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Abstract

In this study, particulate matter (PM), total suspended particulate (TSP), PM,,, and
PM, 5 fractions) concentrations were recorded in various cities from south of Romania
to build the corresponding time series for various intervals. First, the time series of each
pollutant were used as inputs in various configurations of feed-forward neural networks
(FANN) to find the most suitable network architecture to the PM specificity. The outputs
were evaluated using mean absolute error (MAE), mean absolute percentage error
(MAPE), root mean square error (RMSE), and Pearson correlation coefficient (1) between
observed series and output series. Second, each time series was decomposed using
Daubechies wavelets of third order into its corresponding components. Each decom-
posed component of a PM time series was used as input in the optimal feed-forward
neural networks (FANN) architecture established in the first step. The output of each
component was re-included to form the modeled series of the original pollutant time
series.

The final step was the comparison of FANN outputs with wavelet-FANN results to
retrieve the wavelet utilization outcomes. The last section of the study describes the
ROkidAIR cyberinfrastructure that integrates a decision support system (DSS). The DSS
system uses artificial intelligence techniques and hybrid algorithms for assessing
children’s exposure to the pollution with particulate matter, in order to elaborate PM
forecasted values and early warnings.

Keywords: air pollution, wavelet transformation, batch-learning algorithm, respirato-
ry health, cyberinfrastructure

I NT E C H © 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and reproduction in any medium, provided the original work is properly cited.



290 Artificial Neural Networks - Models and Applications

1. Air pollution with particulate matter in urban areas

Quantifying the human exposure to air pollutants is a challenging task because air pollution
is characterized by high spatial and temporal variability. The atmospheric physicochemical
parameters of interest from the point of view of air pollution in urban areas are carbon
monoxide (CO), sulfur dioxide (50,), nitric oxide (NO), nitrogen dioxide (NO,), various
fractions of particulate matter (PM,,, PM,;, PM,, and UFPs or ultrafine particles), ozone (O;),
volatile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs). The levels
of these parameters are significantly influenced by meteorological factors (such as speed and
direction of wind, precipitations, temperature, relative humidity, and solar radiation), seasonal
and diurnal fluctuations, geographical factors (e.g., local topography, buildings), emission
sources i.e., industrial activities and traffic in the area, as well as the air mass trajectories (e.g.,
long-range transport of pollutants).

Class Description Size (in diameter)

TSP Airborne particles or aerosols that constantly enter the atmosphere from Below 100 microns (<100
many sources having below 100 um are collectively referred to as total ~ um)

suspended particles (TSP). TSP is assessed with high-volume samplers.

Large Particles are retained by the nasopharynx area. Over 10 microns (>10 pm)
particulates
PM,, Particulates that can be inhaled below the nasopharynx area (nose and ~ Below 10 microns (0-10 pm)

mouth) and are thus called inhalable particulates (coarse fraction).

PM, 5 Fine particulates travel down below the tracheobronchial region, thatis, below 2.5 microns (0-2.5
into the lungs (fine fraction). pm)

UFP Ultrafine particulates can penetrate into the deepest parts of lungs and  below 0.1 microns (0-0.1
can be dissolved into blood (ultrafine fraction). pm)

The most hazardous size classes to humans are PM, ;and UFP as they penetrate into the lungs and can even be
dissolved into the blood.

Table 1. Airborne particulate matter classification depending on particle size [8].

In many urban agglomerations around Europe, the concentrations of airborne particles, NO,,
and O; exceed at least occasionally the limit or target values. Therefore, air pollution control
focuses mostly on the surveillance of the above-mentioned pollutants [1]. Urban agglomera-
tions are areas of increased emissions of anthropogenic pollutants into the atmosphere having
adverse health effects on population.

Consequently, a major issue of environmental policy at regional level is the reduction of their
concentrations in the ambient air [2].

Particle sizes range from a few nanometers up to more than 100 um, and depending on particle
size, there are several classes of particles (Table 1). However, epidemiological studies have
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shown that the most hazardous size classes to human health are PM,; and UFP, as they
penetrate into the lungs and can even enter into the blood following the gas exchange. Diseases
caused by UFP exposure primarily relates to lung cancer and heart disorders. Since the
measurement of UFP is a difficult task requiring sophisticated equipment, one can monitor the
submicrometric fraction that includes UFP using a reliable optical system, for example,
Dusttrak DRX 8533 [3].

In the recent years, the most common size fraction that is usually monitored in the national air
quality infrastructures at large scales in urban areas is PM, 5. Recent long-term studies show
the associations between PM and mortality at levels significantly below the current annual
WHO air quality guideline level for PM,;, that is, 10 pg/m?* (WHO, 2013).

The issue of studying the fine particulate matter is very complex and has many unknown
variables mainly due to the multitude of sources from which it directly originate, as well as
due to the physicochemical transformations that occur in the atmosphere, resulting in the
formation of secondary PM,; particulates [4-6]. Other major setbacks are the difficulties of
compliance assessment and the setup of measurement methods equivalence. Furthermore, the
methods of PM, ; measurement are still in the development period and the reference method
was recently revised in EN 12341: 2014 standard [7].

2. Forecasting of particulate matter using neural networks

The analysis of environmental processes involves highly complex phenomena, random
variations of parameters, and difficulty to perform accurate measurements in certain situa-
tions. In these conditions, the available data are incomplete, imprecise, and current applied
models require further improvements.

Measuring and forecasting of atmospheric conditions is important for understanding the
processes of formation, transformation, dispersion, transport, and removal of the pollutants.
Reliable overall estimates regarding the identification of sources, effects on mixing, transfor-
mation, and transportation support the control of air quality and the implementation of
preventive actions to reduce the anthropogenic emissions [8].

The performance of environmental management can be improved using forecasting tools of
the potential pollution episodes that can affect the population from inner and surrounding
areas where the episode might occur. Prediction of the evolution of an atmospheric parameter
can be done for short term (1 h, 1 day, 1 month) or long term (1 or more years).

The interest in improving the forecasting performances of time series algorithms and models
in air pollution studies has considerably grown. The applied methods may vary from statistical
methods, artificial intelligence (AI) techniques, and probabilistic approaches to hybrid
algorithms and complex models. The final purpose is to supplement monitored data and/or
to complete the missing values in the time series of air pollutants.

The field of statistics, which deals with the analysis of time dependent data, is called time series
analysis (TSA). One of the most widespread types of processing is the time series forecasting.

291



292  Artificial Neural Networks - Models and Applications

Many of these techniques are used in practice. We can mention, for example, random walks,
moving averages, trend models, seasonal exponential smoothing, autoregressive integrated
moving average (ARIMA) parametric models, Bolzmann composite lattice, etc.

Some of the traditional statistical models such as the moving average, exponential smoothing,
and ARIMA model are linear techniques, which have been in the past the main research and
application tools in air pollution research. Predictions of future values are constrained to be
linear functions of past observations, under the assumption that the data series is stationary
[9]. The general model ARIMA introduced by Box and Jenkins [10] involves the autoregressive
and moving averages parameters, and explicitly includes differentiations in the formulation
of the model. Three types of parameters are required in the model as follows: autoregressive
parameter; differentiation passes, and moving averages parameters [10]. The ARIMA model
assumes that a parametric model relating the most recent data value to previous data values
and previous noise gives the best forecast for future data. However, one weakness of the
ARIMA model resides in the assumption that the examined time series is stationary and linear,
and therefore has no structural changes [9].

Air pollutants have a random evolution, which requires non-deterministic approaches.
Advantages of neural computing techniques over conventional statistical approaches rely on
faster computation, learning ability, and noise rejection [11]. Artificial neural networks (ANN),
for example, succeeded to give good results for time series processing when the data present
noise and nonlinear components. Their capacity of learning and generalization recommend
them as valuable tools in a wide area of applications. The most popular architecture used in
practice is the multilayer feed-forward neural network. Their processing units (neurons) are
organized in layers and there exist only forward connections (i.e., their orientation is from the
input layer toward the output). This type of networks started to be extensively used in the late
1980s when the standard back-propagation algorithm was introduced. Since that time, the
multilayer feed-forward ANNs had a large applicability in various domains, that is, financial,
health, meteorology, environmental protection, etc.

The research has been oriented to find faster algorithms for training the network and to provide
algorithms to automate the design of an optimal network topology for a specific problem. We
can mention the standard back-propagation with momentum or with variable learning rate,
the adaptive Rprop, or algorithms based on the standard numerical optimization techniques
(Fletcher-Powel, conjugate gradient, quasi-Newton algorithm, Levenberg-Marquardt, etc.).

Rprop algorithm introduced by Riedmiller and Braun [12] is a supervised batch learning which
accelerates the training process in the flat regions of the error function and when the iterations
get nearby a local minimum. This algorithm allows different learning rates for each weight.
These rates are changed adaptively with the change of sign in the corresponding partial
derivative of the error function. They change progressively but without getting out of an
initially prescribed interval. The algorithm is described by four parameters denoted by n*, 1,
A and A, The first two parameters give the increasing and decreasing factor for adjusting

the update size and they are chosen such that 0 <~ < < 1. The size step of the update is
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bounded by A_. and A___ . The following values of the parameters were used in our tests:

min a

+_ - _ _ _
n'=1257% =05A__ =50,A . =0[13].

Quickprop is a batch training algorithm introduced by Fahlman [14], which takes in consid-
eration the information about the second-order derivative of the performance error function.
Literature showed that Quickprop is a particular case of the multivariate generalization of the
secant method for nonlinear equation [15]. The local minimum of the batch error function
reached a critical point that is a zero of the gradient [13]. In practice, Newton’s iteration is
replaced by a quasi-Newton iteration, which uses an approximate of the Jacobian and saves
the involved amount of computation. The approximation of the Jacobian by a diagonal matrix
with its entries computed with finite difference formulas proves that Quickprop belongs to
this category of quasi-Newton iterations. Its convergence is not anymore quadratic, but it
remains linear in the vicinity of the solution. We have used the same value (equal to 1.75) for
the maximum growth factor denoted by y in [14], in all our tests with Quickprop algorithm.

3. Experimental setup

We used the resources of an Al forecasting system called RNA-AER [13] for the domain of air
pollution forecasts in urban regions. RNA-AER stands for the Romanian abbreviation of ANN
for air pollution. This is a part of a complex system for PM, ; forecasting based on various
techniques of artificial intelligence (multi-agents, knowledge base system, ANNs, and neuro-
fuzzy) and that is designed to analyze the pollution level of air within ROkid AIR system (http://
www.rokidair.ro/en) [16]. A feed-forward neural network with a single hidden layer was used
to perform the tests presented in this work (Figure 1).

Xik+1
Xt k+2

Xt k+3

Figure 1. Example of feed-forward artificial neural network with one hidden layer.
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Figure 2. Front panel of the RNA-AER software with the feed-forward ANN configuration settings, error analysis, and
observed and simulated time series.

The activation function used for the hidden and output layers was the symmetric sigmoid
function (tanh). Since this function transforms the real axis into the range of (-1,1), the data
were normalized before their use and transformed back in their real values after simulation.

In the training stage, we used various learning algorithms, but the most satisfactory results
were obtained with Rprop and Quickprop. The application offers a friendly user interface from
which one may choose various parameters that describe the network and the training algo-
rithm. The program takes the raw data from one column text file and applies the necessary
transformations in the preprocessing stage. After training, the application tests the network
on the validation set of samples and shows the error. Then, the user is able to see the graphics
for the evolution of the error in the training process and the observed and forecasted data
(Figure 2). Best results were obtained with 4 or 6 units in the input layer, 6 neurons in the
hidden layer and 1 output neuron. The output represents the one value ahead forecasted data.
The network training comprised four learning algorithms. The first two were given by the
batch and incremental implementations of the standard back-propagation learning [17]. These
standard algorithms were tested with different values of the learning rate and momentum.
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The other two algorithms were the resilient back-propagation Rprop and Quickprop. In this
study, we present only the Rprop and Quickprop algorithms, which provided better results.

3.1. Steps for the development of a feed-forward neuronal model (FANN)

The use of raw data may rarely give satisfactory outputs. In this case, the training of the ANN
will catch only general properties of the data series without being able to identify character-
istics that are more refined. Therefore, a preprocessing step is often required in which the initial
data are transformed such that the new data series eliminates some redundant characteristics
from the analysis (e.g., interpolation, smoothing, wavelet decomposition, etc.).

The resulted series is then used to extract the required samples for training the network. Since
our goal was to obtain one value ahead forecasting, each sample had the form

(xt_ Kkt X — k2 XpXe 4 1) , and the whole set of samples was obtained by moving
window technique. Here, x, | ; represents the forecasting data while the other numbers are

the corresponding inputs. Three-fourth of this set was used for training, while the rest was
used in the validation process.

Inputs: particulate matter measurements of various PM fractions made in a certain default time
window; outputs: one-step-ahead forecast of the PM pollutant.

Step 1. Data preprocessing. This stage involves the data processing, elimination of incomplete
records, data interpolation to complete the missing values in the time series, datanormalization
validated by experts, and their redirection so that the database is compatible with the software
used for forecasting.

Step 2. Establishing the method of avoiding the overtraining of the ANN. A common method is to
divide the database into three sets of data: one for training (e.g., 75%), one for validation (e.g.,
15%) and another one for testing (e.g., 15%). In some cases, the proportions that include the
data in one of the datasets differ slightly around the value of 70-80% for the training set, 18—
28% for the validation, and about 2% for the testing set. Alternatively, the cross-validation with
10 sets—9 sets used for training and the 10th for validation might be considered. This process
is repeated until each of the 10 sets is used for validation.

Step 3. Setting the ANN architecture. This involves the establishing of the number of nodes in
the input layer (optimal window time for the next value forecast of the pollutant), the number
of nodes in the hidden layer, activation functions, etc.

Step 4. Adjustment of training parameters. The optimal number of epochs for network training,
the learning rate, and momentum parameter are established experimentally, avoiding the over-
training of the network or an undertrained situation.

Step 5. Network training taking into account the parameters established in step 4 and step 5.
Step 6. Validation of the resulted network architecture.

Step 7. Testing of the ANN.
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Step 8. Analysis of the ANN performances. At this stage, statistical parameters can be used such
as the correlation coefficient between variables, mean absolute error (MAE), root mean square
error (RMSE), the training error (MSE), and mean absolute percentage error (MAPE). The
values of these parameters can be compared with the conventional limits established in the
literature and those obtained with other models developed for forecasting the amount of
particulate matter fractions.

The following tests present how different parameters, which describe the neural network
model, affect the accuracy of the forecasted data. The topology of the neural network is
denoted as n | —n , —n ;, where 1 ; is the number of nodes in the input layer, 7 , is the number
of nodes in the hidden layer, and # ; is the number of nodes in the output layer. Since the
training is sensitive to the initial values of the weights, 10 tests for each algorithm were
performed and the mean of the resulted values was considered for all tables provided.

4. Results and discussion

4.1. Analysis of total suspended particulates time series

In the first test, we present the monthly average concentrations values of total suspended
particulate (TSP) recorded between 1995 and 2006 in Targoviste, Romania. During that period,
TSP often exceeded the limit value (75 pg/m?) and the city was considered as a PM risk area
at national level due to emissions from metallurgical industries. Later on, Romanian technical
norms replaced the earlier TSP air quality standard with a PM,, standard.

We compared various (p, d, q) setups of ARIMA model [10] to identify the statistical model
with the smallest magnitude of the errors during the estimation period. ARIMA (4,0,3)
presented the smallest MAE and MAPE. A significant relationship (p <0.001) with a correlation
coefficient of 0.8 was noticed between the ARIMA (4,0,3) forecasted variables and observed
data [9].

The tests performed with the feed-forward neural network using the TSP observed series
provided good forecasting results with the Quickprop (4,6,1) algorithm. The correlation
coefficient of ANN Quickprop (4,6,1) indicated a strong relationship between the forecasted
variables and observed data (Table 2).

Indicator ARIMA statistical model (4,0,3) ANN model (4,6,1) ANN model (4,6,1) ANN model (6,6,1)
Quickprop Incremental Rprop
r 0.801 0.946 0.779 0.652

Table 2. Correlation coefficients of forecasted/observed series of the ARIMA model and ANN algorithms using the
time series of total suspended particulates (TSP) concentrations in Targoviste city.
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Figure 3. Comparison of monthly averages of total suspended particulates observations vs. the ARIMA (4,0,3) and
Quickprop (4,6,1) simulations in Targoviste city (1995-2006) [9].

The ANN Quickprop (4,6,1) model presented a higher correlation coefficient (r = 0.94) than
ARIMA (4,0,3) model. The neural network prediction algorithm provided a better fit to the
TSP measured time series (Figure 3). Consequently, we observed that the use of a proper
configuration of ANN could provide better results for TSP prediction than linear statistical
models [9].

4.2. Analysis of PM,, time series

In the next test, we used daily time series of PM,, recorded by an optical analyzer in Targoviste
city. We present a case with a time series of 101 values to test the influence of a short time series
on the efficiency of the training.

PM10 (2-4-1) PM10 (6-4-1)

Concentration of PM10
Concentration of PM10

Figure 4. Observed and forecasted concentrations of PM;, (2-4-1) and PM,, (6-4-1) ANN configurations [13].
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ANN

Rprop

Quickprop

Network configuration

MSE

Training data

MSE

Validation data

MSE

Training data

MSE

Validation data

2-4-1 0.00993 0.01095 0.01153 0.00866
4-4-1 0.00498 0.01659 0.00957 0.00950
6-4-1 0.00412 0.02069 0.00881 0.00949
8-4-1 0.00314 0.02285 0.00738 0.01368

Table 3. Dependence of training and validation errors with various topologies of feed-forward artificial neural network
using short PM,, time series.

Figure 4 presents the graphics for the utilization of 2 and 6 neurons in the input layer.

We observed that the number of network inputs has a major influence over the forecasting
performances. Table 3 shows how the training error depends on the number of network inputs.
For each case, we used the same number of values, thatis, 80. Increasing the number of network
inputs results in the decrease in the number of testing samples. Yet, the table shows an increase
in the MSE of the validation data. This suggests that increasing the number of input neurons
will improve the capability of the network to have a better response for the data close to ones
used in the training process. On the other hand, the network loses its generalization abilities.

Table 4 shows how the network training and testing depend on the number of training
samples. The selected network topology was 2-4-1.

The error of training data decreases with the increase in the number of samples, while the error
of validation data increases for both tested algorithms.

ANN Rprop Quickprop

No of training samples

MSE

Training data

MSE

Validation data

MSE

Training data

MSE

Validation data

70

80

90

0.01060

0.00991

0.00962

0.00968

0.01093

0.01306

0.01242

0.01151

0.01075

0.00748

0.00864

0.01270

Table 4. Dependence of training and validation errors with the number of samples used in training a feed-forward

artificial neural network (2-4-1).
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Figure 5. Plots of observed PM,, time series with daily averages from two automated stations i.e. PH-1 and PH-3 locat-
ed in Ploiesti city in 2013.

D3 D2 D1 A3
Sin LDy 4 oMb A 2N oo w e rae
82 c 3 BB 2 o 2 B8 o8 e e ag
P j ]
@ J < 4
3 ] g E
g
3 ] )
g
N
B i ]
8
g
2] i 1
g
o
8] ) ]
H
o
8 1 ]
g
IS
3
g
D3 D2 D1 A3
8 3 0 38 88303888 3 o3 8 838888838

0sz 00z oSt 00k 0s

00e

;

Figure 6. Decompositions of PM,, time series recorded at PH-1 and PH-3 automated stations in four components i.e.
A3, D1, D2, and D3 using Daubechies wavelets of third order.

0se

0o



300 Artificial Neural Networks - Models and Applications

4.3. Analysis of PM,, time series

In this test, the daily averaged PM,, time series recorded at two automated stations located in
Ploiesti city in 2013, that is, PH-1 and PH-3 were analyzed using the method of wavelet
processing described in [11]. Data gaps (missing values 4 at PH-1 and 15 at PH-3) were
interpolated based on existing measured values (Figure 5). Each air pollutant series (n = 365
values) was decomposed using the MATLAB Wavelet Toolbox in four components, that is, A3,
D1, D2, and D3 using Daubechies wavelets of third order (Figure 6).

Automated station for monitoring air quality PH-1(F) PH-1 (WF) PH-3 (F) PH-3 (WF)

Training data MSE 0.0098 A3:0.00099  0.0067 A3:0.00096
D1: 0.00355 D1: 0.00289
D2: 0.00099 D2: 0.00104
D3: 0.00099 D3: 0.00099

Validation data MSE 0.0312 A3:0.00053  0.0498 A3:0.00263
D1: 0.00677 D1: 0.01225
D2: 0.00335 D2: 0.00238
D3: 0.00274 D3: 0.00214

RMSE 7.7 3.4 9.9 4.4

MAE 5.5 25 6.8 3.2

Pearson coefficient (r) 0.78 0.96 0.75 0.95

Forecasted value (ug m?) 33.2 36.7 56.8 61.5

Observed value (pug m™) 39.9 65.6

Studentized residuals >3.0 6 4 10 5

Table 5. Averages of 10 validation tests resulted from the Rprop (6-4-1) application to PM,, time series recorded in
Ploiesti vs. Daubechies db3 wavelet—Rprop (6-4-1) results after recomposing the series; F—Rprop FANN, WF—
Daubechies db3 wavelet—Rprop FANN.

The components resulted from decomposition of time series (A3, D1, D2, and D3) was used as
input in an optimal FANN architecture established prior to this analysis, that is, Rprop (6-4-1).
The simulated FANN output of each component was recomposed to form the modeled series
of the original pollutant time series and the network performance was analyzed using MSE,
MAE, RMSE, and r. The comparison of outputs when FANN is solely used with wavelet-FANN
results allowed the evaluation of wavelet contribution to the improvement of forecasting
abilities [11].

The application of Daubechies db3 wavelet as a decomposing preprocessor of daily averages
time series has significantly improved the out-of-sample forecasted values (Table 5). The
results showed that the exclusive use of Rprop (6-4-1) configuration was less fitted to the
observed data at both stations. Wavelet preprocessing followed by the individual training of
resulted components has substantially increased the r coefficient from 0.7 to 0.9 and decreased
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the error indicators for both time series as compared to the exclusive use of FANN. Further-
more, the forecasted values were closer to the corresponding real observations.

PH-1 PM10: F PH-1 PM10: WF

Residual

0 100 200 300 400 0 100 200 300 400

PH-3 PM10: F PH-3 PM10: WF

Residual

6L | ‘ i = 49 . i ‘ i
0 100 200 300 400 0 100 200 300 400

Figure 7. Plots of residuals resulted after correlating the daily averages of PM,, (ug m~) and Rprop FANN (6-4-1) mod-
eled data, and Daubechies db3 wavelet—Rprop WFANN (6-4-1) data, respectively, recorded at two automated moni-
toring stations in Ploiesti.

A reduction of Studentized residuals number greater than 3.0 was observed using the wavelet
processing of data from both stations compared to FANN (Figure 7), that is, from 6 Studentized
residuals to 4 (PH-1), and from 10 to 5 (PH-3).

These aspects suggested that wavelet integration in processing of daily averages of PM, series
provided significant improvements of the forecasting ability recommending the use of the
hybrid model. Compared to these results, the application of the hybrid model to hourly
recorded PM,, time series at other Romanian stations showed also the improvements of
correlation coefficient. However, the wavelet processing increased errors and provided more
potential outliers [11]. Wavelet integration did not provide computational benefits taking into
account the increase in time required for data processing. On the other hand, application of
Rprop FANN to hourly recorded PM,, produced overfitting. For improved results when neural
network is solely used, overfitting is required to be adjusted by using additional techniques,
for example, early stopping [18], dropout [19], etc.

We observed in our study that wavelet integration diminished the overfitting tendencies.
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4.4. Analysis of PM,; time series

The section presents the results of Daubechies db3 wavelet—Rprop neural network (6-4-1)
modeling using PM, 5 time series of 24-h daily averaged concentrations recorded in Ramnicu
Valcea city, south-west of Romania at VL-1 monitoring station. We selected this station for tests
because VL-1 station was one of the two stations that recorded a substantial exceeding of the
annual limit value (25 pg/m?®) at national level in 2012. The maximum value reached 149.13
ug/m?® and the annual geometric mean was 23.8 ug/m°.

Automated monitoring station in Ramnicu Valcea city (VL-1) 2012 (F) 2012 (WF)
RMSE 6.3 26.1

MAE 3.8 16.3
MAPE 31.6 50.4
Pearson coefficient (r) 0.86 0.93
Studentized residuals > 3.0 7 7

Table 6. Averages of 10 validation tests resulted from the Rprop (6-4-1) application to PM, 5 time series recorded at
VL-1 station vs. Daubechies db3 wavelet—Rprop (6-4-1) results after recomposing the series; F—Rprop FANN, WF —
Daubechies db3 wavelet—Rprop FANN.

A significant increasing of the r coefficients was observed after the application of wavelet
preprocessing. RMSE, MAE, and MAPE showed higher values compared to the exclusive use
of Rprop configuration (Table 6). Both models overestimated the forecasted values in the last
quarter of time series. However, the fluctuations observed in the original time series were
simulated better by using Daubechies wavelets [11].

These results suggest that other models or algorithms with noise-filtering/smoothing proper-
ties may be applied in various stages of the simulation in conjunction with the Daubechies db3
wavelet—Rprop FANN utilization. The expected outcome would be a superior refining of the
initial PM, ; forecasted values [11].

5. A cyberinfrastructure for the protection of children’s respiratory health
by integrating hybrid neural networks for PM forecasting—ROkidAIR

ROkidAIR cyberinfrastructure is currently developed in a European Economic Area (eea-
grants.org) research project to facilitate the protection of children’s respiratory health in two
Romanian cities, that is, Targoviste and Ploiesti.

Recent developments in the management of urban atmospheric environment demonstrated
the imperative need to ensure quick, efficient, and easy-to-understand information regarding
the status of air quality. The negative impact of air pollution on human health requires
improvements of contemporary systems for air quality management to reduce the human
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exposure to various pollutants. Providing full and comprehensive information concerning the
air quality isregarded as a mandatory service for citizens in the current air quality management
systems. The authorities should establish an appropriate framework, especially in urban areas,
where adverse health effects caused by poor air quality are more pronounced, to ensure the
integration of relevant data regarding the maintaining of air quality at required standards. The
systems for air quality management need to be adapted to decision makers’ requirements (in
order to reduce the ambient air quality issues through adequate policies) and citizens (for early
warning and for providing useful recommendations). Aiming to reduce their exposure,
citizens should receive adequate information on the spatiotemporal variation of air quality or
the forecasts on short, medium, and long term. To achieve this goal, it is necessary to collect,
integrate, and analyze data from multiple sources. Air quality forecast is one of the essential
elements of modern air quality management in urban areas. However, the efficiency of the
used forecasting methods is limited by the complex relationships between air quality, mete-
orological parameters, and specific characteristics of each study area. In addition, an important
issue that needs to be considered in choosing the forecasting method is the variation of the
input data quality. The methods to be used should be less sensitive to this factor [20]. Infor-
mation related to air quality in urban areas is obtained by using specific methods and tools for
processing the time series recorded by the monitoring stations. Mathematical methods and
tools can provide air quality forecasting, so that decision makers can act with preventive
measures that would "mitigate" or change the results of a foreseen critical pollution episode.
There is an increasing demand regarding the development of cyber-platforms that may
facilitate the air quality management providing real health benefits to the end user (e.g.,
ROkidAIR, http://[www.rokidair.ro).
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Figure 8. The architecture of the ROkidAIR system.

The main goal of the ROkidAIR project is to develop and deploy a monitoring network system
and an adjacent early warning structure that provide synthesized data concerning the PM, 5
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levels obtained from simplified but reliable monitoring micro-stations and Al forecasting
algorithms developed within the project . The architecture of the ROkidAIR system is pre-
sented in Figure 8. The ROkidAIR cyberinfrastructure is a pilot system, which is focused on
fine particulate matter effects on children’s health in two towns of Romania, that is, Targoviste
and Ploiesti. It provides early warnings concerning the PM levels, tailored to the end-user
requirements via several communication channels [3]. Collected time series obtained from the
self-developed monitoring network system, based on PM micro-stations, are preprocessed and
adapted to feed the forecasting module based on Al algorithms. All data are presented in a
dedicated geo-portal adapted to be used by smartphones and other portable equipment. The
main stream of information is transmitted both to the responsible authorities and to the
sensitive persons, who are registered in the system. The expert advises and recommendations
are transmitted via e-mails and SMSs to the registered users providing support for children’s
health management under the impact of air quality stressors and pressures. Early warnings
are developed in cooperation with pediatric specialists, which synthesize the most relevant
information concerning the protection of children’s health against air pollution threats. The
early warning data packages are also transmitted to the authorities (e.g., local EPAs—Envi-
ronmental Protection Agencies and DPH —Public Health Protection Directions) for informa-
tional purposes. The monitoring network comprises eight PM micro-stations (four in each city),
which are developed during the implementation of ROkidAIR project. These micro-stations
provide continuous PM monitoring data that are processed to be used as inputs in forecasting
algorithms based on Al The raw data obtained from the eight micro-stations are also used in
other modules of the cyber-platform: the ROkidAIR web-based geographic information
systems (GIS) geoportal, and the decision support system (DSS) including the early warning
module. The DSS system uses artificial intelligence techniques (ANNs and predictive data
mining) and hybrid algorithms and models (Neuro-fuzzy ANFIS, and wavelet neural network,
WNN) for assessing children’s exposure to the pollution with particulate matter, in order to
elaborate forecasted values and early warnings [16].

In ROkidAIR Al model, forecasting knowledge is extracted by using ANFIS (generating the
fuzzy rules set), and other methods (e.g., a combination between some machine learning
techniques) on the specific datasets (continuous monitoring data, historical data, meteorolog-
ical data, and medical data). All the extracted forecasting rules and knowledge are included
in a forecasting knowledge base that provide expert knowledge (heuristics) for a faster and
optimal air pollution forecasting in a critical polluted area [21].

6. Conclusions

The contribution of artificial intelligence to the air quality monitoring systems under devel-
opment relates to evolutionary computing, which provides stochastic search facilities that can
efficiently assess complex spaces described by mathematical, statistical, neural network, or
fuzzy inference models applied to assess the population exposure to air pollution in urban
environments. Machine-learning techniques are currently contributing to the online air quality
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monitoring and forecasting. Statistical and neural modeling techniques can also provide
approximations to supplement results from computationally expensive analytic methods.

Significant results for PM data forecasting were obtained with Rprop (PM,,10 and PM,;), and
Quickprop (TSP) algorithms. The exclusive use of the ANN algorithms showed difficulties in
predicting pollutant peaks and limitations due to limited continuous observations and large
local-scale variations of concentrations. WNNs is an alternative to overcome these drawbacks
related to time series predictions by integrating a proper wavelet in the hidden nodes of WNNs
or as a preprocessing step. The results of numerical tests provided that the application of
wavelet transformation is a significant factor for improving the accuracy of forecasting. Further
investigations are required using hourly, daily, and monthly air-quality data from other
locations and regional level, by assessing and verifying the reliability, relevance, and adequacy
of ANN data forecasting. An important step for reliable air quality forecasting is the optimal
selection of ANN learning algorithm. The automation of this component is required to
optimize the informational fluxes and to facilitate the decision-making process.
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