem is generally agreed to be undesirable. Historically, most
evaluations of the ecological effects of petroleum contamination have related impacts to effects
on the supply of products and services of importance to human cultures. According to Xu and
Pang [1], most of the environmental and pollution control laws were legislated to protect
ecological objectives and public health. Here, a substance is considered to be a pollutant if it
is perceived to have adverse effects on wildlife or human well-being. In recent years, a number
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of substances appear to pose such threats. Among them is crude oil spillage, which first came
to public attention with the Torrey Canyon disaster in 1967.

The risk of crude oil spillage to the sea presents a major threat to the marine ecology compared
with other sources of pollution in the oceans. Before now, it was earlier reported that oil spillage
impacts negatively on wildlife and their environments in various ways, which include the
alteration of the ecological conditions, and can result into alterations of the environmental
physical and chemical composition, destruction of nutritional capita of the marine biomass,
changes in the biological equilibrium of the habitat, and as a threat to human health [2]. The
same can also be said about Nigeria, where oil spillage is a major environmental problem and
its coastal zone is rated as one of the most polluted spots on the planet in the year 2006 [3]. For
instance, from 1976 to 2007, over 1,896,960 barrels of oil were sunk into the Nigerian coastal
waters resulting in a serious pollution of drinkable water and destruction of resort centers,
properties, and lives along the coastal zone. This was seen to be a major contributor to the
regional crisis in the Nigeria Niger-Delta region.

As a case in point, after a spill in the ocean, oil in water body, regardless of whether it originated
as surface or subsurface spill, forms a thin film called oil slick as it spreads in water. The oil
slick movement is governed by the advection and blustery diffusion as a result of water current
and wind action. The slick always spreads over the water surface due to gravitational, inertia,
gluey, and interfacial strain force equilibrium. The oil composition also changes from the early
time of the spill. Thus, the water-soluble components of the oil dissolve in the water column,
whereas the immiscible components emulsified and disperse in the water column as small
droplets and light (low molecular weight) fractions evaporate (for example, see [4]).

In essence, the frequency of accidental oil spills in aquatic environments has presented a
growing global concern and awareness of the risks of oil spills and the damage they do to the
environment. However, it is widely known that oil exploration is a necessity in our industrial
society and a major sustainer of our lifestyle, as most of the energy used in Canada and the
United States, for instance, is for transportation that runs on oil and petroleum products. Thus,
in as much as the industry uses oil and petroleum derivatives for the manufacturing of vital
products, such as plastics, fertilizers, and chemical feedstock, the drifts in energy usage are
not likely to decrease much in the near future. In what follows, it is a global belief that the
production and consumption of oil and petroleum products might continue to increase
worldwide while the threat of oil pollution is also likely to increase accordingly.

Consequently, a fundamental problem in environmental research in recent time has been
identified in the literature to how to properly assess and control the spatial structure of
pollution fields at various scales, and several studies showed that mathematical models were
the only available tools for rapid computations and determinations of spilled oil fate and for
the simulation of the various clean-up operations.
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2. Methodological model

Now, consider the introduction of an optimal control theory into spill modeling to develop an
optimization process that will aid effective decision-making in marine oil spill management.
The purpose of the optimal control theory is to determine the control policy that will optimize
(maximize or minimize) a specific performance criterion subject to the constraints imposed by
the physical nature of the problem. A fundamental theorem of the calculus of variations is
applied to problems with unconstrained states and controls, whereas a consideration of the
effect of control constraints leads to the application of Markovian decision processes.

The optimization objectives are expressed as a performance index (value function or reward)
to be optimized, whereas the optimization models are formulated to adequately describe the
marine oil spill control starting from the transportation process. These models consist of
conservation relations needed to specify the dynamic state of the process given by the chemical
compositions and movements of crude oil in water.

2.1. Mathematical preliminaries and definition of terms

In our basic optimal control problem, u(t) is used for the control and x(t) is used for the state
variables. The state variable satisfies a differential equation that depends on the control
variable:

( ) ( ) ( )( ), ,x t g t x t u t¢ = (1)

where x ′(t) is the state differential defining the performance index. This implies that, as a
control function changes, the solution to the differential equation will also change. In other
words, one can view the control-to-state relationship as a map u(t)↦ x = x(u) [we wrote x(u)
just to remind us of the dependence on u]. Our basic optimal control problem therefore
consisted of finding, in mathematical terms, a piecewise continuous control u(t) and the
associated state variable x(t) to optimize a given objective function. That is to say,

( ) ( )( )1

0

max , ,
t

u t
f t x t u t dtò (2)

( ) ( ) ( )( )

( ) ( )0 1

, ,

 
0

Subject

x t g t x t u t

x t and x t free
to

¢ =

=

(3)

Such a maximizing control is called an optimal control. By “x(t1) free”, it means that the value
of x(t1) is unrestricted. Here, the functions f and g are continuously differentiable functions in
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all arguments. Thus, whereas the control(s) is piecewise continuous, the associated states are
piecewise differentiable. This implies that, depending on the scale of the spatial resolution (like
the case of oil spill), an introduction of space variables could alter the basic model from
ordinary differential equations (with just time as the underlying variable) to partial differential
equations (PDEs). Let us focus our attention to the consideration of optimal control of PDEs.
Our solution to the control problem will then depend on the existence of an optimal control in
the PDE.

The general idea of the optimal control of PDEs here starts with a PDE with a state solution x
and control u. Set ∂ to denote a partial differential operator with appropriate initial and
boundary conditions:

( ), in 0,x f x u T¶ = W´é ùë û (4)

This implies that we are considering a problem with space x and time t within a territorial
boundary, Ω × 0, T . The objective functional in this problem represents the goal of the
problem, and we seek to find an optimal control u * in an appropriate control set such that

( ) ( )* min
u

J u J u= (5)

When the control cost is considered, with an objective functional

( ) ( ) ( )( )
0

, , , ,
T

J u g x t x t u x t dxdt
W

= ò ò (6)

To consider the properties of the functional, it is important to note the following fundamentals:

i. A functional J is “a rule of correspondence that assigns to each function, say x(t),
constrained in a certain set of functions, say X, a unique real number. The set of
functions is called the domain of the functional, and the set of real numbers associated
with the functions in the domain is called the range of the functional” [5].

ii. Let δ(J ) be the first variation of the functional; thus, δ(J ) is the part of the increment
of ΔJ , which is linear in the variation δ(x) such that

( )( ) ( ) ( ) ( )( ) ( ), , ,J x x J x x g x x xd d d d dé ùD = +ë û (7)

where δ(J ) is also linear in δ(x). Suppose that lim
δ(x) →0

g(x, δ(x))=0; then, J is said to be

differentiable on x, whereas δ(J ) is the first variation of J evaluated for x(t) [5].
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iii. A functional J with domain X  has a relative optimum at x * if there is an ε >0, such
that, for all functions x∈X , which satisfy that x − x * <ε, the increment of J has the
same sign. In other words, J (x *) is a relative minimum if ΔJ = J (x)− J (x *)≥0 and a
relative maximum if ΔJ = J (x)− J (x *)≤0. Hence, J is said to be a functional of the
function x(t) if and only if it first satisfies the scalar commutative property J (αx)=αJ (x)
for all x∈X  and for all real numbers α such that αx∈X .

iv. A rule of correspondence that assigns to each functionx(t)∈X ,  defined for
t∈ t0, T , a real number is called the norm of a function, where the norm of x is given
as x . If x and x + δ(x) are both functions for which the functional J is defined, then
the increment of the functional ΔJ  is defined as

( )( ) ( )J J x x J xdD = + - (8)

v. A differential equation whose solutions are the functions for which a given functional
is stationary is known as an Euler-Lagrange equation (Euler’s equation or Lagrange’s
equation).

Fundamental theorem of variational calculus [5]: This theorem states that “if x * is optimum,
then it is a necessary condition that the first variation of J must vanish on x. That is to say,
δ(J ) x *, δ(x) =0 for all admissible δ(x)”.

2.2. Model conceptualization

The fundamental principle upon which the pollutant fate and transport models are based is
the law of conservation of mass [6]:

( ) ( )

( ) ( )
h

h hv D h R
t

E
t

¶ì + Ñ -Ñ Ñ =ïï ¶
í¶ï + Ñ -Ñ Ñ =
ï ¶î
C Cu C R

r r r rr (9)

where

h = oil slick thickness,

C = oil concentration,

v̄ = oil slick drifting velocity,

D = oil fluid velocity,

E
→  = dispersion-diffusion coefficient,

∇
→

 = computational slick spreading function,

Rh  and R = physical chemical kinetic terms,
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u→  = grid size,

∇̄  = Cartesian coordinate, and

t = time.

Eq. (9) can be modified as

,i dxdydz
i
g¶
¶

where dxdydz denotes the differential volume of the state variable assuming a net chemical
contaminant flux in each axial direction such that γ i = contaminant movement in each axial
direction (i = x, y, z) and dx, dy, dz =  differential distances in the x, y, and z directions.

The fluidity of oil in water contains the advection due to current and wind as well as the
dispersive instability due to weathering processes. Thus, if we set

q d qg w= - Ñ (10)

where

γ = movement of contaminant vector,

ω = contaminant discharge vector,

q = contaminant molar concentration,

d = dispersion tensor, and

∇ = gradient operator (Laplacian).

With minor mathematical regularities, Eq. (10) will become

( )q d q m
t
tw ¶

-Ñ - Ñ = +
¶

(11)

where

τ = total concentration of contaminant in the system,

m = decay rate of contaminant, and

t = time.

A two-dimensional differential representation of Eq. (11) is given as
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( ) ( )

2 2

2 2

..
,

y yx x
x x y y

yx yx

v vv vq q q q q qc v v q v v m
t x x x x y y y yx y

qq vv q vq v yx m
x x y y

t é ù¶ ¶¶ ¶¶ ¶ ¶ ¶ ¶ ¶ ¶
= + + + - - + + -ê ú

¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶¶ ¶ê úë û
é ù¶¶é ù ¶¶ ê úê ú ¶¶ ¶¶ë û ë û= + - + -

¶ ¶ ¶ ¶

(12)

so that we have vx and vy, which represented the fluid velocities in the x and y directions. By
applying the principle of the conservation of mass, the steady-state equation of spill transpor‐
tation is given as

2 2 2 2 2 2

2 2

2 2

2 yx
x y

x y

hhVST p p p ph h
dxdylb x x y yx y

p ph h
x x y

¶¶ ¶ ¶ ¶ ¶
= + + +

¶ ¶ ¶ ¶¶ ¶

é ù é ù¶ ¶ ¶
= +ê ú ê ú
¶ ¶ ¶ê ú ê úë û ë û

(13)

where

h = oil penetrability trajectory,

p = oil stress,

V = oil viscidness,

S = source of oil mass fluidity,

T = temperature,

b = molecular weight of oil, and

l = a fixed length of the z direction.

According to Refs. [5–7], “the transport and fate of the spilled oil is governed by the advection
due to current and wind, horizontal spreading of the surface slick due to turbulent diffusion,
gravitational force, force of inertia, viscous and surface tension forces, emulsification, mass
transfer of heat, and changes in the physiochemical properties of oil due to weathering
processes (evaporation, dispersion, dissolution, oxidation, etc.)”. Thus, Eq. (13) can be
transformed to

( ) ( ) ( )
2

2
,

, ,x
q x t

h q x t D q x t R S
t x x

¶ ¶ ¶
= - + + +

¶ ¶ ¶
(14)
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where q = {qe, qd , qp} denotes the oil spill concentration in emulsified, dissolved, and particulate
phases, respectively, at state x and time t; h is the fluid velocity; D is the spreading function,
and R and S denote the environmental factors and the spill source term, respectively.

2.3. Optimality problem

When hydrocarbons enter an aquatic environment, their concentrations tend to decrease with
time due to the evaporation, oxidation, and other weathering processes. This could be
described as a death process and could be modeled as a first-order reaction [7]. Having known
this, the optimal control problem can then be formulated by setting R in Eq. (14) to be

( ),R kC x t= - (15)

so that k denotes a kinetic constant of the environmental factors that influenced the concen‐
tration of oil in water. Here, it is assumed that the source term is not known so that’ S = 0.

Then, Eq. (14) can be expressed as

( ) ( )( ) ( )( ) ( ),
, , ,

q x t
Vq x t D q x t kq x t

t
¶

= -Ñ +Ñ × Ñ -
¶

(16)

which is called “oil spill dynamical (or transport) problem”. To solve this problem, a mecha‐
nism for controlling the system in marine environment can be set up as follows:

Let Ω be an open, connected subset of ℝn, where ℝni is the Euclidean n-dimensional space. We
defined the spatial boundary of the problem as Ω. The unit variable is t and is contained in the
interval 0, T , where T <∞. Let x be the space variable associated with Ω, and let ∂ be a partial
differential operator with appropriate initial and boundary conditions, where ∂Ω is the
differential boundary of Ω; then,

( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( )
( )

0

, , , 1 , ,  , 0,

,0 0 , 0 ( )

, 0 0, ( )

tq x t q x t q x t q x t u x t q x t in T

q x q x on t seabed boundary

q x t on T sea sideboundary

a- D = - - W´é ùë û

= ³ W =

= ¶W´ -é ùë û

(17)

where ∂Ω × 0, T  mathematically defined an operation with a PDE operator ∂ in the spatial
boundary of the problem Ω within a specified upper and lower horizons 0, T .

Eq. (17) is defined as the state equation with a logistic growth q(1−q) and a constant diffusion
coefficient α due to weathering processes. The symbol Δ represents the Laplacian. The state
q(x, t) denotes the volume or concentration of the crude oil and u(x, t) is the control that entered
the problem over the volumetric domain. The zero boundary conditions imply the limitation
of the slick at the surrounding environment.
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The reward or value objective functional can be obtained as

( ) ( ) ( ) ( )( )2

0
, , ,

T tJ u e u x t q x t Au x t dxdtq x-

W
= -ò ò (18)

Here, ξ denotes the price of spilled oil, so that ξuq represents the reward from the control
amount uq. Note that a quadratic cost for the clean-up effort with a weighted coefficient A,
where A is assumed to be a positive constant, is applied. The term e −θt  is introduced to denote
a discounted value of the accrued future costs with0≤θ <1. By setting ξ =1 (for convenience),
an optimal control u * is needed to optimize a control strategy focusing on the actual detected
spill point, such that application of any control on a no-spill region (look-alike) would be
minimized [i.e., u *(x, t)=0] and the value of all future earnings would be maximized. In other
words, we seek for u * such that

( ) ( )* max
u U

J u J u
Î

= (19)

where U  denotes a set of allowable control, and the maximization is over all measurable
controls with 0≤u(x, t)≤m <1 a.e. Under this set-up, it follows that, within the context of optimal
control, the state solution satisfies q(x, t)≥0 on Ω ×(0, T ) by the maximum principle for
parabolic equations.

Lemma 1 [8]: Let U be a convex set and J be strictly convex on U. Then, there exists at most
one u *∈U  such that J has a minimum at u *. This implies that, by the maximum principle for
parabolic equations, the necessary conditions for optimality are satisfied whenever the state
solution satisfies q(x, t)≥0 on Ω ×(0, T ).

3. Necessary optimality conditions

Consider the following conservation relations [8]:

( ) ( )0, 0t t t tx f x u x x== Þ& (20)

where x t is the composition and concentration of the pollutant at time t, u t denotes controls
that enter on the boundary of the problem at time t, f is a set of nonlinear functions representing
the conservation relation, andxt=0 denotes the initial condition of x. Every change in the control
function changes the solution to Eq.(20). Thus, for a given objective functional to be maximized,
a piecewise continuous control policy u t and the state variable x t have to be obtained. The
principle technique is to determine the necessary conditions that define an optimal control
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policy u(t) that would cause the system to follow a path x(t), such that the performance
functional

( ) ( )
0

, ,
T

J u F x u t dt= ò (21)

would be optimized.

Consider also the Lagrangian

( ) ( )( ), ,L F x u t f xl¢= + × - & (22)

where λ denotes the dynamic Lagrange multipliers or costate variables with its derivative
given as λ′. For more simplification, an augmented functional with the same optimum of (21)
could further be derived as

( )
0

, , , ,
T

J L x x u t dtl= ò & (23)

,

and by introducing the variations δ(x), δ(ẋ), δ(u), δ(λ), δ(T ), the first variation of the functional
would be

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

0

0 0

T
T

T T

L d L LJ x dt T x
x dt x x

LL T T x T T
x

L Ldt u dt
u

d d d

d

d l d
l

¢ ¢¶ ¶ ¶é ù é ù= - +ê ú ê ú¶ ¶ ¶ë û ë û
é ù¢¶æ öê ú+ - ç ÷¶ê úè øë û

¢ ¢¶ ¶æ ö æ ö+ +ç ÷ ç ÷¶ ¶è ø è ø

ò

ò ò

& &

&
& (24)

Noticed that, by the fundamental theorem of variational calculus, for x(t) to be an optimum
of the functional J, it is necessary that δJ =0. Because the controls and states are unbounded,
the variations δ(x), δ(λ), and δ(u) are free and unconstrained. Thus, the following are the
necessary conditions for optimality:

(i) Existence and uniqueness: Euler-Lagrange equations

Because the variation δ(x) was not bounded (i.e., it was free), we have
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0L d L
x dt x
¶ ¶

- =
¶ ¶&

(25)

Using Eq. (22), obtain

.L
x

l¶
= -

¶&
(26)

The Euler-Lagrange equations could be transformed as

,L
x

l ¶
=
¶

& (27)

and by the definition of the Lagrangian, Eq. (27) becomes

f F
x x

l l
¢¶ ¶æ ö= -ç ÷¶ ¶è ø

& (28)

Eq. (28) shows that the Euler-Lagrange equations are the equations that specify the dynamic
Lagrange multipliers.

(ii) Constraints relations

Because the variationδ(λ) is free, we have

0L
l
¶

=
¶

(29)

which is equivalent to (20). This implies that, along the optimal trajectory, the state differential
equations must hold.

(iii) Optimal control

Also, because the variation δ(u) is free, it follows that the optimal control policy must be
consistent with

0L
u
¶

=
¶

(30)

or
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0 , and
¢¶ ¶æ ö+ =ç ÷¶ ¶è ø

F f
u u

l (31)

(iv) Transversality boundary conditions

( ) ( ) ( ) ( ) ( ) ( ) 0T T F T T f T Tl d l d¢ é ¢ ù- + + =ë û (32)

The necessary conditions (i) to (iv) could be simplified further by introducing an Hamiltonian

( ) ( ), , , ,H F x u t f x u tl¢= + (33)

Such that

i. Euler’s equation:

H
x

l ¶
= -

¶
& (34)

ii. Constraints relations:

( ) Hx f
l

¶
= × =

¶
& (35)

iii. Optimal control:

0,andH
u

¶
=

¶
(36)

iv. Boundary conditions:

( ) ( ) ( ) ( ) 0TT x H T Tl d d- + =¢ (37)

Furthermore, with the assumption that all the necessary conditions for optimality exist and
sufficient for a unique optimal control, a sequential decision processes for optimal response
strategy can be developed.
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4. Sequential optimization processes

Sequential decision processes are mathematical abstractions of situations in which decisions
must be made in several stages while incurring a certain cost at each stage. The philosophy
here is to establish a sequential decision policy to be used as a combating technique strategy
in oil spill control.

First, consider x t at time t∈ 0, T , where T specifies the time horizon for the situation. For a
control u t defined on 0, T , the state equation given in Eq. (38) assumes a sudden rate of

variation in the system. Thus,xt∈ℝn denotes the state of oil spill in waters, whereas ẋ t∈ℝn

represents the vector of first-order time derivatives of x t and ut∈U ⊂ℝm denotes the control

vector. With the assumption that the initial value x 0 and the control trajectory over the time
interval 0≤ t ≤T  are known, the optimization problem over the control trajectory is given as

( ) ( )( )
0

min , ,
T

u
f x t u t t dtò (38)

( ) ( ) ( )( ), ,subject to x t g x t u t t=& (39)

where g is a given function of u, ta, and possibly x. This model establishes a sequential decision
path for optimal policy to be used in the application of oil spill combating technique.

By introducing a value function V, we have

( ) ( ) ( )( )
( ) ( ) ( )( )

0
0

0, : min , ,

, , ,

T

u
V x f t x t u t dt

subject to x t g t x t u t

=

=

ò
&

(40)

and by fixing Δt >0, we get

( ) ( ) ( )( ) ( ) ( )( )0
0

0, min , , , , .
t T

u t
V x f t x t u t dt f t x t u t dt

D

D

ìï= +í
ïîò ò (41)

Also, with the application of the principle of optimality,1 we have

1 See [9] for detailed discussion on principle of optimality.
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( ) ( ) ( )( ) ( )( )0
0

0, min , , ,
t

u
V x f t x t u t dt V t x t

Dìï= + D Dí
ïîò (42)

Discretizing via Taylor series expansion, we get

( ) ( ) ( ) ( ) ( ){0 0 0 0 0 0 0 0 00, min , , , , ,t x
u

V x f t x u t V t x V t x t V x t x= D + + D + D +L (43)

where Δx = x(t0 + Δt)− x(t0). Thus, letting Δt →0 and dividing by Δt , we have

( ) ( ) ( ) ( ){, min , , , , ,t x
u

V x t f t x u V x t g t x u- = + (44)

with boundary condition

( ), 0.TV T x = (45)

Theorem 1 [8]: Let t0, t1  denotes the range of time in which a sequence of control is applied.

Then, for any processes, t0≤τ1≤τ2≤ t1:

( )( ) ( )( )1 1 2 2, ,V x V xt t t t£ (46)

and for any t, such that t0≤ t ≤ t1, the setΛt ,x(t ) is not empty, as the restriction of the control to

the time interval is feasible for x(t).

Proof:

Let u * be any optimal control in Λτ2,x(τ2), where u * is defined on τ1, τ→ 1  and is given by

( )
( )
( )

1 2*

2 1

,

,

u if
u

u if

x t x t
x

x t x t

ì £ £ï= í
£ £ïî

r r (47)

Then, u *∈Λτ1,x(τ1). Hence,

( )( ) ( )( )*
1 1 1 1 1, ,V x xt t f t t£

r r
(48)
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where ϕ1(⋅ ) is a value function defined on τ1, τ→ 1 . Because u * was any optimal control in
Λτ2,x(τ2), taking the infimum over the controls in Λτ2,x(τ2) gives

( )( ) ( )( )1 1 2 2, ,V x V xt t t t£ (49)

This implies that, if u * is any optimal control for the sequential optimization process, the value
function V evaluated along the state and control trajectories will be a nondecreasing function
of time.

Theorem 1 summarizes the expected future utility at any node of the decision tree on the
assumption that an optimal policy will be imminent. The implication is that a continuous
selection of a sequence of control at different assessment point will optimize the performance
index of the control strategy. This, however, requires a decision rule, and the next section
contained further explanation on this.

4.1. Decision rule

A successful sequential decision requires a decision rule that will prescribe a procedure for
action selection in each state at a specified decision epoch. This is a known strategy in the field
of operation research. More so, the problems of decision-making under uncertainty are best
modeled as Markov decision processes (MDP) [8]. When a rule depends on the previous states
of the system or actions through the current state or action only, it is said to be Markovian but
deterministic if it chooses an action with certainty [8]. Thus, a deterministic decision rule that
depends on the past history of the system is known as “history dependent”. In general, MDP
can be expressed as a process that

• allowed the decision maker to select an action whenever the system state changes and model
the progression in continuous time and

• allowed the time spent in a certain state to follow a known probability distribution.

It follows a time-homogeneous, finite state, and finite action semi-MDP (SMDP) defined as

i. P(xt+1 |ut , xt), t ={0, 1, 2, ⋯ , T }, T ≤∞ transition probability;

ii. P(rt |ut , xt) reward probability; and

iii. P(ut | xt)=π(ut | xt) policy

This implies that, although the system state may change several times between decision
epochs, the decision rule remains that only the state at a decision epoch is relevant to the
decision maker. Consider the stochastic process x0, x1, x2, ...,  where x t or x(t) (which may be
used interchangeably). Note that we are considering an optimal control of a discrete-time
Markov process with a finite time horizon T, where the Markov process x takes values in some
measurable space Ω. In what follows, assuming that we have a sequence of control u0, u1, u2, ...,
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where u n is the action taken by the decision maker at time t =0, 1, ⋯ , n, take values in some
assessable space U of allowable control. The decision rule is described by considering a class
of randomized history-dependent strategies consisting of a sequence of functions

( )0 1 1, , , ,n Td d d d -= L (50)

and also by considering the following sequence of events:

• an initial state x 0 is obtained;

• having known x 0, the response official (the controller) selects a control u0∈U ;

• a state x1 is attained according to a known probability measure P(x1 | x0, u0); and

• knowing x 1, the response official selects a control u1∈U .

The basic problem therefore is to find a policy π = (d0, d1) consisting of d 0 and d 1 that will

minimize the objective functional J (x0)= ∫ f x1, d1(x1) P(x1 | x0, d0(x0)), which is given as

P(ut | xt)=π(ut | xt). Hence, we set μt
π : H t

d → R 1 to denote the total expected reward obtained by
using Eq. (50) at decision epochs t , t + 1, ⋯ , T −1. With an assumption that the history at
decision epoch t is h t

d∈H t
d , the decision rule follows μt

π for t < T such that

( ) ( ) ( )
1

,
t

T
d

t t h k k k k T
k t

h E r x u r xp pm
-

=

é ù
ê ú= +
ê úë û
å (51)

In particular, if the SMD processes (i) to (iii) are stationary, then, for a given rule π and an
initial state x, the future rewards can be estimated. Let V π(x) be the value function; then, the
expected discounted return could be measured as

( ) 0
0

| ;t

t

V x E rt x xp q p
¥

=

é ù
ê ú= =
ê úë û
å (52)

However, the entire cast of players involved in oil spill control (the contingency planners,
response officials, government agencies, pipeline operators, tanker owners, etc.) shares keen
interest in being able to anticipate oil spill response costs for planning purposes according to
Arapostathis et al. [9]. This means that the type of decision and/or action chosen at a given
point in time is a function of the clean-up cost. In other words, the clean-up/response cost is a
key indicator for the optimal control. Thus, to set a pace for rapid response, it is important to
introduce cost concepts into the control paradigm as discussed in the next section.
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5. Optimal costs model

Considered the following synthesis: the system starts in state x 0 and the response team takes
a permitted actionut(x0), resulting in an output (reward) r t. This decision determines the cost

to incur. Now, defining a cost function that assigned a cost to each sequence of controls as

( ) ( ) ( )
1

0 0: 1
0

, , ,
T

T t t T
t

C x u t x u xb w
-

-
=

= +å (53)

where β(t , x, u) is the cost associated with taking action u at time t in state x and ω(xT ) is the

cost related to actions taken up to time T; the optimal control problem is to find the sequence
u0:T −1, that minimizes Eq. (53). Thus, we introduce the optimal cost functional:

( ) ( ) ( )
: 1

1
, min , ,

t T

T

t k k T
u

k t

C t x k x u xb w
-

-

=

æ ö
ç ÷= +
ç ÷
è ø
å (54)

which solves the optimal problem from an intermediate time t until the fixed end time T,
starting at an arbitrary state x t. Here, the minimum of Eq. (53) is denoted by C(0, x0). Hence,

a procedure to compute C(t , x) from C(t + 1, x) for all x recursively using dynamic program‐
ming is given as follows:

Set

( ) ( ),C T x xw=

So that

( ) ( ) ( )

( ) ( ) ( )

( ) ( ){ }

( ) ( )( ){ }

: 1

1: 1

1

1

1

1

, min , ,

min , , min , ,

min , , 1,

min , , 1, , ,

t T

t t T

t

t

T
t k k Tk tu

T
t t k k Tk tu u

t t t
u

t t t t t
u

C t x k x u x

t x u k x u x

t x u C t x

t x u C t x f t x u

b w

b b w

b

b

-

+ -

-

=

-

= +

+

ì ü= +í ý
î þ
ì üé ù= + +í ýê úë ûî þ

= + +

= + + +

å

å
(55)
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It could be seen that the reduction to a sequence of minimizations over ut from the minimization
over the whole path u0:T −1 is due to the Markovian nature of the problem: the future depends
on the past and the past depends on the future only through the present. Thus, it could be seen
that, in the last line of Eq. (55), the minimization is done for each x t separately and also explicitly
depends on time. The procedure for the dynamic programming is illustrated as follows:

Step 1: Initialization: C(T , x)=ω(x)

Step 2: Backwards: For t =T −1, ⋯ , 0 and for all x, compute

( ) ( ) ( )( ){ }
( ) ( )( ) ( )( )( )

*

* *

arg min , , 1, , ,

, , 1, , ,

t
u

t t

u x t x u C t x f t x u

C t x t u x C t x f t x u x

b

b

= + + +

= + + +

Step 3: Forwards: For t =0, ⋯ , T −1, compute

( )( )* * * * * *
1 0 0, , ,t t t t tx x f t x u x x x+ = + =

Lemma 2: Let π * → u0
*, u1

*, ⋯ , uT −1
*  be an optimal control policy for the control problem and

assume that, when using π *, a given state xi occurs at time i, (i ≥ t) a.e. Suppose that the state

is at stage x i at time i, and we wish to minimize the cost functional from time i to T:

( ) ( )( )
1

,
T

T t t t
t i

E x x u xw b
-

=

é ù
ê ú+
ê úë û

å (56)

Then, ui
*, ui+1

* , ⋯ , uT −1
*  is the optimal path for this problem and ut

* is the optimal control.

Proof: Define C *(t , x)=ω(x) as the optimal cost-to-go:

( ) ( ) ( ) ( )* *min , , , , 0t x
u

g x u C t x C t x f x ué ù¢+ Ñ +Ñ =ê úë û
(57)

where C *(T , x)=ω(x). We can say that ∇x C *(T , x)=∇ω(x). If we define ∇x C *(t , xt
*)=λt , then,

by introducing the Hamiltonian, H (x, u, λ)= g(x, u) + λ ′ f (x, u), where λ̇t = −∇x H (xt
*, ut

*, λt); it
follows from the optimality principle that
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( ) ( )* * *arg min , , 0,é ù¢= + " Îé ùë ûê úë ût t t t
u

u g x u f x u t Tl (58)

Theorem 2 : Let min
u

g(x, u) +∇t V (t , x) +∇x V (t , x)′ f (x, u) =0 ∀ t , x (59)

with the condition that V (T , x)=ω(x) ∀ x

Suppose that ut
* attains the minimum in Eq. (59) for all t and x. Let (xt

* | t∈ 0, T ) be the oil

trajectory obtained from the known quantity of spill at the initial state denoted by x 0, when

the control trajectory,ut
* →V (t , xt

*), is used and ẋ t = f (xt
*, u *(t , xt

*)) ∀ t∈ 0, T . Then,

( ) ( )*, , ,V t x C t x t x= " (60)

and {ut
* | t∈ 0, T } is optimal control [7].

6. Conclusion

This chapter presents the mathematical abstractions of optimal control process where decisions
must be made in several stages following an optimal control path to minimize the apparent
toxicological effect of oil spill clean-up technique by determining the control measure that will
cause a process to satisfy the physical constraints and at the same time optimizing some
performance criteria for all future earnings from marine biota. Hence, in the future, if the
optimal policy is followed, the recursive method for the sequential optimization will converge
to optimal costs control and value function, which optimizes the probable future value at any
node of the decision tree.
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