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Abstract

We demonstrate extreme ultraviolet (EUV) and soft x-ray sources in the 2- to 7 -nm spec‐
tral region related to the beyond extreme ultraviolet (BEUV) question at 6.x nm and a wa‐
ter window source based on laser-produced high-Z plasmas. Strong emissions from
multiply charged ions merge to produce intense unresolved transition array (UTA) to‐
ward extending below the carbon K-edge (4.37 nm). An outline of a microscope design
for single-shot live- cell imaging is proposed based on a high-Z UTA plasma source, cou‐
pled to x-ray optics. We will discuss the progress and Z-scaling of UTA emission spectra
to achieve lab-scale table-top, efficient, high-brightness high-Z plasma EUV-soft x-ray
sources for in vivo bio-imaging applications.

Keywords: High-Z, unresolved transition array (UTA), extreme ultraviolet (EUV), soft x-
ray, water window

1. Introduction

Laboratory- scale source development of shorter- wavelength spectral regions in the extreme
ultraviolet (EUV) and soft x-ray has been motivated by their applications in a number of high-
profile areas of science and technology. One such topic is the challenge of three-dimensional
imaging and single-shot flash photography of microscopic biological structures, such as
macromolecules and cells, in vivo. For x-ray microscopy, the x-ray source should emit a
sufficient photon flux to expose the image of the biosample on the detector. Recently, the most
practical source of high-power, high-brightness x-rays has been radiation from synchrotrons
and x-ray– free electron lasers (XFEL) [1]. Compact sources using liquid nitrogen droplets are
being developed for the use of the zone plates for the transmission microscopy. Recently, the
wavelength at 2.48- nm narrowband emission from a liquid-nitrogen-jet laser-plasma [2] was
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successfully combined with the latest normal-incidence multilayer condenser optics and 20-
nm zone-plate optics to work laboratory water-window x-ray microscopy [3] with resolution
less than 25 nm and synchrotron-like image quality on biological and environment science
samples. The development of a high-brightness source based on a focused electron beam
impacting a liquid water jet resulting in 2.36-nm emission has also been studied [4]. The total
collected energy, however, is low, when one combines the narrowband line emission with the
low reflection coefficient of the collector mirror. As a result, long exposures are needed to take
a picture, and there is not yet published evidence of single-shot, flash exposures by the use of
a laboratory-scale source. In order to overcome the low efficiency imposed by line emission
sources, we propose the use of high- power water-window emission from laser-produced high-
Z plasmas, analogous to the extending scheme of efficient, high-volume manufacturing EUV
sources.

High-power EUV sources with high efficiency for semiconductor lithography at 13.5 [5] and
6.7 nm [6–8] based on laser-produced plasmas (LPP) have been demonstrated in high-volume
manufacturing of integrated circuits (IC) having node sizes of 22 nm or less [9, 10]. The EUV
emission at the relevant wavelength may be coupled with La/B4C or Mo/B4C multilayer mirror
with a reflectivity of 40% to provide a source at 6.5−6.7 nm. Recently, a reflection coefficient of
about 60−70% was shown to be feasible in a theoretical study [11]. Consequently, the devel‐
opment of a new wavelength EUV source for the next- generation semiconductor lithography,
which can be coupled with an efficient B4C multilayer mirror, is particularly timely.

High-Z element plasmas of Sn and Gd produce strong resonant band emission due to 4d−4f
and 4p−4d transitions around 13.5 nm and 6.7 nm, respectively, which are overlapped in
adjacent ion stages to yield the intense unresolved transition arrays (UTAs) in their spectra.
The in-band high-energy emissions are attributable to hundreds of thousands of near-
degenerate resonance lines lying within a narrow wavelength range. Rare earth elements
gadolinium (Gd) and terbium (Tb) produce strong resonant emission in an intense UTA
around 6.5−6.7 nm [6–8]. The choice of these elements was prompted by the use of UTA
radiation in tin (Sn) for the strong 13.5-nm emission, where n = 4−n = 4 transitions in Sn ions
overlap to yield an intense UTA [12, 13], as the optimum source for 13.5 nm and the scaling of
this emission to the shorter wavelength with increasing Z. Because the emitting ions in Gd and
Tb plasmas have largely a similar electronic structure to Sn, they are expected to have a similar
spectral behavior and emit an intense UTA due to 4d−4f and 4p−4d transitions at shorter
wavelengths.

Plasmas of the rare earth elements gadolinium (Gd) and terbium (Tb) produce strong resonant
emission due to the presence of an intense UTA around 6.5−6.7 nm in the spectra of their ions
[6]. In tin (Sn), the presence of the corresponding feature at 13.5 nm prompted its selection as
the optimum source material at that wavelength. The UTA emission scales to shorter wave‐
length with increasing atomic number, Z. Because the emitting ions in Gd (Z = 64) and Tb (Z
= 65) plasmas have an electronic structure largely similar to Sn, they are expected to exhibit a
similar spectral behavior and emit an intense UTA due to 4d−4f and 4p−4d transitions at shorter
wavelengths. Recently, the suitability of Nd:yttrium-aluminum-garnet (Nd:YAG) LPP EUV
sources based on Gd and Tb has been demonstrated for high- power operation [6]. Since at
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high plasma electron densities, the opacity effects reduce the intensity of the resonance lines
thereby limiting the output power, methods of reducing the effects of reabsorption (opacity)
were evaluated to achieve high energy conversion efficiency (CE) from the incident laser
energy to the EUV emission energy and the spectral purity. The effect of optical thickness was
evaluated by changing the laser wavelength to alter the plasma electron density [7, 14]. In order
to increase the EUV energy CE and spectral efficiency (purity), the optical thickness in the
dominant region of the EUV emission of high-Z highly charged plasmas should be controlled.
To enhance the EUV emission from Gd plasmas, it is important to reduce reabsorption by the
resonance lines and the emission from satellite lines that attribute to the long wavelength side
of the array around 6.7 nm to improve the spectral purity as well as increase the resonance
emission intensity [7]. In order to achieve this, we used low initial –density targets for the
Nd:YAG LPPs [8]. In low-density, optically thin plasmas, a suppression of the reabsorption
effect and the satellite emission, which originates from the high electron and ion density region,
is expected, similar to the results obtained with low-density Sn targets used to optimize the
emission from the Nd:YAG LPP EUV sources at 13.5 nm [15, 16]. It is known that optically
thick plasmas can strongly self-absorb resonance emission. Optically, thin plasmas provide
more efficient sources. Therefore, systematic LPP UTA source studies with up-to-date intense
picosecond pulse lasers [17] or middle infrared laser, such as the CO2 laser [14], are needed to
determine available light source wavelengths for future applications.

In this chapter, we show the efficient EUV and soft x-ray sources in the 2- to 7- nm spectral
region related to the beyond extreme ultraviolet (BEUV) question at 6.x nm and a water
window source based on laser-produced high-Z plasmas. Resonance emission from multiply
charged ions merges to produce intense UTA spectral structure, extending below the carbon
K-edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is
proposed based on a high-Z plasma UTA source, coupled to x-ray optics. We discuss the
progress and Z-scaling of UTA emission spectra to achieve lab-scale table-top, efficient, high-
brightness high-Z plasma EUV–soft x-ray sources for in vivo bioimaging applications.

2. Characteristics of the Gd plasmas for BEUV source applications

In order to increase the energy CE from the incident laser energy to the interested wavelength
emission energy with the defined bandwidth, it is important to suppress not only the reab‐
sorption by assurance of the plasma is optically thin but also plasma hydrodynamic expansion
loss, while maintaining a plasma electron temperature of Te = 100−120 eV [6, 17]. Lateral
expansion of the plasma causes kinetic energy losses, which reduce the energy available for
radiation and is particularly important for small focal spot diameters [6]. For practical EUV
source development, it is important to establish the optimum plasma condition related to laser
irradiation condition and construct a database of properties of the UTA plasma EUV sources.
In addition, to compare with one-dimensional (1D) numerical simulation, it is important to
produce 1D expansion plasmas by irradiating multiple laser beams based on the laser inertial
confinement fusion (ICF) geometry [18]. Laboratory- scale experiments have, to date, only been
studied under 2D conditions due to the use of a single laser beam and small focal spot
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diameters. Under multiple laser irradiation, it is expected that the highest CE will be achieved
as plasma expansion loss can be neglected in plasmas from targets irradiated by solid-state
laser pulses. In the database point of view, we demonstrate high CE for the EUV emission
around 6.7 nm from multiple laser beam –produced 1D spherical plasmas of rare earth
elements of Gd and Tb. The maximum in-band EUV CE at 6.7 nm within a 0.6% bandwidth
(0.6%BW) in a solid angle of 2π sr was observed to be 0.8%, which is twice as large as that
obtained by the use of a Joule-class laboratory- scale single laser beam with 2D or 3D plasma
expansion losses. The CE value was one of the highest ever reported due to the reduction of
the plasma expansion loss applying 12 laser beams under 1D plasma expansion condition.

A Nd:glass laser system, GEKKO-XII at the Institute of Laser Engineering (ILE) in Osaka
University was used to produce the 1D expanding uniform plasma [19]. The GEKKO-XII laser
facility consists of 12 laser beams each at a wavelength of 1.053 μm and a constant 1 J pulse
energy, irradiating a total energy of 12 J, with a temporal Gaussian- shaped pulse width of 1.3
ns [full width at half maximum (FWHM)]. The 12 laser beams were located at 12 faces of a
regular dodecahedron to irradiate spherical targets uniformly. A thick metallic layer of 2 μm
was coated onto spherical polystyrene balls for providing targets. The laser power imbalance
was monitored to be within ± 6.3% of the average. Then, the laser beams were uniformly
irradiated onto the target, to provide a 1D plasma expansion with low expansion loss.

Figure 1 shows the temporal history of the in-band emission around 6.7 nm with the bandwidth
of 0.6% from Gd plasmas observed by the x-ray streak camera to provide 1D time-resolved
imaging. The red and blue lines are the EUV emission at the optimum intensity of 1 × 1012 W/
cm2 and the maximum intensity of 3 × 1013 W/cm2, respectively. Under optimum irradiation
conditions with the highest CE, the temporal profile of the EUV emission was similar of that
of the laser pulse shown by the dashed line and reached a maximum a little later. On the other
hand, the behavior of the EUV emission profile at 3 × 1013 W/cm2 initially rose faster, but the
peak was delayed by comparison with that obtained under optimum conditions. The initial
steep rise indicates that the electron temperature quickly reaches a value necessary for the in-
band EUV emission. The final electron temperature is expected to be higher than optimum, so
that higher charge state ions higher than q = 28 are produced, which predominantly emit
shorter- wavelength out-of-band emission around 2−4 nm. After the maximum electron
temperature is attained, plasma recombination proceeds accompanied by adiabatic expansion,
resulting in cooling. The in-band emission from ionic charge states of q ≈ 20 arises in the
recombination phase. Then, the time- resolved emission consists of a fast rising component
and a delayed peak relative to the laser pulse. This measurement suggests that the temporal
shape of the in-band emission should essentially behave similarly to the laser pulse shape
under optimum laser irradiation conditions.

The in-band EUV CEs were evaluated at λ = 6.7 nm within a bandwidth of 0.6% for Gd and
Mo and at λ = 6.5 nm with the bandwidth of 0.6% for Tb. The CEs were maximized at 0.8% in
both Gd and Tb at IL = 1 × 1012 W/cm2, and the observed maximum CE was almost in agreement
with the theoretical evaluation of 0.9% obtained from a collisional–radiative (CR) and modified
1D hydrodynamic code numerical simulation [21]. It is noted that the wavelength of 6.6 nm,
predicted in the work, is slightly different compared to our spectral peaks at 6.5 and 6.7 nm.
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A decrease in CE was also observed at the laser intensity higher than 1 × 1012 W/cm2. Around
these intensities, the rare earth highly charged plasmas are overheated, the average ionization
stage increases and the population of relevant ions with q ≈ 20 decreases. Then, the CE decreases
due to the increase in electron temperature [20].

(c)

(a)

(b)

Figure 1. Time-resolved spectral images at two different laser intensities of (a) 1 × 1012 W/cm2 and (b) 3 × 1013 W/cm2,
respectively. (c) Temporal histories of the EUV emission at 6.7 nm from Gd plasmas at two different laser intensities of
1 × 1012 W/cm2 (red) and 3 × 1013 W/cm2 (blue), together with a temporal profile of the laser pulse (dashed). At an opti‐
mum laser intensity of 1 × 1012 W/cm2, the temporal behavior of the in-band emission is essentially the same as that of
the laser pulse. It should be noted that intensities are normalized for timing comparison [20].
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In addition, it is important to understand the physics of the EUV emission and transport in
laser-produced dense high-Z plasmas. In order to achieve an efficient light source, or to
diagnose complex highly charged ion (HCI) plasmas, the evaluation of plasma parameters is
of fundamental importance in order to benchmark radiation hydrodynamic simulation codes.
One matter of fundamental physics is the relationship between the electron density profile and
the dominant EUV emission region. In general, dense high-Z plasmas are optically thick in the
EUV spectral region, and the EUV emission originates from regions of reduced electron density
where there is not only sufficient emissivity but also lower effects from opacity. We describe
the results of measurements of the electron density profile of a laser produced isotropically
expanding spherical Gd plasma using a Mach-Zehnder interferometer, as shown in Figure 2
[22]. The interferometry was performed at a wavelength of 532 nm to enable penetration of
the plasmas to a high -density region, which has a maximum density close to the critical density
of 1 × 1021 cm−3 as set by the plasma initiating laser wavelength of 1.053 μm. The EUV emission
was observed using a monochromatic EUV pinhole camera. We present benchmark data for
the electron density profile with the dominant EUV emission at 6.7 nm occurring in a region
with an electron density close to 1019 cm−3 [14], which was corresponded to the critical density
of the CO2 (carbon dioxide) laser LPP, as shown in Figure 3 [22].

Figure 2. Schematic diagram of the experimental setup. Interferograms were produced by a Mach-Zehnder interferom‐
eter by the use of a Nd:YAG laser at a wavelength of 532 nm with a pulse duration of 6 ns (FWHM) [22].

The production of low-density plasma by the use of CO2 LPPs has been proposed, because the
critical electron density nec depends on the laser wavelength, λL, i.e., nec ∝ λL

−2. The critical
density at a laser wavelength of λL = 10.6 μm for a CO2 laser is two orders of magnitude smaller
than at λL = 1.06 μm for the solid-state laser. Then, a suppression of reabsorption and satellite
emission in the wavelength region longer than 6.x nm is expected in CO2 LPPs due to the lower
plasma electron density. By extending efficient CO2 laser–produced Sn plasma EUV sources
around 13.5 nm, the CE and spectral efficiency, which is important when considering out-of-
band spectral suppression, should be increased in an optically thin plasma. In order to ascertain
the applicability of a CO2 LPP EUV source at 6.x nm, its behavior needs to be clarified in a
manner similar to the work performed on CO2 LPP EUV sources at 13.5 nm.

Plasma Science and Technology - Progress in Physical States and Chemical Reactions246



We characterize the EUV emission from CO2 laser–produced plasmas (CO2-LPPs) of the rare
earth element of Gd. The energy CE and the spectral purity in the CO2-LPPs were higher than
that for solid-state LPPs at 1.06 μm, because the plasma produced is optically thin due to the
lower critical density, resulting in a maximum CE of 0.7% at 6.76 nm with 0.6% bandwidth in
the solid angle of 2π sr. The peak wavelength was fixed at 6.76 nm for all laser intensities. The
plasma parameters at a CO2 laser intensity of 1.3 × 1011 W/cm2 was also evaluated using the
hydrodynamic simulation code to produce the EUV emission at 6.76 nm.

Figure 4(a) shows time-integrated EUV emission spectra from the Nd:YAG-LPPs at different
laser intensities ranging from 9.7 × 1011 to 6.6 × 1012 W/cm2. The peak wavelength shifts from
6.7 to 6.8 nm and is mainly due to n = 4−n = 4 (Δn = 0) transitions in HCIs with an open 4f or
4d outermost subshell. The sharp peak at 6.65 nm and the dip structure below 6.59 nm first
appear at a laser intensity of 2.4 × 1011 W/cm2. The emission at wavelengths less than 6 nm,
increases with increasing laser intensity, and according to numerical evaluation, lines in the λ
= 2.5−6 nm (hν = 207−496 eV) spectral region originate from Gd ionic charge states between
Gd19+ and Gd27+ and arise from n = 4−n = 5 (Δn = 1) transitions [14].

In the case of CO2-LPPs, the main spectral behaviors near 6.7 nm, on the other hand, are
narrower than for Nd:YAG laser irradiating plasma, as shown in Figure 4(b). The CO2 laser
intensity was varied from 5.5 × 1010 to 1.2 × 1011 W/cm2. The spectral structure was dramatically
different to that from the Nd:YAG-LPPs. The peak wavelength of 6.76 nm remains constant
with the increase of the laser intensity. Moreover, the emission intensity of the peak at 6.76 nm
increases more rapidly with laser intensity than the emission in the ranges of λ = 3−6.6 nm and
λ = 6.8−12 nm, respectively. Under the optically thin plasma conditions imposed by the CO2-
LPPs, this peak, which is mainly due to the 4d10 1S0−4d94f 1P1 transition of Pd-like Gd18+

overlapped with 2F−2D lines of Ag-like Gd17+, known to lie around 6.76 nm shows that these
ions are indeed present in the plasma. Similar structure has been also observed in a discharge-
produced plasma, which has low density and is optically thin like the CO2-LPP. It is noted that

Figure 3. Profiles of the radial electron density (solid line) and radial EUV emission (dashed line) at the time of three
different peak laser intensities of (a) 1 × 1012 W/cm2, (b) 7 × 1012 W/cm2, and (c) 1 × 1014 W/cm2, corresponding to laser
focal spot and target diameters of (a) 500 μm, (b) 200 μm, and (c) 50 μm [22].
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the peak wavelength of 6.76 nm was constant with high spectral efficiency (purity) and energy
CE in optically thin CO2-LPPs of Gd [14].

Figure 4. (a) Time-integrated EUV emission spectra from the Nd:YAG LPPs at different laser intensities of 9.7 × 1011, 2.2
× 1012, and 6.6 × 1012 W/cm2, respectively. The peak wavelength shifts from 6.7 to 6.8 nm with increasing the laser inten‐
sity. (b) Time-integrated EUV emission spectra from the CO2 LPPs at different laser intensities of 5.5 × 1010, 8 × 1010, 9.8
× 1010, and 1.3 × 1011 W/cm2, respectively. The peak wavelength of 6.76 nm remains constant with increasing the laser
intensity [14].

In order to infer the laser parameters that maximize 6.x-nm Gd-LPP emission, direct compar‐
ison between emissions from a laser-produced Gd plasma and that of Gd ions from well-
defined charge states is necessary, as the charge state dependence of the emission at 6.x nm is
defined by the electron temperature. We present a study of the charge state–defined emission
spectra to explain the laser power density dependence of the Gd-LPP spectra and to evaluate
the charge states contributing to the 6.x-nm emission.

The profile of the intense emission at 6.x nm becomes broader, and its peak wavelength shifts
to longer wavelength with increasing laser power density, as shown in Figure 5(a). However,
the range of wavelengths involved is quite small, and the peak lies between 6.7 and 6.8 nm
over this entire range of power densities. The emission from each of these peak wavelengths
within a 0.6%BW becomes more intense with increasing laser flux. This behavior causes
difficulty in fixing the precise wavelength of 6.x nm and optimization of the spectral efficiency
while simultaneously maximizing the CE. The spectral efficiency denotes the ratio of the in-
band energy at 6.70 nm within a 0.6%BW to that in the spectral ranging from 3 nm to 12 nm.
An increase in laser power density raises the electron temperature which, in turn, implies an
increase of both the highest charge state and the abundance of higher charge states. This change
in the ion population must cause the observed shift of the peak wavelength for Gd-LPPs. Up
to now, there was no direct experimental evidence that changes in emitting ion populations
were responsible for this shift.
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Figure 5. (a) The wavelength of the emission peaks near 6.x nm as a function of the Nd:YAG laser power density. The
dotted line is a fitted curve. (b) EUV emission spectra of Gd ions with electron beam energies (Ee) of 0.43−0.92 keV. In
the case of Ee = 0.43 keV, the compact EBIT with lower resolution was employed, while the Tokyo-EBIT was used in
other cases. (c) Calculated gA values for 4d−4f transitions of the corresponding highest charge states (qmax) from Figure
5(b). The ground configuration of Gd18+ is [Kr]4d10 [23]. Note that q is the charge state of Gd in Figures 5(b) and 5(c).

To verify the above explanation, charge-defined emission spectra were measured with the
EBITs for different highest charge states. EUV emission spectra from EBIT experiments are
shown in Figure 5(b), and calculated gA values of 4d−4f transitions for corresponding highest
charge states are shown in Figure 5(c) to compare the charge state dependence of the emission
near 6.x nm. The gA values are the transition probabilities from excited states multiplied by
their statistical weights and thus are proportional to the emission intensities of the transitions.
Note that the EBIT spectra include a subset of all possible radiative transitions that are
predominantly resonant transitions to the ground state. For Pd-like Gd18+, only one strong line
is predicted corresponding to the 4d10 1S0−4d94f 1P1 at 6.7636 nm, and this is clearly seen in the
spectrum. In the absence of the configuration interaction (CI), according to the UTA model,
the position of the intensity-weighted peak of the 4dN−4dN−14f array depends directly on the
occupancy of the 4d subshell, N, and the Slater-Condon Fk(4d,4f) and Gk(4d,4f) parameters. In
the present case, the values of Fk and Gk change little with ionization stage, and therefore, the
position of the array moves to lower energy with decreasing N. The presence of CI causes this
shift to be reduced, but nevertheless, the overall trend is to move to longer wavelength with
increasing ionization stage. The dominant emissions around 7 nm in the EBIT spectra indeed
move to longer wavelengths with an increase of the highest charge state. The EBIT can thus
generate charge- defined emission spectra, which are essential for both analysis of plasma
emission spectra and the benchmarking of theoretical calculations [23].

3. Quasi-Moseley’s law for the UTA emission

In this section, we show that the strong resonance UTAs of Nd:YAG LPPs for elements with
Z = 50−83 obey a quasi-Moseley’s law [24]. A 150-ps Nd:YAG laser with a maximum energy
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of 250 mJ at λL = 1.064 μm and an 8-ns Nd:YAG laser giving 400 mJ at λL = 1.064 μm were
employed to provide the desired variation of laser intensity. The laser beam was incident
normally onto planar high-Z metal targets in vacuo. The expected focal spot size, produced
by an anti–reflection- coated plano-convex BK7 lens with a focal length of 10 cm, had a FWHM
of approximately 50 μm. The laser was operated in single shot mode, and the target surface
was translated to provide a fresh surface after each laser shot. A flat-field grazing incidence
spectrometer (GIS) with an unequally ruled 2400 grooves/mm grating was placed at 30° with
respect to the axis of the incident laser. Time-integrated spectra were recorded by a Peltier-
cooled back-illuminated charge-coupled device (CCD) camera and were corrected by its
quantum efficiency. The typical resolution was better than 0.005 nm (FWHM). The Large
Helical Device (LHD) is one of the largest devices for magnetically confined fusion research
and is described in detail elsewhere. The LHD plasmas were produced by the injection of a
small amount of target elements into the background hydrogen plasma. The plasma density
is about 1013 cm−3, much lower than that in a LPP, and guarantees an optically thin condition.
Emission spectra were recorded by a 2-m grazing incidence Schwob-Fraenkel spectrometer
with a 600 grooves/mm grating. The exposure time of the detector was set at 0.2 s, and the
spectral resolution is about 0.01 nm (FWHM).

Figures 6(a) −6(k) show LPP emission spectra from high-Z metal targets. The main UTA peak
at 8.17 nm in the case of Nd clearly shifts to shorter wavelength with increasing atomic number,
3.95 nm in the case of Bi. This movement indicates the availability of a wide wavelength range
for a LPP light source. While the main UTA peaks correspond to 4p64dN−4p64dN−14f transitions,
the 4p64dN−4p54dN+1 UTAs were also observed around them, at 4 nm for the LPP of Pt, in the
case of 150-ps LPPs. Optically thinner LHD plasma spectra are shown in Figures 6(l) −6(q). It
should be noted that the electron temperatures of LHD plasma were relatively low, ≤ 1 keV,
but higher than in 150-ps LPPs [24].

As a result, we have not observed significant emission of the type 4fN−4fN−15l from stages with
open 4f valence subshells in LHD spectra. Comparing LPP and LHD spectra, the UTA widths
in LHD spectra are relatively narrower than in LPPs especially for lighter elements. This arises
as a result of a number of factors: the increased contributions from ions with an outermost
4d104fN configuration from transitions of the type 4d104fN−4d94fN+1 in LPP spectra and the
differences in opacity that reduce the intensity of the strongest lines and the increased
contribution from satellite emission. In addition, earlier research demonstrated that if the
majority of radiation originates from open 4f subshell ions, whose complexity inhibits the
emission of strong isolated lines, then no strong isolated lines are expected to appear through‐
out the EUV emission, which is clearly seen for the LPP spectra in Figure 6. Moreover, self-
absorption effects are clearly observed in the case of 10-ns LPP for Nd due to optical thickness.
Although the n = 4−n = 4 UTA transition peak was observed at 8.05 nm in the LHD spectrum,
the strongest 4d−4f transitions essentially disappear in the 10-ns LPP owing to self-absorption.
Because of their large transition probabilities, resonant lines that are strong in emission also
strongly absorb in underdense (ne < nec) or optically thick plasma conditions. An optically
thinner plasma reduces the self-absorption effects and increases the spectral efficiency of n =
4−n = 4 UTA emissions.
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Figure 7 shows the atomic number dependence of the observed peak wavelength of n = 4−n =
4 UTAs. The solid line is an approximated curve for 150-ps LPPs with a power-law scaling of
the peak wavelength given by λ = aR0

−1(Z − s)−b in nm, where a = 21.86 ± 12.09, b = 1.52 ± 0.12, s
= 23.23 ± 2.87 is the screening constant while Slater’s rule gives s = 36−39.15 for 4d electrons,
and R0 is the Rydberg constant. This empirical law is surprisingly similar to Moseley’s law,
where a = 4/3, b = 2, and s = 1 were used to give the transition wavelength of the Kα-line of
characteristic x-rays. It is noted that the Moseley’s law derived from the Bohr model gives λ =
0 for Δn = 0 transitions in terms of the energy difference. It can, however, be fitted as a quasi-
Moseley’s law because there are energy differences between Δn = 0 levels due to different
angular momentum quantum numbers [24].

Figure 6. Time-integrated EUV emission spectra of the Nd:YAG LPPs for (a) 83Bi, (b) 82Pb, (c) 79Au, (d) 78Pt, (e) 75Re, (f)
74W, (g) 73Ta, (h) 68Er, (i) 65Tb, (j) 64Gd, and (k) 60Nd targets with 150-ps laser (red, solid line) and 10-ns laser (blue,
dotted line), respectively. Typical laser power densities were 2.5 × 1014 W/cm2 for ps-laser illumination and 5.6 × 1012

W/cm2 for 10-ns laser irradiation. The measured LHD spectra (green, solid) for (l) Bi, (m) Pb, (n) Au, (o) W, (p) Gd, and
(q) Nd targets, respectively. An emission line at 3.4 nm is from impurity carbon ions. Intensities were normalized at
each maximum of the n = 4−n = 4 UTAs. Solid arrows indicate peak position of n = 4−n = 4 UTAs of 150-ps LPP and
LHD spectra. An open arrow indicates structure due to self-absorption [24].
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We propose here a pathway to produce feasible laboratory-scale high-Z LPP sources for a wide
range of applications. For efficient UTA emission, plasmas of higher-Z elements need high-
electron temperatures to produce higher charge state ions contributing to the 4p64dN−4p64dN

−14f UTAs. The electron temperature, Te, rises with increasing laser intensity, such as Te, ∝
(ILλL

2)0.4, where IL and λL are the laser intensity and wavelength, respectively [25]. On the other
hand, an optically thin plasma has a low electron density, ne, which decreases with increasing
λL. In terms of these features, use of a longer laser wavelength is necessary to generate the
brightest LPP, such as a CO2 laser operating at 10.6 μm due to the low critical density of 1 ×
1019 cm−3 attainable with a pulse duration sufficiently short to give a laser intensity of the order
of 1013 W/cm2 but sufficiently long to permit excitation to the appropriate ionization stages,
i.e., ~ 1 ns. Moreover, we can also obtain longer wavelengths, > 10.6 μm, with a Raman
conversion system.
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Figure 7. Atomic number dependence of the peak wavelength of n = 4−n = 4 UTAs in 150-ps LPP (red, circles), 10-ns
LPP (blue, squares), and LHD (green, diamonds) spectra. Calculated peak wavelengths with GRASP are also shown
(black, crosses). Sn spectra are not shown in Figure 6. The solid line is an approximated curve for n = 4−n = 4 UTAs in
150-ps LPPs with a power-law scaling [24].

4. Water window soft x-ray source by high-Z ions

4.1. Spectroscopy of low electron temperature in lab-scale laser-produced ions

According to the quasi-Moseley’s law in Figure 7, the elements from 79Au to 83Bi are one of the
candidates for high-flux UTA source in water window soft x-ray sources for single-shot (flash)
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bio-imaging in the laboratory size microscope, because the UTA emission is essentially high-
power emission due to much resonant lines around the specific wavelength (photon energy).
The UTA peak wavelengths of 79Au, 82Pb, and 83Bi reach the water window soft x-ray spectral
region.

Figures 8(a) −8(c) show time-integrated spectra from Au, Pb, and Bi plasmas at a laser intensity
of the order of 1014 W/cm2 with a pulse duration of 150 ps (FWHM). The time-integrated soft
x-ray spectra between 1 and 6 nm from each element display strong broadband emission
around 4 nm, which is mainly attributed to the n = 4−n = 4 transitions from HCIs with an
open 4f or 4d outermost subshell with the broadband emission of 2−4 nm originating from
the n = 4−n = 5 transitions from HCIs with an outermost 4f subshell. The intensity of the n =
4−n = 4 UTA emission was higher than that of the n = 4−n = 5 transition emission. The atomic
number dependence of the spectral structure is shown in Figure 8(d). The predicted emission
photon energy of each peak photon energy was shifted to higher photon energy with the
increase  of  the  atomic  number.  Neither  the  emission  spectra  nor  the  plasma  electron
temperatures,  however,  have  been  optimized,  as  shown  below.  However,  the  emission
intensity of the n = 4−n = 5 transitions was compared with that of the n = 4−n = 4 transitions
of the UTA emission [26].

We compared the results of numerical calculation for some different experimental tempera‐
tures with the observed spectra as shown in Figure 9(a). Four regions corresponding to
emission peaks were identified. The emission in the region of “1” results primarily from the
4f−5g transitions in HCIs with an open 4f subshell, i.e., the stages lower than 35+ Bi ions. The
emission in regions of “2” and “3” originates from 4p−4d and 4d−4f transitions with an open
4d subshells of Bi36+−Bi45+, and numerical calculations show that the higher- energy region
results from the more highly ionized species higher than Bi42+. The emission in the region of
“4” was also associated mainly with the 4d−4f transition emission from lower ionic charge
stages with an open 4f outmost subshell. As a result, the bulk of the emission, especially from
regions of “1” and “4”, was associated with the recombining phase of the expanding plasma
plume. We evaluate for comparison spectra calculated for steady-state electron temperatures
of 180 and 700 eV, while the higher temperatures were required to produce the emission in
the region of “2”, the calculations verify that both the longer and shorter wavelength features
were consistent with much lower plasma electron temperatures [26].

In Figure 9(b), evaluated spectra at different electron temperatures higher than 900 eV were
shown. Numerical calculations show that high-Z plasmas at an electron temperature lower
than 700 eV, as shown in Figure 6(a), radiate strongly around 3.9 nm. In the case of higher
electron temperatures from 800 to 1500 eV, the strongest emission, however, is expected at
around 3.2 nm, suitable for coupling with Sc/Cr multilayer mirrors. Therefore, for an optimized
source, we should produce a plasma at high electron temperature of around 1 keV. The
emission intensity of the Bi plasma was compared with 2.48-nm nitrogen line emission from
a Si3N4 planar target, in the same experimental setup, and was observed to be 1.2 times higher
within a bandwidth of 0.008 nm (FWHM) even though the plasma electron temperature was
much lower than the optimum value [26].
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Figure 8. Time-integrated spectra from the picosecond-laser–produced high-Z plasmas by the use of Au (a), Pb (b), and
Bi (c), and the atomic number dependence of the photon energies of the peak emission of the n = 4−n = 4 transition
(circles) and the n = 4−n = 5 transition (rectangles) (d) [26].

Figure 9. (a) The comparison between the observed spectrum with numerical calculation under assuming steady-state
electron temperatures of 190 and 700 eV. (b) Calculated spectra for electron temperatures higher than 900 eV. [26]
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4.2. Toward the laboratory water window soft x-ray microscope

Because of the broadband features of the emission, the zone plate components cannot be used,
so one of the possible solutions would be to use a transmission planar x-ray nano-waveguide
to image the sample. In order to achieve high resolution in the recorded image, we should also
replace the recording device from the x-ray CCD camera to the sensitive EUV resist to
overcome the resolution limitation of the CCD pixel size, coupling with the Schwarzschild
optics, consisting of Sc/Cr multilayer mirrors. Although our proposal is based on a simple
microscope construction, the key component is the UTA emitted from a hot dense Bi plasma
point source, combined with Sc/Cr MLMs and sensitive EUV resists based on the photochem‐
ical reaction [26].

5. Summary

We have shown EUV and soft x-ray sources in the 2- to 7- nm spectral region related to the
BEUV question at 6.x nm and a water window source based on laser-produced high-Z plasmas.
The efficient 6.x-nm BEUV sources have been demonstrated at the CE of 0.7% due to the high
spectral purity by the optically thin plasmas after the database experiments. According to the
atomic number dependence of the UTA emission, so- called quasi-Moseley’s law, the Bi HCI
plasma source is one of the solutions in the laboratory single-shot (flash) bio-imaging by
extending the UTA light source feature.
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