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Abstract

The extracellular matrix (ECM) is a noncellular component with a crucial role on tissue
morphogenesis, differentiation and hemostasis within all tissues and organs. With
advancement in the technology and increased data on ECM components, it was realized
that many conditions in urinary tract have a close relation with the composition of ECM
in the affected tissue. According to some basic research studies, ECM composition may
give usimportantinformation about the prognosis and progression of disease in addition
to the cause and pathophysiology of the diseases such as congenital ureterovesical and
ureteropelvic junction obstruction. Afterwards, with better understanding of ECM one
can develop new treatment and follow-up models. This chapter will summarize the
evidence-based role of ECM in urinary tract conditions.

Keywords: urinary tract, extracellular matrix, immunohistochemistry, ureteropelvic
junction, ureterovesical junction

1. Extracellular matrix

The extracellular matrix (ECM) is a noncellular component within all tissues and organs, and it
is essential for the scaffolding of cellular constituents and also it plays a crucial role on tissue
morphogenesis, differentiation and hemostasis [1]. It is an anchoring platform for epithelia,
forms the basement membrane, and also surrounds capillaries and neural cells, and is part of
the connective tissue [2].

In general, ECM molecules can be classified as fiber-forming and non—fiber-forming molecules
[3, 4]. Collagens, elastins, laminins and fibronectins are the main fiber-forming ECM proteins.
Proteoglycans which are main non—fiber-forming molecules fill the majority of the extracel-
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lular interstitial space and they have a wide variety of functions that reflect their unique
buffering, hydration, binding and force—resistance properties.

2. Fiber-forming ECM elements

2.1. Collagen

Collagens are the most abundant proteins in ECM and the whole human body [5]. Collagens
have many functions, which depend on the type and tissue they are in. Depending on the
tissue, collagen fibers can provide tensile strength, can regulate cell adhesion, can support
chemotaxis and migration and can direct tissue development [6]. Generally in normal phys-
iologic states, different types of collagen fibers form a heterogeneous mixture but usually there
is a dominant type of collagen in every given tissue.

The five most common collagen types are the following;:

Type I: skin, tendon, vascular ligature, organs and bone (main component of the organic part
of bone)

Type II: main collagenous component of cartilage
Type III: main component of reticular fibers

Type IV: forms basal lamina and basement membrane
Type V: placenta, cell surfaces and hair

A majority of collagen molecules are in the form of triple strands, which form supramolecular
complexes like fibrils and networks depending on the type of collagen. Network collagens are
incorporated into the basal membrane and fibrous collagens form a skeleton for the collagen
fibril bundles in the interstitium [1].

2.2. Elastins

Elastins are the main ECM element, which gives tissues elasticity and allows a tissue to stretch
and return to its original state if needed. Their tight association with collagen fibrils crucially
limits their stretchability. Fibroblasts and smooth muscle cells secrete elastin in the form of its
precursor, tropoelastin. Secreted tropoelastin molecules assemble into elastin fibers. Elastin
fibers are covered by glycoprotein microfibrils. The most common glycoprotein covering
elastin fibers is fibrillin. The presence of fibrillins is also essential for the integrity of elastin [1].

2.3. Laminins

Laminins are glycoproteins that form heterodimers containing 1 , 1 3 and 1 y chain. They are
synthesized in podocytes and endothelial cells. Laminin trimerization occurs inside the cell in
the endoplasmic reticulum. Once trimerization completed they are secreted into the extracel-
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lular space and they polymerize to form a supramolecular network. Laminin polymerization
initiates basement membrane formation and sends signal to adjacent cells [7].

2.4. Fibronectins

Fibronectins are glycoproteins that establish connection between cells and collagen fibers in
the ECM. It is secreted as a dimer form, which are joined by two disulfide bonds. Fibronectin
tibers have several binding sites through which they form a connection with other fibronectin
dimers, collagen fibers, heparin and cell-surface integrin receptors [1].

Fibronectins have vital importance for mediating cell attachment and function and they have
an important role in the organization process of the interstitial ECM. During tissue develop-
ment, fibronectins are important for cell migration, and also studies showed that they have
roles on cardiovascular disease and tumor metastasis [6].

3. Non—-fiber-forming ECM molecules

3.1. Proteoglycans

Proteoglycans are heavily glycosylated proteins. They contain glycosaminoglycan (GAG)
chain, which is linked with a protein core covalently. They are classified by their size (large
and small) or the nature of their GAG chains. The main classes of proteoglycans are heparan
sulfates, keratan sulfates and chondroitin sulfates. Their extreme hydrophilic nature and
ability to adapt extended conformations make them easier to form hydrogel, and structures
formed with these molecules can withstand high compressive forces.

Proteoglycans and their most common locations:
Heparan sulfate: basement membranes and components of cell surfaces.
Chondroitin sulfate: cartilage, heart valves and bone.

Keratan sulfate: cornea and bone.

3.2. Hyaluronic acid

Hyaluronic acid is a polysaccharide, which does not contain protein core and it consists of
alternating residues of D-glucuronic acid and N-acetylglucosamine. Hyaluronic acid forms a
coat around chondrocytes and they provide resilience of articular cartilage tissue. In extracel-
lular space, hyaluronic acid also provides the ability to resist compression by absorbing
significant amounts of water and providing a counteracting swelling force.

4. ECM remodeling and matrix metalloproteinases

Each tissue has an ECM with a unique composition, which is formed by biochemical and
biophysical interaction between the various cellular components (e.g., fibroblast and
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endothelial elements) and the evolving cellular and protein microenvironment [1]. There is a
constant turnover of ECM in the body and it is being regulated with either enzymatically or
nonenzymatically which makes ECM a dynamic structure.

Matrix metalloproteinases (MMPs) are a large family of endopeptidases, which are calcium-
dependent zinc-containing enzymes. They are responsible for the degradation of the ECM in
which they assist the tissue remodeling and they play a central role in tissue homeostasis [8].
They are present in both pathologic and normal tissues performing proteolytic action [9]. The
main cell types excreting MMPs are macrophages, fibroblasts, osteoblasts, endothelial cells,
neutrophils and lymphocytes [8].

MMPs have been studied in many conditions. It has been found that they have an impact on
tumor cell behavior as a result of their ability to make alterations on cell surface receptors,
growth factors, cell adhesion molecules and cytokines. Furthermore, MMPs are able to produce
apoptosis-resistant cells, which leads to generation of an aggressive phenotype. MMPs may
also regulate angiogenesis positively or negatively in cancer depending on activation of
proangiogenic factors or generation of angiogenesis inhibitors, respectively [10].

In bladder cancer, it has been shown that there is a correlation with the levels of MMP-2 and
MMP-9 and tumor grade and invasiveness [11]. MMP-2 levels were also found to be strongly
associated with tumor stage and prognosis [12]. In a study, serum level of MMP-7 was also
found to be associated with the prognosis of the patient. It is reported that in bladder cancer
patients treated with radical surgery high MMP-7 plasma levels were significantly associated
with poor overall- and disease-specific survival [13].

5. Role of ECM molecules on urinary system

5.1. Upper urinary system

In the renal cortex, the ECM is present in anatomically distinct areas with different functions
depending on its molecular components. Glomerular basal membrane, which is thicker,
compared to most other basal membranes in the body mainly contains laminin, collagen type
IV, nidogen and heparan sulfate proteoglycans [14].

Laminins in glomerular basal membrane form a network required to maintain the basement
membrane integrity. A genetic defect in laminin (32 chain will result in Pierson syndrome,
which is characterized by congenital nephrotic syndrome and diffuse mesangial sclerosis,
muscular hypotonia, distinct ocular abnormalities like microcoria (small pupils) and impair-
ment of vision and neurodevelopment [15]. Leading cause of death, which occurs within first
days, or weeks of life in Pierson syndrome is renal failure.

Nidogens bind to collagen type IV and laminin separately. Nidogens have a role in the
basement membrane formation but experimental evidence on animal studies showed that they
are not essentially required for GBM formation [16]. The most common type of heparan sulfate
found in healthy basal membrane is agrin [4].
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In normal physiologic conditions, ECM of glomerular mesangium consists of fibronectin,
collagen type IV, collagen type V, laminin, chondroitin sulfate, heparan sulfate and nidogen
[7, 17]. Mesangial ECM allows larger molecules to pass to the mesangium in contrast to
glomerular basal membrane. The small proteoglycans like decorin, biglycan, fibromodulin and
lumican are most commonly localized in the tubular interstitium and they are also weakly
expressed in mesangium [7].

Normally, the renal tubulointerstitial matrix is composed of collagen types L, III, V, VI, VIl and
XV, both sulfated and nonsulfated GAGs, glycoproteins and polysaccharides. During fibrosis,
decreased degradation and increased synthesis of ECM components result in accumulation of
these components leading to the formation of scar tissue in the interstitial space [14, 18].

Increasing evidence suggest that MMPs have a complex role in renal fibrosis [19]. For example,
MMP-9 mediates collagen degradation. As aresult, collagen fragments were formed, and these
fragments mediate neutrophil chemotaxis. Including their action on ECM components, it is
also shown that MMPs have functional effect on the modulation of growth factors, their
receptors and adhesion molecules [19].

In diabetic nephropathy, glomerular hypertension and hyperfiltration lead to mechanical
stress on glomerular cells, resulting increased transcription of transforming growth factor
(TGF)-B1 and decreased MMP activity. As a result, in diabetic nephropathy, changes seen on
glomerular basal membrane increase in the concentration of laminin, fibronectin, collagen IV
and VI; increase in glycation of collagen IV, increase in crosslinking of collagen IV and decrease
in the concentration of agrin, perlecan and collagen XVIII [18]. Stokes et al. showed an increase
in decorin, collagen type 1 and biglycan levels on mesengial matrix in renal fibrosing disease
[20]. Collagen type 4 reported to increase both type 1 and type 2 DM associated with the degree
of decline in renal function [14].

There are some conditions in which defects on ECM components affect upper urinary tract.
Mutations on the a5 chain of collagen type IV result in Alport’s syndrome. Genetic defects on
the a3 and a4 chains of collagen type 4 can cause autosomal dominant or recessive Alport’s
syndrome and thin basement membrane nephropathy. Goodpasture syndrome and Alport
posttransplantation disease are two autoimmune conditions in which autoantibodies attacking
glomerular basal membrane cause rapidly progressive glomerulonephritis.

Thrombospondin-1 (TSP-1) is a glycoprotein, which has adhesive properties, and itis involved
in fibroblast proliferation and migration. TSP-1 is correlated with the degree of tubulointer-
stitial fibrosis. It is also shown that TSP-1 is transiently expressed at early stages of fibrosis. It
is suggested that by the activation of TGF-[3, TSP-1 could have a possible role as a mediator of
interstitial fibrosis [14].

Matrix molecules such as heparan sulfate, proteoglycans, laminins, integrins and MMPs along
with a group of growth factors (e.g., TGF-{) are involved in stimulation or inhibition of growth
and branching of the ureteral bud [21]. The important role of ECM components and MMPs on
the development of ureters puts these molecules on the scope of most recent studies investi-
gating pathophysiology of congenital ureter-related abnormalities. It is suggested that an
increase in ECM components such as collagen 1 may result in ureter-related disorders such as
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ureteropelvic junction (UPJ) obstruction and ureterovesical junction (UV]) obstruction [9, 22—
24].

5.2. Bladder and lower urinary system

The bladder ECM consists of proteins, proteoglycans and GAGs. ECM in bladder provides
support and signaling to the cells of the bladder [25]. ECM components have an important role
in the protection of urothelium and the storage of urine. The protective layer of GAGs
(predominantly chondroitin and heparan sulfates) that cover urothelial cells forms a barrier
against various toxic components [25].

Bladder lamina propria forms a highly effective barrier between epithelial and mesenchymal
layers. It consists of mainly connective tissue and it also contains myofibroblasts, nerve fibers,
lymphatics and blood vessels [26, 27].

Detrusor muscle is associated with laminin, osteopontin and collagen fibrils (I and III) During
physiologic bladder filling and emptying, keratoepithelin is organized in complex folds and
facilitates expansion and compaction of the bladder. Further, the ECM composition of the
bladder wall, and in particular the type of collagen (type I favored in normally compliant
bladders), as well as the collagen-to-elastin ratio, are critical to the maintenance of a low-
pressure state in the bladder during normal filling [21].

Studies on bladder cancer show that changes in ECM play a crucial role in the course of the
disease. It has been shown that bladder cancer cells cultured in a normal ECM lose their
invasiveness or ability to form papillary structures. Instead, they align in either multi- or single-
layered formation resembling normal urothelium [28].

Altered distribution of laminin-5 y2-chain is found to be associated with worse overall
survival, higher risk of recurrence and progression; and it is regarded as independent prog-
nostic factor in bladder cancer treated with TUR-B. Studies demonstrated that loss of collagen
IV was associated with invasive behavior and worse overall survival [29].

Fibronectin is found at increased levels in lamina propria and in urine in urothelial carcinoma.
Increased expression of it is also found to be associated with stage of the cancer but has no
prognostic value. Increased value of fibronectin in urine suggested to be used for early
detection of the tumor whereas decreased fibronectin level in the urine can be used to assess
response to Bacillus Calmette Guérin (BCG) therapy [29].

Increased stromal expression of tenascin Cis found to be associated with worse overall survival
in bladder cancer; on the contrary tumor cell expression of tenascin C is associated with
improved overall survival [29]. Itis also found that in patients with decreased expression levels
of TSP-1, high rate of recurrence and worse overall survival is seen [29].

In the function and diseases of prostate the noncellular stroma and ECM of the organ play an
important role. Prostate basement membrane contains type IV and V collagen meshwork that
is laminin rich and supports basal cells, stem cells, transit-amplifying cells and secretory
epithelium.
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6. ECM on UP]J obstruction

Total or partial blockage at the level where renal pelvis and the ureter are joined is defined as
UPJ obstruction. Obstruction can be congenital or acquired. In this case, the passage of urine
from the kidney to the ureter was damaged partially or completely, depending on the grade
of the obstruction. As a result, deterioration in renal function due to hydronephrosis may occur
in untreated cases in the future.

In a normal kidney, the UPJ does not differ histologically from the renal pelvis. However, in
an obstructed kidney, the longitudinal muscle fibers are significantly increased with more
collagen deposits around the muscle fibers in addition to attenuation of muscle bundles [21].

The role of ECM in the pathogenesis of UPJ obstruction is still unclear. Major pathologic
component of obstructive renal injury is tubulointerstitial fibrosis, which results in obstruc-
tion-induced renal dysfunction. Tubulointerstitial fibrosis is regarded as the final common
pathway for all kidney diseases that lead to chronic renal failure [30]. One of the earliest
histologic changes in the obstructed kidney is an increase in inflammatory cell infiltration into
the interstitial compartment of the kidney. This results in the secretion of growth factors and
cytokines. As a response to increased cytokine and growth factor levels, matrix-producing
fibroblasts accumulate in renal interstitium. In response to stimulation from cytokines and
growth factors, fibroblasts will secrete collagen, elastin, proteoglycans and fibronectin into the
interstitial space. MMPs strictly regulate ECM secretion process in healthy individuals. Tissue
inhibitors of MMPs (TIMPs) are produced by both tubular cells and interstitial cells in the
kidney, and they function to inhibit the activity of MMPs [21]. An increase in TIMPs expression
has been shown as a result of urinary obstruction. Although it is thought that this mechanism
could be the result of ECM accumulation the role of MMPs on renal fibrosis is still not clear.
Some studies show that inhibition of MMPs results in increased renal fibrosis [31] whereas
there is evidence that MMP-9-deficient mice have a dramatic reduction on interstitial fibrosis
in response to urinary obstruction [32].

Kaya et al. show that there seems to be increased expression of ECM components in the patients
with congenital UP] obstruction. In their study, surgical specimens of 21 patients who
underwent a pyeloplasty surgery were examined immunohistochemically. Their study
showed that collagen III and tenascin C expression was significantly higher in patients with
UPJ obstruction. Their study also reveals that in UPJ obstruction MMP-2 expression was
significantly elevated compared with healthy controls, which represents increased matrix
turnover. This study also showed decreased S100 protein expression emphasizing decreased
neural structure which helps us to better understand pathophysiology of this condition [9].

Another study performed by Kim et al. [33] in 65 patients demonstrated that the more collagen
compared to smooth muscle the worse renal function recovery after surgery. Although this
study showed that increased collagen levels are associated with poor prognosis it lacks to
investigate relations with collagen subgroups.

Supporting these findings, in 2009, Ozel et al. performed a controlled study with 36 patients
performing immunohistochemistry and found that fibronectin, type 4 collagen and laminin
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levels were significantly higher in patients with UPJ obstruction. They also expressed that
apoptosis was higher in UPJ obstruction group [34].

Although it is a highly investigated area, role of ECM proteins in the development of UP]
obstruction and their impact on treatment success is still controversial. Current literature lacks
a study that compares child and adult patient populations, which could give us a clearer
picture for the progression of UPJ obstruction thought the life. Such information could help
the physician to decide the timing of the surgery with more objective data.

7.ECM on UV]

Similar to UPJ studies, UV] shows decreased muscle density and increased ECM components
in diseased patients. In a study published in 2004, 36 UV] segments were evaluated and MMP1
production was found significantly higher in the group with an obstructed junction. This study
also found that an increased level of CD68+ macrophages was found in obstructed junctions
and as a result there was an increase in cytokines and growth factors and ECM is secreted at
elevated levels [23].

Oswald et al. have shown that markers of smooth muscle structure decrease in UV] pathologies
whereas collagen concentration increases significantly by examining tissue specimens of 29
patients with a refluxing ureter and comparing them with nonrefluxing tissues.

Studies showing changes in ECM composition in UV]-related disease gives us a picture of what
happens after pathological process starts. In most conditions, our knowledge lacks the
information of what really starts these changes on subcellular level. There is a need for more
detailed and larger studies to get a clear picture of the conditions and develop better treatment
strategies.

8. Conclusion

With advancement in the technology and increased data on ECM components, it was realized
that many diseases have a close relation with the composition of ECM in the affected tissue.

ECM composition, in some conditions, gives us a view about the prognosis and progression
of disease whereas in others it can give information about the cause and pathophysiology of
the disease. With better understanding of ECM one can develop new treatment and follow-up
models. Also better knowledge of ECM is essential for tissue engineering. Although thereis a
lot of data on ECM subject there are still needs for well-planned clinical trials, which can change
our perspective on this subject.
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