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Abstract

Despite widespread use in clinical practice for over 30 years, many questions remain
unanswered regarding fluid convection and reinfusion strategies in haemodiafiltration
(HDF). Randomised controlled trials have failed to consistently demonstrate improved
survival with convective therapies, but a dose-dependent improvement in outcome has
been suggested. The ‘minimum’ and ‘ideal’ volumes of convection are undefined. Online
generation of ultrapure dialysis fluid has allowed unprecedented convection volumes;
however, delivery of fluid directly into the blood circuit requires strict monitoring. The
replacement fluid may be reinfused at multiple points in the circuit. Post-dilution HDF
is highly efficient in terms of solute clearance but is limited by haemoconcentration. Pre-
dilution HDF prolongs filter life but requires significant convection volumes to achieve
adequate  solute  clearance.  Mid-dilution  HDF  utilises  a  specific  dialyser,  which  is
associated  with  additional  cost  and  escalating  transmembrane  pressure.  Mixed-
dilution HDF appears to offer an attractive balance between solute clearance efficiency
and haemoconcentration, however these findings need to be confirmed in large studies.
The majority of trials comparing fluid reinfusion strategies have enrolled small numbers
of patients over brief study periods. It is unclear whether high-quality evidence examining
fluid convection and reinfusion will become available and practice may need to rely on
observational data.
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1. Introduction

With its innovative integration of convective and diffusive techniques, haemodiafiltration (HDF)
enhances solute removal across a broad molecular-weight spectrum, which theoretically may
improve patient outcomes. Solute clearance by convection requires substantial volumes of
ultrafiltration, which in turn necessitates the administration of exogenous fluid replacement.
Whilst this fluid may originate from multiple sources, current practice centres around the online
generation of sterile, ultrapure dialysate which may be reinfused directly into the circulation.
This process requires strict water quality and safety monitoring but enables reinfusion of
unlimited volumes of substitution fluid, traditionally either before (pre-dilution HDF) or after
(post-dilution HDF) the dialyser. In recent years, two novel HDF techniques (mixed- and mid-
dilution HDF) have been developed which permit simultaneous pre- and post-dilution. Both
the optimal ‘dose’ of convection and the ideal site of fluid reinfusion are yet to be determined.
This chapter will discuss the evidence surrounding these topics in contemporary HDF practice.

2. Fluid convection

Convective solute transport occurs due to the sieving of solutes across an open membrane in
the context of large volumes of ultrafiltration. To achieve maximal convective flux, the volume
of ultrafiltration must be optimised. The total volume of ultrafiltration is determined by the
ultrafiltration rate and treatment time and is referred to as the convection volume. This value
is related to, but distinct from, the substitution volume, which is the quantity of replacement
fluid reinfused into the circuit. The difference between the two represents the net fluid removal
during the treatment.

Significant changes in the magnitude of the convection volume have taken place since the
inception of HDF in the 1970s. Classic HDF used an average substitution volume of 9 L per
session, which was primarily limited by cost and logistical issues associated with commercially
produced replacement fluid. This is comparable to the estimated amount of convection that
occurs during high-flux haemodialysis (HD) today. Most recently, innovations in fluid
generation have allowed online production of substitution fluid, which has facilitated
convection volumes of 25–40 L per session (and up to 60 L, depending on the mode). This
advance has revolutionised the practice of HDF and has piqued interest in the modality
worldwide. Importantly, parallel advances in fluid balancing systems have permitted the safe
and accurate regulation of ultrafiltration, even at these exceptionally high volumes.

Recently, EUDIAL has set a minimum convection volume for a treatment to be classified as
HDF. This threshold is equivalent to 20% of the total processed blood volume [1]. For example,
a 4-h treatment with a blood flow rate of 350 ml/min (~84 L/treatment) must have a minimum
convection volume of 17 L. Below this, the treatment would be classified as high-flux HD. In
general, the convection volume in the post-dilution HDF should be between 17 and 27 L per
session [2].
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Due to the obvious impact on solute clearance efficiency, the convection volume must be
standardised according to the site of fluid reinfusion. This corrected value is termed the ef‐
fective convection volume. In post-dilution HDF, the effective convection volume is the same
as the ultrafiltration volume. In mid-dilution HDF, conversion reference tables are provided
by the manufacturer. In pre- and mixed-dilution HDF, the ultrafiltration volume must be
standardised using a dilution factor (DF) [1]. This is calculated using the plasma water flow
rate (Qpw), upstream reinfusion flow rate (Qinf), blood flow rate (Qb), haematocrit (Hct) and
protocrit (Pct) according to the equation:

pw

pw inf

Q
DF

Q Q
=

+

( ) ( )1– 1 0.016 –pw bQ Q Hct Pct= ´ ´ -

( ). . 1 0.016 0.93.N B Pct is approximated to- -

2.1. Determinants of convection volume

The maximal achieved convection volume is dependent on several patient- and treatment-
related factors, the most important of which are treatment time and blood flow rate (Table
1). Other determinants include the transmembrane pressure gradient (TMP), specific charac‐
teristics of the dialyser (e.g. membrane surface area, UF coefficient, capillary dimensions, bi‐
ocompatibility), haematocrit and serum albumin [3, 4]. The term filtration fraction is used to
describe the ratio between the ultrafiltration rate and the blood flow rate. In post-dilution
HDF, it is limited to <0.3 to avoid complications relating to haemoconcentration, namely
membrane clotting and high TMP.

Increase convection volume High blood flow rate

Long treatment time

High filtration fraction

Large membrane surface area

Biocompatible dialyser

High UF co-efficient

Decrease convection volume Hypoalbuminaemia

Poor vascular access

High haematocrit

Small calibre membrane fibres

Table 1. Determinants of convection volume.
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2.2. Effect of convection volume on patient outcome

Whilst an overall survival benefit favouring convective therapies has not been established,
several studies have supported a ‘dose–response’ relationship between convection volume
and survival (Table 2). The Dialysis Outcomes and Practice Patterns Study (DOPPS) first
suggested this effect when it showed a 35% relative risk (RR) reduction in mortality between
HDF with substitution volumes of 15–25 L and low-flux HD [5]. Since then, there have been
three large randomised controlled trials published with similar findings—the CONvective
TRAnsport STudy (CONTRAST) [6], the Turkish HDF study [4] and the Estudio de Supervi‐
vencia de Hemodiafiltración On-Line (ESHOL) study [7]. In the post hoc analyses of the
CONTRAST and the Turkish HDF study, patients with the highest convection volumes were
shown to have a survival benefit [4, 8]. In CONTRAST, this difference was seen in the tertile
of patients treated with convection volumes >21.95 L (hazard ratio (HR) 0.61) and in the Turkish
HDF study, it was seen in patients with a substitution volume >17.4 L (HR 0.54). The ESHOL
study demonstrated a similar dose–response effect in its primary analysis: patients treated
with convection volumes above 23.1 L had improved all-cause and cardiovascular mortality
(HR 0.60) with a further improvement seen at convection volumes >25.4L (HR 0.55) [7]. Further
supporting a dose-dependent effect, a pooled analysis of CONTRAST, the Turkish HDF study,
the ESHOL study and a French HDF study demonstrated a statistically significant reduction
in all-cause mortality in patients receiving the highest convection volumes (24.4–27.4 L)
compared with standard HD [8].

The effect of cumulative convection dose on survival has recently been investigated by a
retrospective observational study of incident HDF patients. They showed an association
between weekly convection volume and survival which began to be apparent at 55 L/week (30
L/week/m2) and plateaued at 70–75 L/week (40–45 L/week/m2) [9]. This is the first paper to
recognise the importance of cumulative treatment dose, taking into account session frequency,
which may be particularly relevant to mortality outcomes.

Substitution volume Convection volume RR or HR (CI)

DOPPS [5] >15 L/session >17.5 L/session 0.65

CONTRAST [6] >19.45 L/session >21.95 L/session 0.61 (0.38–0.98)

TURKISH OL-HDF [4] >17.4 L/session >19.9 L/session 0.54 (0.31–0.93)

ESHOL [7] 20.6–22.9 L/session
>22.9 L/session

23.1–25.4 L/session
>25.4 L/session

0.60 (0.39–0.90)
0.55 (0.34–0.84)

Table 2. Volumes required to achieve a reduction in mortality (expressed as RR or HR with confidence interval (CI),
and assuming an average net fluid removal of 2.5 L).

2.3. Assessment of adequate solute clearance

Assessment of HDF adequacy must take into account removal of solutes across all molecular
weights. Specifically, enhanced middle- and large-molecule clearance should not occur at the
expense of inferior small-solute clearance. For practical purposes, small-solute clearance
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should be quantified using the same approach as for HD, whether that be calculation of Kt/
Vurea or percentage reduction in urea. Of note, blood samples must be taken upstream of any
fluid reinfusion port to avoid sample dilution. This is especially relevant in the pre-dilution
and mixed-dilution HDF modes where substitution fluid is infused before the dialyser. In
terms of assessing middle-molecule clearance, convective dialysis ‘dose’ appears to be a linear
function of substitution volume so reporting of this value is routinely used [11, 12].

2.4. Consequences of high convection volume

Due to the indiscriminate nature of solute removal by large-volume ultrafiltration, inadvertent
removal of beneficial solutes is unavoidable. The most significant example of this is albumin.
The degree of albumin loss in a HDF treatment is dependent on the membrane type, ultrafil‐
tration volume and TMP. The site of fluid reinfusion is also relevant as a key determinant of
ultrafiltration volume and TMP; the use of post- and mid-dilution HDF may increase the loss
of albumin up to fivefold [12]. Albumin removal can be minimised by profiled filtration modes,
which limit initial filtration, or by regulated TMP control. Fortunately, as described in the
randomised trials and observational studies, albumin loss did not appear to affect nutritional
parameters or serum albumin concentration [4, 6, 9, 10, 13]. It should therefore not limit the
utilisation of HDF or the prescribed convection volume in current practice, but will require
ongoing evaluation in future trials given the lack of robust safety data.

2.5. Individualising convection volume

The requisite ‘dose’ of convection likely varies between individuals. This in turn has theoretical
implications for future trial design and practical implications for HDF prescription. Two
important patient characteristics that should be considered are patient size and residual renal
function [1]. Having an absolute convection volume target for all patients is not logical since
patients vary widely in size, body composition and metabolic rate. Recently, the HDF Pooling
Project Investigators looked at the effect of convection volume on mortality when stratified
convection volumes were standardised according to patient size. The survival advantage for
higher convective dose was maintained after standardising for total body water and body
surface areas, which are surrogate markers of lean body mass, but not for body weight or body
mass index [8]. Other patient factors may also be important in determining optimal convection
volume including age, ethnic background, comorbidity index, diabetic status and dialysis
vintage. The importance of these additional factors is yet to be studied.

3. Substitution fluid

The degree of ultrafiltration that occurs in HDF necessitates reinfusion of large volumes of
replacement fluid into the extracorporeal circuit. This fluid must be sterile and non-pyrogenic
with a biochemical composition similar to plasma water. The replacement fluid may be
obtained in two ways: internal substitution (e.g. internal filtration HDF, push–pull HDF,
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double high-flux HDF and paired filtration dialysis) or external substitution (e.g. classic HDF
and online HDF).

3.1. Internal substitution

3.1.1. Internal filtration HDF

Internal filtration HDF uses pressure profiling to take advantage of the substantial volumes of
plasma water that can be filtered across high-flux dialysers. Difference in pressure between
the blood and dialysate compartments results in proximal ultrafiltration followed by distal
backfiltration (Figure 1). Backfiltration of dialysate is analogous to reinfusion of substitution
fluid. Sudden shifts in plasma water may lead to increased rates of haemolysis. Backfiltration
poses an additional risk of biological and endotoxin contamination; however, the use of
dialysis membranes with a high endotoxin retention capacity minimises this risk.

3.1.2. Push–pull HDF

Push–pull HDF involves rapid alternations in ultrafiltration and backfiltration across a single
high-flux dialyser using a double-pump system installed on the effluent line (Figure 1). These
alternations are controlled by fluctuations in pressure that occur due to varying the volume of
the dialysate compartment. Fluid is reinfused along the course of the dialyser, favouring the
blood outlet port where the pressure in the blood compartment is lowest. The convection
volume may be as high as 120 L throughout a standard 4 h treatment [14]. Albumin loss is
significantly lower than In post-dilution HDF due to lower TMP [15]. Intermittent backfiltra‐

Figure 1. Internal filtration HDF and push-pull HDF.
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tion removes protein deposition on the blood side of the membrane making this technique also
suitable for extended-hour renal replacement therapy (e.g. nocturnal or continuous HDF).

3.1.3. Double high-flux HDF

Double high-flux HDF consists of two high-flux membranes connected in series and subjected
to high blood and dialysate flow rates (Figure 2). Simultaneous diffusion and convection occur
across the first membrane, whilst backfiltration of sterile dialysate occurs across the second.
Variation in pressure and flow across the two dialysers is controlled by a resistance valve.
Using this system, von Albertini was able to achieve 13 L convection per 2 h treatment and
significant clearances of both small and larger solutes [16].

3.1.4. Paired filtration dialysis

Paired filtration dialysis uses two high-flux membranes connected in series. The first is a
haemofilter with a small surface area, which performs ultrafiltration, and the second is a
haemodialyser which performs diffusion. The substitution fluid is infused between the two.
The main variation of this technique is paired filtration dialysis with endogenous reinfusion.
This is also referred to as haemodiafiltration with endogenous reinfusion (HFR): In HFR,
ultrafiltrate passes through a purifying charcoal/resin filter before being reinfused as substi‐
tution fluid (Figure 2).

Figure 2. Double high-flux HDF and paired filtration dialysis with endogenous reinfusion.
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3.1.5. Classic HDF

Classic HDF consists of a single dialyser which performs haemodiafiltration. The convection
volume is replaced with packaged, commercially produced substitution fluid which is
reinfused after the dialyser (Figure 3). This practice is associated with significant expense and
obvious logistic issues [17]. These factors limit the volume of convection and therefore solute
clearance.

Figure 3. Classic HDF.

3.1.6. Online HDF

Online HDF relies on the ability of modern dialysis machines to generate unlimited quantities
of ultrapure dialysis fluid, which can be reinfused directly into the circulation. In this system,
dialysis fluid is prepared by the proportioning of ultrapure water and a concentrated electro‐
lyte solution. This fluid is then used as both dialysate and substitution fluid (Figures 6 and 7).
The integrity of the chemical composition is monitored using conductivity measurements. First
described in the 1970s, the development of online fluid generation has facilitated the evolution
of HDF from low-volume to high-volume practice [18]. It has been commercially available for
over a decade and comes at minimal additional cost compared to high flux HD. This modality
is the most widely utilised HDF technique in contemporary dialysis. It is well established in
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Europe and Japan, and is experiencing escalating use in Australia and New Zealand (currently
representing 16% of haemodialysis modalities) [19].

3.2. Biological safety

Since significant quantities of substitution fluid are being reinfused directly into the blood
circuit, strict biological safety is essential. Many countries have specific policies outlining the
technical requirements and water monitoring processes that dialysis units must comply with
to practice HDF. Additionally, international guidelines exist which underpin the minimum
standards for microbiological and chemical quality [20]. These technical requirements include
the use of specific HDF machines and the ability to generate ultrapure water and dialysis fluid
(Table 3). Generation of ultrapure water involves a pre-treatment system (microfiltration,
softeners, activated carbon) followed by two reverse osmosis modules connected in series
(Figure 4). In some water treatment systems, the reverse osmosis modules will be followed by
a storage tank.

Regular water Ultrapure water Ultrapure dialysate

Microbial contamination <100 CFU/ml <0.1 CFU/ml <0.1 CFU/ml

Bacterial endotoxins <0.25 IU/ml <0.03 IU/ml <0.03 IU/ml

Table 3. Water purity definitions.

Figure 4. Conversion of tap water to ultrapure water.

Ultrapure water is converted to ultrapure dialysis fluid by combination with an electrolyte
concentrate. The fluid then undergoes cold sterilisation, a process involving a series of filters
with bacterial and endotoxin retentive properties at intermediate points in the circuit. An
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inbuilt infusion pump diverts a proportion of ultrapure dialysate through another safety filter
prior to being directly infused into the patient’s bloodstream as replacement fluid (Figure 5).

Figure 5. Conversion of ultrapure water to ultrapure dialysate.

Beyond the actual production of ultrapure dialysate, frequent disinfection of the water
treatment system and dialysis machine, Thermochemical destruction of the biofilm, regular
change of filters and maintenance of a permanent circulation of water are essential. Microbio‐
logical and endotoxin monitoring must also be carried out.

Several clinical studies have confirmed the safety of online HDF provided that appropriate CE
marked and certified HDF machines are used and the best clinical practices are applied [21].
The three largest RCTs comparing HDF to HD did not demonstrate any higher incidence of
infectious complications using online fluid generation [4, 8, 9].

4. Site of fluid reinfusion

Online HDF modalities are classified according to the location at which the replacement fluid
is administered in the extracorporeal circuit. The replacement fluid has traditionally been
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reinfused either before (pre-dilution) or after (post-dilution) the dialyser. Simultaneous pre-
and post-dilution HDF techniques (mixed- and mid-dilution) have gained popularity in recent
years. Each has relative advantages and disadvantages (Table 4). Other novel hybrid modal‐
ities have been proposed including ‘pre-dilution on demand’ and ‘backflush on demand’.

Post-dilution Pre-dilution Mixed-dilution Mid-dilution

Small-solute clearance +++ + +++ ++

Medium solute clearance ++ + +++ +++

Protein-bound solute clearance ++ + +++ ++

Albumin loss ++ + + +++

Filter clotting ++ + + +++

High TMP ++ + + +++

Table 4. Relative advantages and disadvantages of fluid reinfusion site.

4.1. Post-dilution HDF

Post-dilution HDF is regarded as the most efficient form of HDF in terms of solute clearance
and is the most common format used in contemporary clinical practice. By reinfusing fluid
after the dialyser, a continuous concentration gradient is maintained along the entire course
of the dialyser (Figure 6). This approach has been shown to be superior to both high-flux HD
and pre-dilution HDF in terms of small-solute and middle-molecule clearance [11, 22].

The efficiency of solute clearance in this system occurs at the expense of escalating haemo‐
concentration, which increases the risk of filter clotting, membrane pore occlusion and a
subsequent increase in TMP. In extreme cases, red cell damage and protein denaturation may
occur. There is also an increased risk of albumin loss as a result of the high TMP. The potential
for haemoconcentration means that the filtration fraction must be limited which in turn
necessitates a high blood flow rate to achieve adequate convection (typically >350 ml/min).
Therefore, in patients with poor vascular access, inadequate blood flow may compromise the
ability to achieve satisfactory clearances. Similarly, the risk of filter clotting means that patients
with high haematocrit, cryoglobulinemia or gammopathy should be preferentially managed
with pre-dilution or mixed-dilution HDF.

4.2. Pre-dilution HDF

In pre-dilution HDF, the substitution fluid is reinfused before the entry of blood into the
dialyser (Figure 6). This avoids complications relating to haemoconcentration which extends
filter life and lowers TMP. Because of the lower risk of clotting, heparin dose can be minimised
and heparin-free dialysis for high-risk patients is possible [23]. In Japan, where this technique
is used most widely, improvements in shear stress, blood pressure and haematological
parameters (especially neutrophil and lymphocyte function) have also been reported [24, 25].
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This same group have described improvements in dialysis-related symptom burden including
itch, restless legs syndrome and insomnia compared to the post-dilution HDF.

Pre-dilution HDF has obvious deleterious effects on the efficiency of solute clearance. The
reduced efficiency of this system means that ultrafiltration rates must be at least twofold higher
than those in post-dilution HDF to achieve equivalent solute clearance. In fact, ultrafiltration
rates of up to 100% of the blood flow rate are often used.

Figure 6. Post-dilution HDF and pre-dilution HDF.

4.3. Mixed-dilution HDF

In mixed-dilution HDF, fluid is simultaneously reinfused both before and after the dialyser in
a ratio that is automatically regulated by the TMP and ultrafiltration feedback (Figure 7). An
internal feedback mechanism maintains the TMP between 250 and 300 mmHg and ensures a
maximum filtration fraction after considering the blood and dialysate flow, internal pressure
and hydraulic permeability of the dialyser. Convection volume tends to be 30–40 L/session.
TMP is calculated according to the pressure measured at four points in the system: blood entry
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into the dialyser entry (Pblood in), blood exit from the dialyser (Pblood out), dialysate entry into the
dialyser (Pdialysate in) and dialysate exit into the dialyser (Pdialysate out).

Figure 7. Representation of the mixed-dilution and mid-dilution HDF.

0.5 [( ) ( )]blood in blood out dialysate in dialysate outTMP P P P P= ´ + - +

If the TMP rises beyond its maximum tolerated value, a fraction of infused dialysate is diverted
from post- to pre-dilution, which decreases haemoconcentration and lowers the risk of
membrane pore occlusion. Similarly, if the TMP falls below the target range, fluid is redirected
towards the post-dilution mode to increase system efficiency.

Mixed dilution HDF has been shown to be non-inferior to post-dilution HDF in terms of small
and protein-bound solute clearance and superior to post-dilution and pre-dilution HDF in
terms of β2−microglobulin clearance (β2−M) [26–29]. Whilst these were relatively small rando‐
mised trials which require larger studies to confirm their findings, mixed-dilution HDF
appears to offer an attractive balance between efficiency of solute removal and minimisation
of haemoconcentration-related complications. Specifically, it may be suitable for patients in
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whom target convection volumes are not achieved by post-dilution HDF because of high
haematocrit, high plasma protein, or inadequate vascular access and blood flow rate.

4.4. Mid-dilution HDF

Mid-dilution HDF similarly combines pre- and post-dilution fluid reinfusion into a hybrid
system (Figure 7). It does so by utilising a specialised haemodiafilter, the Nephros OLpur
MD 190. This filter is constructed in such a way that blood enters through the central core
fibres of the dialyser and returns in the opposite direction peripherally. This model effec‐
tively comprises two dialysers in series. Substitution fluid is incorporated at the midpoint of
the system, which creates an initial post-dilution stage followed by a pre-dilution stage. This
enables a high-concentration gradient and encourages movement of small solutes in the first
stage and maximal ultrafiltration of plasma water and convective removal of larger mole‐
cules in the second stage. Reinfusion rates up to 10–12 L/h are possible.

Unfortunately, due to the nature of the specialised dialyser, mid-dilution HDF is associated
with higher costs. There is also a higher degree of albumin loss, which is not insignificant.
Concerns exist regarding generation of a high TMP, which could compromise membrane
permeability. A TMP of up to 1000 mmHg has been reported as necessary to achieve the
required minimum ultrafiltration of 6 L/h [30]. This high TMP is especially problematic in the
first section of the dialyser where the post-dilution phase takes place and is thought to be the
result of partial fibre clotting and increased resistance to blood flow due to the reduced
capillary diameter in this segment [31]. Given the pro-coagulant effect of rapid convection,
adequate anticoagulation is necessary to ensure device patency. Reversal of the configuration
of the blood tubing (i.e. connecting the arterial line to the venous port of the dialyser and vice
versa) has been successfully trialled in mid-dilution HDF without significant effect on plasma
clearances if adequate infusion rates are maintained [32, 33]. Consideration should also be
given to the use of larger-surface filters (e.g. Nephros OLpur MD 220) [34].

When compared to post-dilution HDF, mid-dilution HDF is associated with inferior small
solute but superior middle-molecule clearance (β2M, myoglobin, prolactin, RTP) and similar
clearance of protein-bound solutes [35–37]. With increasing molecular weight, differences in
treatment efficiency between mid- and post-dilution HDF rise [36]. Phosphate clearance is
similar between the two groups. Whilst few studies have compared mid- and mixed-dilution
HDF, one small prospective randomised trial found greater small-solute and middle-molecule
clearance with mixed-dilution HDF though differences in dialyser membranes may have
confounded their outcomes [30]. Another small prospective crossover study compared ‘simple
mid-dilution’ (using two dialysers in series, rather than the Nephros OLpur MD 190) and
mixed-dilution HDF. They similarly found that mixed-dilution HDF provided significantly
greater clearances of urea, creatinine and β2M compared To ‘simple mid-dilution’ HDF with
equivalent phosphate clearances [38]. These outcomes require examination in larger trials.

4.5. Novel systems

Two novel systems, ‘pre-dilution on demand’ and ‘backflush on demand’, have recently been
proposed as potential alternatives to the standard online HDF modalities [39]. These sys‐
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tems utilise inbuilt automated software to balance ultrafiltration against haemoconcentra‐
tion. In pre-dilution on-demand mode, escalating TMP is managed by temporarily pausing
ultrafiltration and diverting a proportion of filtered dialysate into the dialyser in pre-dilu‐
tion mode as a bolus. This produces sudden haemodilution. In backflush on demand, rising
TMP results in an automatic cessation of filtration and an infusion of ultrapure dialysate in‐
to the dialyser. This creates positive pressure in the dialysate compartment, which back‐
flushes the membrane pores and reduces haemoconcentration. These modes are currently
experimental but offer a novel and intuitive solution to some of the inherent technical barri‐
ers of the existing HDF modes. Of note, these machines and dialysers would carry addition‐
al expense, which would need to be considered.

5. Summary

Many questions remain unanswered in the field of fluid convection, generation and reinfu‐
sion in haemodiafiltration. Although convection volume appears to have a dose-dependent
relationship with survival, randomised trials have failed to consistently demonstrate im‐
proved mortality in their primary analyses. Furthermore, the critical ‘dose’ required to im‐
prove patient outcomes is yet to be determined and may need to be individualised
according to patient factors, including patient size and residual renal function. Online gener‐
ation of ultrapure dialysate has revolutionised the practice of HDF by allowing large con‐
vection volumes, although this approach requires strict monitoring in terms of quality and
safety. The preferred site of fluid reinfusion is not known and warrants careful considera‐
tion of the opposing factors of solute clearance efficiency and the consequences of haemo‐
concentration. Hybrid modalities appear to present a promising balance between the two.
Given the lack of robust clinical trials confirming the benefits of HDF, the increasing uptake
of HDF worldwide has largely been driven by industry. Lack of a harm signal, cost neutral‐
ity and optimism that patient benefits will arise from large convective volumes have facili‐
tated acceptance amongst the Nephrology community. It is unclear whether high-quality
data from randomised trials will be available to guide convection and reinfusion strategies
and it is likely that practice will need to rely on the results of observational studies.
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