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Abstract

Transplantation is often the best option to treat organ end stage failure. Transplanted
patients need to take long-term immunosuppressive drugs to inhibit  rejection and
maintain their graft. But those therapies have numerous important side effects such as
cancer induction and opportunistic infections. Thus, the development of novel thera‐
pies to induce specific rather than general immunosuppression and therefore, tipping the
balance between effector and regulatory functions to inhibit transplant rejection is a major
goal in the field. One major approach is the blockade of costimulatory signals to abort
effector T-cell activation following TCR engagement and to promote regulatory T cells.
Here we summarized the research to date that details immune mechanisms involved in
tolerance in organ transplantation and strategies toward tolerance.
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1. Introduction

The primary role of the immune system is to protect against foreign antigens without reacting
against self-antigens. In this objective, some mechanisms of immune tolerance have been set
up. Immune tolerance is defined in general by a total absence of specific reaction against antigens,
and particularly self-antigens and a break in immune tolerance can lead to autoimmune
disorders.  Understanding  the  mechanisms  of  immunological  tolerance  is  crucial  for  the
development of strategies to manipulate the immune system in the context of organ transplan‐
tation. Here, we provide a comprehensive summary of the immune mechanisms involved in
transplant rejection and tolerance induction and the research to date leading to new strategies
toward tolerance, as well as their translation to the clinics.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



2. Tolerance in organ transplantation

In the context of transplantation, the graft is recognized as foreign antigens and immune
responses are triggered. Immunosuppressive treatments can repress total immune responses,
including responses against the graft, but these drugs are well known for inducing side effects
such as cardiovascular diseases or increased opportunistic infections and malignancies, and
lead to high morbidity and mortality, even when avoiding excessive immunosuppression [1].
In addition, current immunosuppressive regimens have marginal effects on long-term
allograft survival with for example a half-life of 10 years for kidney transplantation. In fact,
these drugs can even be deleterious in the establishment of tolerance. Some cases of tolerance
spontaneously acquired by patients who stopped their immunosuppressive treatments
because of side effects and noncompliance have been reported [2, 3]. Tolerance in transplan‐
tation is defined by the following criteria: the graft must be definitely accepted without any
lesions of chronic rejection, and the recipient should not be on treatment at the moment of
analysis and should be able to develop immune responses against any other foreign antigen
(i.e. immunocompetent), and thus represents the center of immunologist efforts working in
the field of transplantation. The most commonly transplanted solid organ is the kidney, but
the field of solid organ transplantation also includes the heart, liver, pancreas, lung or intestine.
Nowadays, transplantation still remains the best solution for organ failure, even in the face of
graft rejection. There are three types of solid graft rejection:

- The quickest mechanism of rejection, said hyperacute rejection, takes place between minutes
to hours after transplantation. It is mediated by the presence of pre-existent circulating
antibodies against A, B molecules expressed by red blood cells [4, 5] and acquired antibodies
against the human leukocyte antigen (HLA) [6, 7]. Those antibodies allow the immune
system of the grafted patients to strongly recognize the molecules present at the surface of
graft endothelium and lead to the destruction of this endothelium through complement
cascade, neutrophils, and monocytes. Nowadays, hyperacute rejection is no longer a
concern due to the establishment of pre-transplantation tests as cross-match test, where
closest HLA compatibility between donor and recipient is ensured (concerning mainly
HLA-A, B, and DR) and blood group typing.

- The months following transplantation, acute rejection can occur. Two mechanisms can be
involved in this process. The cell-mediated rejection is induced by presentation of alloreac‐
tive molecules by APCs (Antigen Presenting Cells) to recipient’s T lymphocytes, leading
such activated lymphocytes to infiltrate and destroy the grafted organ [8]. The humoral
mechanism acts through generation of alloantibodies directed mainly against MHC (major
histocompatibility complex) class I by activated alloreactive B lymphocytes leading to
antibody-dependent cellular cytotoxicity of endothelial cells (ADCC) [9]. Prevention of
acute rejection is now ensured in more than 85% of cases by the current repertoire of
immunosuppressive drugs available [10].

- Even though, the main problem in transplantation which remains unsolved is the long-term
allograft dysfunction or chronic rejection. This phenomenon is slow and progressive but
irreversible and cannot be controlled by immunosuppressive drugs. It is characterized by
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an increase of the thickness of the intima’s layer of graft vessels, leading to the ischemia of
the tissue and finally to graft loss. Chronic rejection is mediated by the antigen-specific
cellular and humoral immune responses against the graft. These immune responses lead to
the recruitment of inflammatory mediators to the graft through the activation of the
endothelium, and the secretion of free radicals and damage signals which activate muscle
vessels proliferation.

Thus, T cells play an important role in graft rejection. In solid organ transplantation, naive T
cells from the recipient are activated by recognition of blood group (ABO), donor major
histocompatibility complex (MHC), minor histocompatibility complex (mHC, MICA, MICB,
H-Y), or nonpolymorphic peptides (collagen, angiotensin II receptor) presented by professio‐
nal APCs from the recipient or the donor or directly from endothelial cells of the graft (mostly
MHC class I) [11]. Thus, T cells can be primed by three distinct pathways.

The direct allorecognition: when the transplanted organ is reperfused, intact MHC/peptide
(MHCp) at the surface of APCs from the donor travel to the lymphoid organs of the recipients
where they interact with CD4+ and CD8+ alloreactive naive T cells and active them [8, 12]. This
pathway is generally associated with acute rejection because donor’s APCs persist a few
months following transplantation. In addition, intact MHCp at the surface of endothelial cells
of the graft can activate and maintain allogeneic CD8+ effector T-cell responses [13].

The indirect allorecognition: this pathway involves the presentation of allogeneic peptides
derived from donor MHC molecules and presented by APCs of the recipient. Dominant
peptides presented by this pathway are generally derived from hypervariable regions. This
pathway involves capture, processing, and presentation of alloantigens and is predominantly
used by CD4+ T cells and most of the alloantigens are presented by MHC class II. However,
cross-presentation on MHC class I can occur and CD8+ T cells can also be activated [14–16].
The indirect allopresentation pathway is also necessary for B cells activation, since their
activation depends on CD4+ T cells help [17]. The indirect allorecognition is involved in both
acute and chronic rejection since the alloantigens are present during all the life of the allograft
[18–21].

The semi-direct allorecognition: Lechler’s team reported that APCs from the recipient can
capture entire intact MHC/peptide complexes expressed at the surface of the donor’s APCs.
Those complexes are internalized, processed, and presented directly to CD8+ T cells or
indirectly to CD4+ T cells. This presentation pathway involves the phenomenon of trogocytosis,
i.e. the exchange of membrane fragments between cells in contact [22–24]. Brown and al have
reported in vivo, in a model of transplantation in mice, the presence of intact donor MHC-I and
MHC-II on the surface of DCs, B cells, and macrophages [25].

2.1. The immune tolerance

To date, two elaborated and complementary mechanisms of immune tolerance have been
described as central tolerance and peripheral tolerance (see Figure 1).
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Figure 1. Central and peripheral tolerance. In the thymus, tight interactions between TCRs and self-antigens present‐
ed by thymic epithelial cells (TEC) induce thymocytes apoptosis. Four mechanisms induce peripheral tolerance: igno‐
rance, apoptosis, phenotypic skewing and anergy. Appropriate combination of signals results in complete T-cell
activation.

2.1.1. Central tolerance

In the context of immune tolerance, the T lymphocyte lineage is particularly important. T
lymphocytes, B lymphocytes, and NK cells derive from a common hematopoietic precursor
from foetal liver during embryogenesis of from adult bone marrow. The CD3−CD4−CD8− TCR
− thymocytes colonize the thymus and undergo different stages of maturation leading to TCR
rearrangement. During their migration to the cortex, cells also acquire expression of CD3, CD4,
and CD8 molecules and undergo a step of positive selection. All CD4+CD8+cells said double-
positive (DP) thymocytes express a complete αβTCR but only 20–25% of them are able to
interact with the MHC [26, 27]. Cells that strongly interact with MHC class I become CD8+

simple positive (SP) and the one which interact with MHC class II becomes CD4+ SP [28–30].
This interaction provides a survival signal to thymocytes that can pursue their education by
migrating into the thymic medulla. In this medulla, SP thymocytes undergo the second step
of immune central tolerance called negative selection. After positive selection, the TCR
repertoire is very large and uncontrolled; thymocytes are able to recognize a broad range of
foreign antigens but also self-antigens. The maturation of thymocytes expressing a TCR against
self-antigens can lead to autoimmune disease in the periphery. Negative selection consists in
the inhibition of potentially autoreactive thymocytes by clonal deletion or by induction of
anergy if receptor editing fail. This selection is mediated by medullary thymic epithelial cells
(mTECs) that are the only antigens presenting cells (APCs) expressing a panel of ectopic tissue-
specific antigens (TSA). The expression of those TSA is mainly under control of a transcription
regulator named Auto-Immune REgulator (AIRE) [31]. Two mechanisms of TSA presentations
can occur in the medulla. The first one is the direct presentation by mTEC that can be sufficient
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to induce negative selection of both CD4+ and CD8+ T cells [32, 33]. The second mechanism of
presentation is mediated by thymic dendritic cells which are able to get TSAs from mTECs
and to present them to thymocytes [34]. Thymocytes able to strongly recognize a TSA pre‐
sented by mTECs or DCs receive a signal that leads to apoptosis [35]. After negative selection,
approximately 5% of total thymocytes can finally go to the periphery.

2.1.2. Peripheral tolerance

Due to the absence of self-antigen presentation in the thymus [36], or the low affinity of T cells
for self-antigens [37], autoreactive T cells escape sometimes from thymic negative selection.
To complete the efficacy of central tolerance, the immune system developed many tools to
neutralize these cells and avoid autoimmune diseases. These mechanisms are either passive,
concerning antigen ignorance, T-cell anergy or apoptosis induction and phenotypic skewing,
or active when mediated by regulatory cells [38].

Antigen ignorance allows autoreactive T cells to persist as functional circulating T cells while
never primed by any antigen [39]. Indeed, antigens can be masked by anatomical barriers like
lens proteins, spermatozoids, or nervous system protein protected by the meninges barrier.
Besides, a low amount of antigens can be sufficient to activate cytotoxic T lymphocytes
previously primed but not naive T lymphocytes [40].

On the contrary, a high amount of antigen can induce T-cell apoptosis. This mechanism called
activation-induced cell death is induced by Fas signaling pathway [41]. Indeed, Fas expression
deficiency results in autoimmunity [42]. Autoreactive T-cell peripheral deletion can also result
from a lack of costimulatory signal or of growth factor. [43–45]. Likewise, the absence of
costimulatory molecules induces a Fas-mediated apoptosis of autoreactive B cells [46], but
anyway the autoreactive B cells escaping the clonal deletion are unlikely to meet the T cells
specific to the same antigen they need to be completely primed [47, 48].

Autoreactive T cells can also be primed but functionally inactivated. This state of anergy is
characterized by incapability to proliferate and to produce IL-2 following antigen stimulation
[49, 50]. Antigens are required to maintain this inactive state [51], and large amounts of IL-2
or anti-OX40 antibodies can abrogate it [52]. Anergy results from either a lack of costimulatory
signal by APCs, a low affinity of TCR for the antigen, or from CTLA4/B7 interaction. Indeed,
interactions between CD28 expressed on T-cell surface and CD80-CD86 on antigen-presenting
cells are essential for activation and proliferation of alloreactive T cells [53], allow generation
of memory T cells and inhibit regulatory T (Tregs) suppressive activity [54, 55]. Without CD28/
CD80-CD86 engagement, interactions between TCRs and alloantigens induce the anergy of T
cells. CTLA-4 (CD152) has a large structural homology with CD28 and interacts with CD80-
CD86 with better affinity than CD28 molecule and functions as a negative regulator of T-cell
activation [56]. The expression of these two molecules regulates the balance between activation
and inhibition of T cells and allows the control of an over-reaction of the immune system
leading to inflammation or autoimmunity [57]. Similarly, the expression of Programmed
Death-1 (PD-1) after antigenic stimulation and interaction with its ligand PDL-1 reduces IL-2
synthesis and induces T-cell anergy [58]. Another important co-stimulatory pathway is the
CD40/CD40L co-stimulatory pathway. The CD40 molecule is a transmembrane protein that
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belongs to the TNF receptor family. It is expressed on vascular endothelial cells [59], activated
DCs [60], monocytes/macrophages, platelets [61] and B lymphocytes [62]. The CD40L, also
called CD154, exists in soluble form or at the cell membrane [63]. It is expressed on activated
CD4+ T cells, basophiles, eosinophils [64], DCs from the blood [65], endothelial cells, macro‐
phages [66], and B lymphocytes [67]. The CD40-CD40L interaction is critical for T-cell–
dependent effector functions [68]. Indeed, CD40/CD40L interaction acts with IL-12 to induce
production of IFN-y by human T lymphocytes stimulated by anti-CD3/anti-CD28, as well as
IL-2 production by Th1 and IL-4, IL-5 and IL-10 by Th2 lymphocytes [69]. Besides, interaction
with CD40 activates the expression of adhesion molecules by T lymphocytes [70]. Many other
co-stimulation pathways are well described such as RANK/RANKL or ICOS/ICOSL. These
costimulatory pathways are crucial for T-cell activation inducing rejection, so inhibition of one
or more of these pathways may inhibit rejection. Moreover, anergized T cells can inhibit DCs
function [71], become IL-10 producing Tregs [72], and induce T-cell apoptosis [73]. Autoreac‐
tive B cells also undergo anergy induced by chronic stimulation of BCR(B cell receptor) by
antigens [74].

Activated autoreactive T cells can persist in a nonpathogenic state. Indeed, Th2 cytokines
expression is linked to lower autoimmunity [75, 76] and tolerance in transplantation [77–79],
sometimes through Tregs induction [80]. By contrast, Th1 and Th17 are linked to allograft
rejection [81]. Therefore, immunosuppressive treatments, like glucocorticoides or sirolimus,
aim to inhibit Th1 responses and promote Th2 responses [82, 83].

Peripheral tolerance is also maintained by regulatory cells. Immune cells can acquire a
regulatory function during development, such as “natural” Tregs in the thymus, or in
periphery under the influence of the microenvironment, such as “induced” Tregs in the
allograft or draining lymph nodes. Almost all type of cells have a regulatory counterpart,
including T cells, B cells, myeloid cells (MDSCs, M2 macrophages), DCs. These regulatory cells
limit effector cell responses to pathogens and self-antigens, acting by contact or by secretion
of suppressive cytokines. In transplantation, regulatory cells are targets for therapeutic
strategies to control innate immune responses triggered by ischemia/reperfusion of the graft,
and adaptive responses triggered by the allograft.

3. Induction of tolerance

3.1. Animal models of tolerance

The immune system complexity is due to a large number of possible interactions and activation
pathways. So, in vitro experiments provide primary results but they need to be confirmed by
in vivo studies to overview all the potential effects on the organism. There are lots of rodent
models of allograft transplantation and numerous strategies have been used successfully to
induce tolerance in these models.

Kidney transplantation is often used between MHC mismatched rodents [84, 85]. General
physical condition is observed during all the experiments. Serum creatinine levels and urine
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quality are measured after transplantation to evaluate kidney activity. Generally, this graft is
realized in different steps. First, ablation of one recipient kidney and allograft of MCH
mismatched kidney. The transplanted organ is not immediately efficient. So, ablation of the
second recipient’s kidney is realized few days after transplantation. At this time, the recipient
has only one transplanted kidney. If the kidney is rejected, the rodent dies because of blood
toxicity.

Cardiac allograft in rodent is also a good model [86–90]. In this case, it is a heterotopic graft.
Recipients keep its heart and receive a MHC-mismatched heart in the abdomen. The heart is
connected to recipient blood circulation. Heart allograft survival is evaluated by palpation
through the abdominal wall and scoring of its beating. Just after transplantation, heart beats
strongly. But, if there is activation of the recipient immune system against alloantigens, the
heart tissue is stiffened and beating are less intense and frequent until their full arrest. The
major advantage of this model is that the recipient survives even if rejection occurred, and thus
mechanisms can be analyzed.

But, sometimes, results obtained in rodent models could not be reproduced in larger animal
models, such as non-human primates (NHPs) or swine. Rodents are too different from human
to serve as preclinical models. Indeed, rodents have 90% similarity with human genome while
there are around 99% similarity between NHP and human. Thus, NHPs constitute a more
relevant animal transplant model. But, using NHPs is considerably more expansive and
restrictive than rodents. Indeed, NHPs need more time for reproduction and development and
more place than rodents. Moreover, all protocols conducted on animals have to be approved
by an ethical comity. NHPs are ethically largely more controlled than rodents. So, first
experiments are generally conducted on rodent models to generate primary results and
conclusion. Then, a model with immune system more reflective of the human immune system
is essential for testing protocols before moving into clinical studies.

This was the case for anti-CD40L treatment. All results obtained in rodents have demonstrated
a great potential for induction of transplant tolerance. However, similar experiments in
primate and human have highlighted a major barrier. Indeed, CD40L is a molecule expressed
on NHPs, and human platelets. So this treatment resulted in thrombosis in NHPs and could
not be used in the clinic [91, 92]. New anti-CD40L antibodies are being engineered as alterna‐
tives given the potential of this strategy in multiple diseases [93–95].

An alternative possibility that has been developed in the last decade is the engineering of
mouse with humanized immune system in which various types of human cells are engrafted
and functional [96, 97]. These mice harbor a complete null mutation of the IL-2 receptor gamma
chain, NOD/SCID IL-2r γnull (NSG), or Rag 2−/−γnull and are characterized by an impaired
development and function of murine T, B and NK cells. These mice can efficiently support the
development of a functional human hemato-lymphopoiesis. There are different protocols,
more and more efficient, to induce humanization in highly deficient mice, such as injection of
CD34+ cells or PBMCs. Mice humanized with PBMCs represent the fastest model of graft versus
host disease (GVHD), due to direct injection of adult PBMCs. Indeed, these models allow the
analysis of human immunology in vivo [98, 99]. The mice are monitored for weight loss and
tissue damages.
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Another important model is skin transplantation [100–102]. It is possible to graft tailskin on
the recipient lateral flank in rodent models. After removal of the bandage, grafts are observed
to analyse their evolution. It’s considered as rejected when skin dries and falls, indeed no viable
skin remains. This strategy is even more relevant in humanized mice model [103]. In this case,
mice are grafted with human skin obtained from abdominal surgery from patients. In this kind
of model, skins are left to engraft at least 15 days before rejection is triggered by injection of
allogeneic PBMCs.

3.2. Co-stimulation blockade

The aim of transplantation research is to exploit mechanisms of self-tolerance to generate
specific tolerance after transplantation. One of the most promising approaches is to inhibit co-
stimulatory pathways to abort activation of T cells following TCR engagement. T cells are an
essential component of the immune response against allogenic cells inducing allograft
rejection. Interaction between TCR and MHC/antigen induces the first signal of stimulation.
But this alloantigen recognition only is not sufficient for complete T cell activation. Co-
stimulatory signals generated by the interaction between antigen and T cells and cytokine
stimulation are also necessary for complete immune system activation [104]. There are 4
different co-stimulation molecules families: immunoglobulins superfamily, TNF receptors,
integrin family, and T-cell immunoglobulin and mucin-containing domain (TIM) family.

Blockade of costimulatory pathways has been considered as a good strategy for the prevention
of allograft rejection in transplantation by aborting activation following TCR engagement [52,
105]. These strategies have been studied in mice, rat, and NHPs and induces allograft tolerance
[106, 107]. Blockade of both CD28/B7 and CD40/CD40L co-stimulatory pathways induces long-
term allograft survival. In the ’90s, the first CTLA-4Ig soluble molecule was generated [108].
This molecule corresponds to the fusion between CTLA-4 extracellular domain and a modified
IgG1 constant fragment domain [109]. CTLA-4Ig interaction with CD80-CD86 inhibits T-cell
activation and prevents rejection of cardiac and renal allografts in rodent models [87, 108,
110] and prolongs survival of human islets xenograft in mice [111]. But CTLA-4Ig is not
sufficient to induce tolerance because all allograft were finally rejected. Besides, when this
treatment is combined with donor-specific transfusion (DST), allograft tolerance is obtained
in heart allograft rodent models [105, 112]. DST corresponds to injection of donor splenocytes
during transplantation and induces a state of chimerism. CD28 blockade show interesting
results in rodent models, but this strategy is not efficient enough in NHP models [113].
Furthermore, it has been described that CTLA-4 is important for Tregs functions [114] and also
for induction of tolerance to allograft [115, 116]. Thus, it would be more benefic to target CD28
molecule on T cell than CD80/CD86. Different groups have demonstrated that specific
targeting of CD28 prevented rejection and generated Tregs [115, 117, 118]. FR104 has been
developed in our laboratory as a costimulatory inhibitor that target CD28 without altering
CD80/CD86 [119]. There are important differences between murine and human CD28 in terms
of expression and interactions [120]. Thus, FR104 has been studied in NOD/SCID mice and
NHP models. FR104 is safe in vitro and in vivo on human cells and does not play agonistic
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function on T cells [99]. This point is really important because another anti-CD28 molecule
(TGN1412) studied in a phase 1 clinical trial induced important cytokine storm that caused life
threatening effects [121].

CD40-CD40L blockade has also been studied for induction of transplantation tolerance. There
are different strategies to block this pathway (monoclonal antibodies, CD40Ig). Treatment with
monoclonal antibody anti-CD40L induces skin, renal, and cardiac allograft survival in mice
[86, 122] and in NHP models [123, 124] but only with long-term repeated injections [123]. Some
groups have shown that these monoclonal antibodies deplete activated T cells through
cytotoxicity [125] and apoptosis [126], and induce Tregs [102]. These blockades of the CD40-
CD40L pathway induce prolongation of allograft survival but without real allograft tolerance.
Effect of anti-CD40L treatment has been improved by association with DST in islet graft in
mice [127]. Different studies have demonstrated the importance of treatment associated with
DST, such as anti-CD4, anti-thymocytes, or anti-CD40L [128–130]. Another strategy uses
CD40Ig molecule as treatment in allograft models. Our team has demonstrated that treatment
with CD40Ig molecule or gene transfer induces allograft acceptance in cardiac allograft rat
models [131] mediated by CD8+CD45RClow Tregs [132]. Several approaches use combined
protocols. Indeed, anti-CD40L and CTLA-4Ig treatment synergies in heart and skin allograft
in rodents [86, 101] and in renal allograft in NHPs [113].

ICOS-ICOSL pathway is another costimulatory pathway. ICOS presents around 40% similarity
with CD28 and CTLA-4. ICOSL is constitutively expressed by B lymphocytes and monocytes
and induced after T-cell activation [133]. Mice knocked out for ICOS have shown weak
humoral responses [134–136]. ICOS-ICOSL blockade alone does not really induce significant
effect on graft outcomes [137]. Therefore, our team have demonstrated that blockade of both
ICOS-ICOSL and CD40-CD40L induce long-term heart allograft survival in rat model and
decreases chronic rejection lesions [138]. During acute rejection, RANK and RANKL molecules
are increased. Moreover, RANKL blockade induce long-term heart allograft survival in both
rats and mice [139], and blockade effect is stronger when associated with CD40 pathway. PD1
is expressed by activated T lymphocytes, B and NK cells and macrophages, while PDL1 and
PDL2 are expressed by activated APCs. PD-L1Ig alone does not improve allograft survival but
synergizes with cyclosporine A, rapamycin, and anti-CD40L [140]. This pathway seems to play
a role in the generation of some Tregs [141, 142].

3.3. Regulatory cells, crucial players in tolerance

In the context of organ transplantation, the findings of the last decades have put lights on
regulatory cells as key players in the induction and maintenance of tolerance in organ
transplantation. Although it has become evident that several distinct subsets of regulatory cells
have the capacity to finely and tightly regulate the anti-donor immune responses in organ
transplantation, one subset has attracted most of the research, the CD4+CD25highCD127lowTregs,
thanks to the identification of a crucial mastergene necessary for their development, identity,
and function, the Foxp3 (Forkhead box P3) transcription factor [143–146].
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3.3.1. Regulatory T cells (Tregs)

Tregs suppression of immune responses has been unravelled in the ’70s [147]. Several subsets
of Tregs have been evidenced including CD4+CD25highCD127low Tregs, but also CD8+ Tregs,
among them the CD8+CD45RClow and CD8+CD28- Tregs are the most known, CD4−CD8− Tregs,
NKT cells and γδ T cells. Tregs can further be subdivided in characteristics (phenotype,
repertoire…) and potential in organ transplantation depending of their emergence from the
thymus (nTregs) or from the periphery (iTregs). While nTregs developed as a distinct lineage
in the thymus, iTregs can be generated from naive cells in the periphery and can be in vitro or
in vivo induced in transplantation under some conditions such as donor-specific blood
transfusion, blockade of the CD40/CD40L pathway, or donor MHC-derived peptides [148–
150].

Since the identification of the CD25 and Foxp3 markers, several other markers have been
proposed to better define Tregs, such as for CD4+ Tregs glucocorticoid-induced tumor necrosis
factor receptor family-related protein (GITR), CTLA-4, CD62L, CD103 (alpha beta integrin),
LAG-3 and CD127 (alpha chain of the IL-7 receptor) [151–155]. For CD8+ Tregs, the identifica‐
tion of relevant markers has been more difficult and several markers have been proposed such
as CD122, CD28, CD45RC, CD103, and PD-1 [156–160]. A major discovery for Tregs biology
was the identification of the Foxp3 and its role in CD4+ Tregs development, identity and
function [161, 162]. Mutations of the Foxp3 gene lead to a lymphoproliferative pathology in
mice and an immune dysregulation polyendocrinopathy enteropathy X linked (IPEX) syn‐
drome in human [163]. To date, this gene remains the best marker to identify CD4+ Tregs,
although in human it has been demonstrated that it can be transitory upregulated in T
lymphocytes upon activation without providing regulatory capacity [164]. The Helios and
neuropilin-1 (Nrp-1) markers have also been proposed to distinguish nTregs from iTregs, and
also more recently as an important marker for CD8+ Tregs identity and function [165–167].
Indeed, the Cantor group demonstrated that Helios was a key transcription factor that
stabilizes CD8+ Tregs in the context of an inflammatory response and that Helios-deficient
Tregs developed an unstable phenotype (reduced Foxp3 and increased effector cytokines
expression) during inflammatory responses. Antigen specificity has also been proposed to play
an important role to distinguish Tregs origins [168]. Tregs originating from the thymus were
selected for their specificity toward self-antigens, and thus are susceptible to be continuously
stimulated by the self-antigens in periphery, potentially explaining their high expression of
activation markers such as CD25, while iTregs generated by environmental conditions
(inflammation, tolerance. . .) have a higher affinity toward exogenous antigens and thus are
less stable once the antigens have been eliminated. In the context of organ transplantation, the
antigens remain and we have demonstrated that CD8+CD45RClow iTregs were maintained and
stable for a long time [132, 150].

Tregs use different mechanisms to suppress anti-donor immune responses; they can mediate
their activity through cell contact, cytokines secretion, or metabolic disturbance. Suppression
through cell contact is mediated by the CTLA-4 and LAG-3 molecules expressed by Tregs.
Interaction of CTLA-4 with B7 modulates CD80-86 expression by APCs and tryptophan
catabolism in DCs, thus inhibiting T-cell activation [169]. Tregs can also induce effector cells
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apoptosis by cytolysis mediated by cell contact and secretion of cytotoxic molecules such as
granzyme B and perforin [170]. Suppression through metabolic disturbance consists in the
modification of the biochemical and cytokine environment, leading to target cell death.
Adenosine triphosphate (ATP), cyclic-adenosine-monophosphate (cAMP), or IL-2 deprivation
has been shown has strong inhibitor of cell proliferation [171, 172]. Finally, immunosuppres‐
sive cytokines play a major role in Treg-mediated suppression. IL-10, TGF-β, IL-34, IL-35,
FGL-2, and IFNγ are all involved in CD4+ and/or CD8+ Tregs function [89, 159, 173, 174]. We
have demonstrated that IFNγ production by CD8+CD45RClow Tregs in a model of cardiac
allograft tolerance in rat resulted in indoleamine 2,3-dioxygenase (IDO) expression by DCs
and endothelial cells of the graft [159]. We have shown that CD8+CD45RClow iTregs also
produced high levels of FGL-2 [89] and IL-34 in rat and we have demonstrated that IL-34 is a
cytokine that is specifically expressed by human Foxp3+ CD4+ and CD8+ Tregs [173].

3.3.2. Other subsets of regulatory cells

Clinical and experimental observations have highlighted the role and potential of non–T cells
with regulatory properties, defined as regulatory B cells (Bregs), tolerogenic dendritic cells
(Tol-DCs), or regulatory macrophages (Mregs) or myeloid-derived suppressor cells (MDSCs)
(nonexhaustive list) [89, 175–179].

The role of Bregs has been particularly investigated in allograft models of tolerance by our
laboratory and in tolerant transplanted patients. In these patients, high levels of B lymphocytes
and B markers have been observed, while these patients were tolerant and displayed an
absence of donor-specific antibodies (DSAs) [3, 180, 181]. The phenotypic profile of Bregs
remains unclear, in contrast to Tregs, although a few markers have been identified including
CD1d, CD21, CD24, and IgM and it has been demonstrated that they mostly display an
immature phenotype [182, 183]. A common feature of Bregs is their ability to secrete IL-10 and
IL-35, two cytokines playing a major role in their activity and initially demonstrated in
autoimmune diseases [184]. Other mechanisms of action resulting in Bregs activation and
suppression involve their BCR engagement, cooperation with T lymphocytes, signaling via
CD40/CD40L, TLR activation, IFNγ from tolerogenic DCs, or granzyme B secretion [185–189].
The engagement of their function results in inhibition of effector CD4+ T-cell proliferation, Th1
differentiation, APCs function, and monocytes activation. In addition, Bregs have been shown
as able to induce Tregs and NKT cells [177, 190]. In the context of transplantation, the role of
Bregs has been proven in a model of cardiac allograft tolerance in mice treated with anti-
CD45RB [191]. In our laboratory, we have demonstrated that IgM+IgG− B cells with a regulatory
activity accumulated in the cardiac allograft of tolerant rat recipients and can adoptively
transfer allograft tolerance to newly grafted recipients [183, 189]. We have shown that those
Bregs had a partial defect in CD40 signaling and overexpressed granzyme B. In a similar model
of cardiac allograft, we have demonstrated that administration of an adenovirus encoding
fibroleukin-2 (FGL-2), a cytokine associated with Treg function, can induce tolerance to the
allograft, thought generation of Bregs capable of infectious tolerance [89]. Finally, we have also
demonstrated in a model of CD8+ Treg-mediated CD40Ig-induced allograft tolerance, deple‐
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tion of CD8+ Tregs resulted in maintenance of long-term survival induction through generation
of Bregs and RegMCs [176].

Although DCs are mostly known to be immunogenic; they also have the capacity to be
tolerogenic. They play a major role in central and peripheral tolerance since they are involved
in clonal deletion of autoreactive T lymphocytes in the thymus and correlate with an increased
risk of autoimmune diseases and decreased presence of CD4+ Tregs when depleted in periph‐
ery [192]. They are defined by their expression of tolerogenic molecules, such as IL-10,
indoleamine 2,3-dioxygenase (IDO), TGF-β or heme-oxygenase 1 (HO-1), their low expression
of immunostimulatory molecules, such as MHC molecules or CD80 and CD86, and in general
their ability to generate Tregs and to inhibit effector T-cell responses. Their tolerogenic
properties have been linked with their maturation, exposure to immunosuppressive, or anti-
inflammatory treatments and their environment [193]. In the last year, a number of protocols
have been developed to generate Tol-DCs as therapeutic tools to induce a specific tolerance to
antigens in autoimmune diseases and transplantation, and our laboratory is involved in the
first clinical trial in kidney transplanted patients using Tol-DCs in the context of a European
“ONE STUDY” funding involving several centers [194, 195].

Initially, the focus was on the potential of immature conventional DCs (cDCs) expressing low
levels of MHC and costimulatory molecules and their potential to induce transplant tolerance
to a cardiac graft in mice [196, 197]. Our laboratory has demonstrated that autologous DC
combination with suboptimal dose of immunosuppressive drugs induces long-term allograft
survival in rat [198]. We have shown that they require TMEM176B, an intracellular protein
identified in tolerant recipients, to cross-present donor antigens and induce Tregs and prolong
allograft survival [199]. We have also shown that the molecule HO-1 can inhibit DC maturation,
while preserving their production of IL-10, and thus leading to inhibition of pro-inflammatory
and allogeneic immune responses [200].

Although their tolerogenic properties in transplantation are less well defined, the role of
plasmacytoid DCs (pDCs) has been demonstrated for the regulation and the maintenance of
bone marrow and organ transplantation [201]. As for cDCs, they can be immunogenic or
tolerogenic according to their receptor engagement and maturation status. We have demon‐
strated their preferential interaction with CD8+ Tregs in a model of cardiac allotransplantation
in rat treated with CD40Ig resulting in the superior suppressive potential of CD8+CD45RClow

Tregs [159, 202]. A group has shown their involvement in a model of cardiac allograft tolerance
in mice treated with DST and anti-CD40L. In this model, pDCs induced tolerance through
generation of alloantigen-specific CD4+CD25+Foxp3+ Tregs [203] and depletion of pDCs
inhibited Treg development and tolerance induction. In human, pDCs stimulated through
certain of their TLR (toll like receptor) or costimulatory molecules efficiently induced CD4+

and CD8+ Tregs inhibiting in vitro allogeneic T-cell stimulation [204–206]. Liver-transplanted
patients tolerating their allograft displayed significantly more pDCs and CD4+ Tregs [207].

Finally, Tregs can generate tolerogenic DCs, by modifying molecules expression such as
inducing tolerogenic molecules expression like IDO, ILT3 or ILT4, changing their function
[208]. We have demonstrated in several models of allograft tolerance that DCs were essential
for establishment and maintenance of allograft tolerance [202, 209–211].
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In transplantation, although macrophages activation is often associated with allograft de‐
struction and rejection in the early phases, the existence of an alternative population of Mregs
contributing to tissue reparation, activated by Th2-type cytokine such as IL-4 and IL-13 and
inhibiting pro-inflammatory cytokines secreted by macrophages [212]. Mregs can be induced
by Treg interactions, Tregs depletions, and can even induce in turn Tregs via IL-10 secretion
for example [213, 214]. The reduction of macrophages in mice receiving hematopoietic stem
cells aggravated the GVHD, whereas expansion of macrophages with CSF-1 resulted in the
opposite effect [215]. Mregs isolated from peripheral blood are characterized by their mor‐
phology, specific markers, although unstable, and their capacity to inhibit T-cell proliferation
in vitro [216]. A clinical pilot study is administering donor-derived Mregs to kidney-trans‐
planted patients, allowing graft survival under minimal immunosuppression one year
following administration without clinical signs of graft rejection [217]. We and others have
shown the potential of M-CSF and IL-34, two cytokines involved in monocytes survival and
differentiation to induce Mregs in vitro and in vivo in human, mice, and rat transplantation
models, and that those Mregs induced in turn Tregs capable of tolerance induction [173, 218].

MDSCs are a heterogeneous population of immature hematopoietic progenitor cells present‐
ing numerous suppressive functions, including alloantigen tolerance induction in cardiac and
islet allograft model in mice and kidney allograft in rat [219, 220].

3.4. Tipping the balance between effector and regulatory functions

Allograft outcome depends on the balance between effectors, which attack alloantigenic
tissues, and regulators, which are essential for regulation/inhibition of alloresponses and
induction of tolerance [221]. Induction of tolerance might be induced by the diminution of
alloreactive T cells to allow Tregs to suppress the immune system activation. A large number
of protocols have been studied with more or less efficacy.

Several approaches have been based on the expression amount of CD45 molecule on T cells
allowing to distinguish effector and Tregs [222]. Strategies using monoclonal antibodies have
been tested in animal models, notably in mice models of transplantation targeting CD45RB,
as CD4+CD45RChigh T cells from untreated mice have been shown as capable of inducing colitis,
diabetes, and thyroiditis [223]. In all cases where CD4+CD45RBhigh T cells have been shown to
cause autoimmunity, their counterpart CD4+CD45RBlow T cells have been shown to prevent
the induction of the disease. Anti-CD45RB antibody (MB23G2) caused transitory decrease of
circulating lymphocytes expressing CD45RB and induced allograft survival with normal
kidney allograft function [85]. This antibody induces also upregulation of CTLA-4 on lym‐
phocytes [224]. This treatment has been studied in kidney, pancreatic islets, and heart allograft
models. Lazarovits et al. have studied two different CD45RB mAb (MB23G2 and MB4B4). They
have shown that the nondepleting MB4B4 is therapeutically ineffective while MB23G2 depletes
CD45RBhigh lymphocytes and induces renal and islets allograft tolerance in mice model [85,
225].

Tipping the balance to favor regulatory functions is an interesting alternative to effector cells
depletion. In our laboratory, we have developed and demonstrated the efficacy of different
therapeutic strategies to modify the balance in favor of regulatory functions, such as CD40Ig,
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anti-CD28 (FR104), HO-1, FGL-2, or IL-34, for example [55, 89, 131, 173, 226]. Our team studied
CD40Ig treatment in a cardiac allograft rat model. We have demonstrated that this treatment
induces long-term survival by generation of CD8+CD45RClow[131]. CD45RC has been shown
in rats, mice, and humans to be a marker of both CD4+ and CD8+ Tregs [98, 102–106]. Moreover,
this cell population is able to transfer infectious tolerance to naive transplanted rats[159]. Anti-
CD28 is a good candidate to prevent rejection in the clinic [115, 231]. Zhang and al have shown
that anti-CD28 inhibits lymphocytes activation and increases the proportion of cells expressing
Foxp3 in the allograft. Our team and others have proved that treatment with anti-CD28 acts
through the increase of the proportion of Tregs [117, 118, 178]. Actually, FR104 is the most
known molecule targeting CD28. This humanized molecule has no agonist activity on human
T cells in vitro and it does not induce cytokine storm in NOD/SCID mice reconstituted with
human PBMCs. Moreover, Poirier and al have demonstrated the potential of FR104 in GVHD
humanized mice model. They have also administrated FR104 to NHPs. Their results indicated
a good tolerance in NHP and excluded cytokines release [99]. Several nondepleting antibodies,
such as anti-CD4 and anti-CD8 mAb, are efficient to induce tolerance [232] and have permitted
the first proof of the possibility of infectious tolerance [233]. Moreover, different strategies
should be combined to improve their effects. Indeed, anti-CD45RB mAb and anti-CD40L mAb
synergized and improved long-term allograft survival in islets and skin allografts [234].

All these examples confirm the importance of the balance between effector and regulatory cells
for graft outcome.

4. From the bench to the clinic

Regulatory cells are essential for tolerance in transplantation. Many animal models have
highlighted the potential of such tools for preventing allograft rejection and GVHD develop‐
ment. Their human counterparts are a promising issue for following immune status and
inducing tolerance in transplanted patients.

4.1. New biomarkers for a real-time adapted treatment

A biomarker is “a characteristic that is objectively measured and evaluated as an indicator of
normal biological processes, pathogenic processes, or pharmacologic responses to a therapeu‐
tic intervention” [235]. Nowadays, the reliability of the prognosis to predict allograft survival/
rejection is low. For pancreas and liver transplantation, the measurement of lipase/amylase
and liver enzymes respectively is recommended as routine post transplantation monitoring.
The monitoring of cardiac enzymes is not recommended because of the poor sensitivity of
these markers in the diagnosis of acute rejection, thus patients have to suffer endomyocardial
biopsies 15 times during the first year after transplantation [236]. Echocardiography, diastolic
function analysis, and quantitative measurement of changes of the transverse relaxation time
T2 in the myocardium by magnetic resonance imaging are considered to improve cardiac
allograft rejection prediction [237]. For renal allograft, the prognosis is generally based on
creatinemia evolution and glomerular filtration. This prediction can be improved by calculat‐
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ing the kidney transplant failure score (KTFS) considering not only the creatinemia at 3 and
12 months post graft, but also the proteinuria at 12 months, the number of previous trans‐
plantations, the age and sex of the donor, the creatinemia of the donor at the harvesting time,
and the incidence of an acute graft rejection in first year post transplantation [238].

Noncompliant patients spontaneously developing an operational tolerance to their graft are
useful to identify new biomarkers and adapt in real time the care of patients. By comparing
phenotypes of cells and cytokines from tolerant patients with healthy volunteers and patients
rejecting their graft, we should be able to identify markers correlating with the immune status
toward the graft. However, studies are limited to blood and urine analysis because of the
ethical question of performing a biopsy of a tolerated graft. Kidney-grafted spontaneous
operational tolerant patients are defined as having ceased all immunosuppressive drugs for
more than one year, with no increase in serum creatinine during the last 12 months (CRT <
10%). Using microarray analysis, Brouard, Newell, and Sagoo compared genes differentially
expressed in tolerant recipients with patients exhibiting chronic rejection [181, 239, 240].
Tolerant patients showed a reduction of activation markers of proinflammatory T cells, a
down-regulation of pro-inflammatory cytokines [239], a GATA3 upregulation suggesting a
Th2 deviation [241], and an increase in CD4+CD45RA-Foxp3hi memory Tregs versus patients
with chronic rejection [3, 242, 243]. Interestingly, the three distinct studies and cohorts converge
also with an increase of B cells in blood and CD20 transcript in urine in tolerant patients [180,
181, 240]. However, the phenotype of B cells named Bregs they described diverges [180, 181,
240, 244]. In liver-grafted spontaneous operational tolerant patients, higher numbers of
CD4+CD25+CD127− T cells, Vδ1+ T cells, and NK cells were detected [245, 246].

The heterogeneity of treatments, in terms of dose and type of immunosuppressors adminis‐
tered to patients during chronic rejection episodes, and the heterogeneity of the parameters
selected to monitor regulatory cells activity in the recent trials, prevents comparison of the
results. To define general tolerance signatures, consortiums as The ONE Study and EU COST
Action “BM1305: action to focus and accelerate cell-based tolerance-inducing therapies,”
standardized immune monitoring of patients included in clinical trial [247]. Six panels of 7–9
markers designed are now standardized within 8 international laboratories to monitor T cells,
B cells, and DCs [247].

Newly described cytokines associated with regulatory cells should be considered as prognostic
markers. Recently, IL-34 has been closely associated with Tregs and M2 macrophages [173].
FGL2, produced by Tregs and generating Bregs, could also reflecting immune status of the
graft [248]. Furthermore, nucleic acid analysis suggests new biomarkers for allograft rejection,
such as donor-derived cell-free DNA (ddcfDNA) [249], OX40 [250], OX40L [250], PD-1 [250],
Foxp3 [250] mRNA levels in urinary cells, and A20 [251], HO-1 [251], granzyme B [251],
perforin [251], and Tim-3 mRNA [252] in both urinary cells and PBLs.

4.2. From patients observation to action

Many immunosuppressive drugs were developed these last decades. By targeting many cell
types at different levels/pathways, their association largely contains the immune responses
against the allograft. Briefly, glucocorticoids and calcineurin inhibitors (ciclosporin, tacroli‐
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mus) inhibit cytokine transcription in T lymphocytes and macrophages; mTOR inhibitors
(rapamycin, everolimus [253]) inhibit expression of costimulatory molecules on APCs and T
lymphocytes proliferation; cytostatics (cyclosphosphamide, methotrexate, azathioprine) and
purines inhibitors (mycophenolate mofetil) inhibit T and B cell divisions; antibodies targeting
thymocytes (ATG, thymoglobulin), CD3 or CD52 (Campath-1H) deplete T lymphocytes, CD25
(basiliximab, daclizumab) inhibit T lymphocytes activation, and CD20 (rituximab) and CD52
deplete B lymphocytes; sphingosine 1 phosphate inhibitor FTY720 (Fingolimod) retain
lymphocytes in lymphoid organs and decrease their circulation in blood; efalizumab inhibits
LFA-1 functions. However, drawbacks and side effects they induce are still unresolved.

The identification of new immunoregulatory mediators and the recent findings regarding
regulatory cells over-represented in tolerant patients whereas lacking in graft-rejecting ones
suggest new therapeutic strategies to control the immune balance. Several cytokines and
antibodies have shown promising results in animal models. It has recently been shown that
the cytokine IL-34 is able to induce Tregs through conversion of regulatory macrophages
[173]. Similarly, FGL2 can induce Bregs [248]. In addition, antibodies blocking costimulatory
pathway like CD28 antagonist (FR104) or antibodies targeting TCR-associated signaling
(CD45RC [254]) or DR3 [255] marker seem efficient to decrease T-cell function whereas
promoting Tregs [55, 99, 256]. The promotion of regulatory cells is likely to induce lower
drawback than classical broad-spectrum drugs.

Immunoregulatory cell therapy may be able to support peripheral tolerance and aims to induce
a donor-specific unresponsiveness. This personalized method consists in harvesting blood
cells from a patient, isolating and expanding ex vivo regulatory cells before re-infusing them
to the patient in order to control allogeneic response against the graft in solid organ trans‐
plantation, or to control allogeneic response against the recipient infused with hematopoietic
stem cells (HSCT) to avoid a GVHD reactions.

The first clinical trial was realized in 2009 by Trzonkowski et al, using 105 Tregs/kg expanded
CD4+CD25+CD127− Tregs to reduce chronic GVHD symptoms [257]. In 2011, Brunstein began
a phase I clinical trial and to date showed that until 3 × 106 expanded Tregs would be safe and
efficient to reduce the incidence of grade II–IV aGVHD [258]. The same year, Di anni showed
that freshly purified CD4+CD25+ Tregs counteracts the GVHD potential of a high number of
donor Tcons in HLA-haploidentical HSCT [259]. In 2014, Martelli confirmed in a phase II
clinical trial that co-infusion of freshly purified CD4+CD25+ Tregs significantly reduces GVHD
incidence without affecting GVL (graft versus leukemia) effect [260]. In 2014, Bacchetta infused
105 donor T lymphocytes pretreated with IL-10/kg into recipient of HSCT and showed the
protective effect of TR1 cells against GVHD [261]. Whereas these first clinical studies focused
on Tregs in HSCT, several alternative regulatory cell types have been identified as potential
sources for immunotherapies in solid organ transplantation. The EU-funded international
ONE study consortium considers several immunoregulatory cell-based therapies for clinical
management of solid organ transplant recipients and shares a common clinical protocol design.
The ONE Study project titled “A Unified Approach to Evaluating Cellular Immunotherapy in
Solid Organ Transplantation” aims to compare the feasibility and the potential of cell therapy
by using MDSCs, Mregs, DC-10, Tol-DCs [262], rapa-DCs, monocytes conditioned with
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mesenchymal stem cells [263], Tr1 [264], and CD4+ Tregs [265]. CD8+ Tregs are now approach‐
ing clinical tests [266–268] and Bregs are also considered as a tool for cell therapy [269].

Success of cell therapy to control allogeneic immune responses against the donor depends on
regulatory properties of cells and on the number of regulatory cells infused into the recipient.
Based on animal models and preclinical models of humanized mice, about 7 to 11 × 108 Tregs/
kg would be necessary to control allogeneic response [270]. However, we have to consider the
in vivo proliferation of Tregs after infusion [271]. Thus, the maximal infusible dose approved
by The ONE Study for safety is 107 Tregs/kg [265]. Nowadays, Tregs from patients can be 100
to 1000 fold short-term expanded ex vivo while keeping their suppressive properties [272–274].

Importantly, clinical protocols also consider specificity of therapeutic cells against the graft
donor. Indeed, antigen-specific Tregs have been shown more efficient in inhibiting anti-donor
immune response [275]. The frequency of direct alloreactive Tregs has been estimated to 1–
10% of total Tregs [276]. Injecting more donor-specific cells would amount to inject fewer cells,
and to reduce nonspecific unwanted drawbacks. For Tang and Bluestone, the effect induced
by 5 × 109 polyclonal CD4+ Tregs would be equivalent to the effect induced by 1.5 × 108 to 1 ×
109 allogeneic Tregs [277]. That is why processes have been developed to expand Tregs
specifically with APCs or antigen derived from the HLA donor. Indeed, CD4+ Tregs expanded
with donor DCs or B cells, or by indirect presentation of donor cell lysate antigen onto recipient
APCs [276], showed a higher suppressive activity compared to polyclonally expanded Tregs
[275, 278–280]. Similar protocols were used to generate donor-specific CD8+ Tregs [266].
Whereas TCR repertoire of donor APCs-expanded Tregs is still diverse, Tregs relatively
efficiently reduce alloreactive T cell response without compromising general immunity
according to mice models [266, 279]. Based on their capacity of infectious tolerance, Ag-specific
Tregs can exert dominant tolerance to alloantigen in vivo by inducing regulatory properties in
alloreactive T cells [281]. The identification of a unique shared peptide is of crucial interest
today. Tregs with a unique antigen specificity can also be isolated and then expanded for cell
therapy [282], or selected during the expansion by indirect presentation of one peptide [150,
267, 283]. Genetic engineering used to confer a TCR specificity to lymphocytes to redirect T
cells in cancer immunotherapy [284, 285] offers new possibilities to obtain Tregs with an
artificial specificity toward the graft donor Ag.

As cells will be re-infuse into the patient, all reagents used to culture cells have to be validated
for “clinical grade,” and after expansion, cells are analyzed for purity and stability. Tregs are
phenotypically characterized for expression of helios [167], DNA methylation status of the
TSDR (Treg specific demethylated region) [286], while Foxp3 expression is no more sufficient
[287], and tested in in vitro suppression assay.

Cell therapy strategy would allow reducing the use of conventional immunosuppression in
organ transplant recipients; nevertheless, clinical trials are rarely totally free of drugs for
patients’ safety. This could affect regulatory cells survival and functions. Indeed, tacrolimus,
mycophenolate mofetil (MMF), and methylprednisolone do not affect phenotype, function, or
stability of Tregs, but reduce their proliferative capacity, whereas rapamycin did not [288–
290]. Moreover, rapamycin is sometimes used to maintain regulatory properties of Tregs
during expansion culture and also to convert conventional CD4+ T cells into Tregs ex vivo [291].
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By targeting upstream IL-2 synthesis, cyclosporine A compromises the homeostatic behaviour
of CD4+ Tregs in peripheral immune compartments [292]. On the contrary, FTY720 synergizes
with rapamycin for the conversion of CD4+ Tregs [293]. Thus, the choice of drugs combined
with cell therapy has to be considered.

5. Conclusion

Research in transplantation has made considerable progresses improving transplantation
outcomes, but important obstacles remain. Induction of tolerance is considered as the key to
reduce the impact of toxic side effects of general immunosuppressive drugs. Better definition
of immune tolerance mechanisms in human should lead to a better understanding of the
potential effects of targeting strategies.
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