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Abstract

One of the ways to reduce chemical fertilizer application is the use of cover crops, which
improve soil properties and supply nutrition to subsequent crops. Hairy vetch (Vicia villosa
R.; HV) is one of the processing legume cover crops. A similar yield of fresh marketable
tomato (Solanum lycopersicum L.) was obtained in the soil with HV mulch and incorpora‐
tion even if the reduction of chemical N fertilizer input compared with the convention‐
al production with 240 kg-N/ha fertilizer in the greenhouse from 2006 to 2012. Using 15N-
labeling method, HV residue incorporated into soil was decomposed rapidly for about 1
month and N released from HV residue was absorbed into the tomato plant. Nitrogen
was absorbed by tomato through out production period. The rate of N uptake derived
from HV to total N uptake in tomato plants (%Ndfhv) in the small amount N fertilizer was
higher than that with high amount of N fertilizer application. It ranged from 24.8% in 240
kg-N/ha to 37.1% in no N fertilizer. The nitrogen use efficiency (NUE) from HV-derived
N by tomato plant reached about 50% during the tomato production with HV incorpo‐
ration. Other 50% of HV-derived N remained in the soil and 4% of were absorbed by
tomato in the next year’s production. HV has the possibility of alternative material for
basal N fertilizer to ensure the tomato growth of early period after transplanting, and
continuous supply of N is necessary to late stage of tomato. The combined system of
incorporation of HV cultivated at the seeding density of 20–50 kg/ha before tomato planting
and the slow released N fertilizer was established for the reduction N fertilizer applica‐
tion and obtaining conventional tomato yield in plastic house.

Keywords: cover cropping, hairy vetch, nitrogen, nitrogen dynamics, tomato

1 Introduction

1.1 Management of fertilizer application in tomato production in plastic house

More than 70% of fruit  vegetables including tomato were repeatedly produced with the
application of much amount of chemical fertilizer in plastic house in Japan, and salt accumula‐
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tion and injury by continuous cropping became serious problems. Excessive N input causes
extra N accumulation in the soil [1], as a result of environmental pollution, such as nitrate leaching
and greenhouse gas emission occur [2].  For the establishment of sustainable greenhouse
production, reducing fertilizer inputs and proper applications are required.

Because tomatoes are produced with N application by basal and side-dressing fertilizer in
practice, the dynamics of N derived from basal, side-dressing fertilizer, and soil in the plant
are complicated, and real-time nutritional diagnosis was developed [3, 4].

Side dressings of fertilizer combined with diagnosis of nutrient conditions are popularly
carried out in production areas [4, 5]. Leaf petioles below the first fruit cluster or upper fruit
cluster with 2–4 cm size tomatoes are used as material for the nitrate analysis. Nitrate concen‐
tration of ca 3000–4000 ppm was reported to be an appropriate concentration for vegetative
growth in tomato.

Controlled release fertilizer, the so-called slow-release fertilizer, is applied at the beginning of
tomato production to reduce application work. These fertilizer management methods con‐
tribute to proper nutrient application in tomato production. However, for sustainable tomato
production in greenhouses or plastic houses, soil properties have to be improved and be
healthy in addition to proper N fertilization.

1.2 Advantage of cover cropping

Planting a cover crop is one of the biological tools used for sustainable crop production, which
has the effects of N supply [6], increasing organic soil carbon [7], improving soil physical
properties [8], and so on. Among the various kinds of cover crops, hairy vetch (Vicia villosa R.;
HV), legume crop, is one of the important species. HV residues can supply plenty of N due to
its efficiency in biological nitrogen fixation [9, 10]. HV also has other advantages, such as
adaptability to low temperatures, resistance to pests, delaying senescence, covering ground
surface effectively, and fitness for vegetable production, particularly in rotation with tomatoes
[11]. Araki et al. [7] also reported that utilizing HV could reduce chemical N fertilizer inputs
to half of the recommended amount without yield reduction in tomato production. Such results
showed that HV had potential as an alternative fertilizer to chemical N fertilizers.

The N release pattern from inorganic or organic fertilizer has to be synchronized with crop
demands for proper application [12]. Yaffa et al. [13] have shown the synchronization of tomato
N uptake and N release from cover crops; the tomato N uptake increased after the increase of
soil inorganic N, followed by a decline. On the other hand, Kumar et al. [11] reported that
because N release from white clover residues was faster under rotary hoeing treatment, it was
not synchronized with the N demand of wheat during its early growth period and resulted in
minimum N-benefits. We have to investigate the N supply pattern when HV was introduced
in tomato cropping in plastic house.

Non-legume cover crops are higher in carbon than legume cover crops. Because of their
high carbon content, grasses break down more slowly than legumes, resulting in longer-last‐
ing residue. As grasses mature, the carbon-to-nitrogen ratio (C:N) increases. This has two
tangible results: The higher carbon residue is harder for soil microbes to break down, so the
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process takes longer, and the nutrients contained in the cover crop residue usually are less
available to the next crop.

2 Tomato production with cover crops, 2006–2012

2.1 Field preparation and chemical fertilizer application

Tomatoes were grown in the rows with or without cover crop residue mulch shown in
Table 1, in high plastic tunnels, adding nitrogen fertilizer 120 kg and 240 kg/ha, 2006 and 2007.

Date Operation

March 22 Cover plastic film

April 4 Surface tillage in each row

April 5 Sowing of cover crop

May 26 Mowing of cover crop

Application of fertilizers

Making an organic mulch

May 29 Planting of tomato seedings

Measurement of nitrate in leaf petiole and growth index

July 7– Tomato harvest every 2–3 days

October 15

November 16 Measurement of Soil N and C

Source: Araki et al., Hort. Environ.Biotechnol. 50:324-328. 2009.

Table 1. Field operation in the tomato production with cover crop, 2007.

Hairy vetch (Vicia villosa R.) and wild oat (Avena sterigosa L.) were used for cover crop. They
were drill planted at 10–15 cm distance, each alone or together on April 5. Seeding density was
50 kg/ha in hairy vetch, 100 kg/ha in wild oat, and 35 and 50 kg/ha in hairy vetch and wild oat,
respectively. Cover crops were grown until May 26 and mowed by cutter 2 cm above the
ground surface for making residue mulch of cover crops. The plots with cover crops were left
untilled to maintain the residue mulch, and bare plot without cover crops were slightly tilled
by hand (Table 2, Figure 1).

Year Examined Mark Cover crop Fertilizer

Spices Treatment Nz (kg/ha) P2O5 (kg/ha) K2O (kg/ha)

2006–2007 N240 Nothing Bare 240 200 200

N120 Nothing Bare 120 200 200
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Year Examined Mark Cover crop Fertilizer

Spices Treatment Nz (kg/ha) P2O5 (kg/ha) K2O (kg/ha)

HV HV Mulch 120 200 200

Oats Oats Mulch 120 200 200

Mix HV + oats Mulch 120 200 200

2008 N240 Nothing Bare 240 200 200

N80 Nothing Bare 80 200 200

HV HV Mulch 80 200 200

Oats Oats Mulch 80 200 200

Mix HV + oats Mulch 80 200 200

2009–2012 N240 Nothing Bare 240 200 200

HV HV Incorporation 80 200 200

HV HV Mulch 80 200 200

Oats Oats Mulch 80 200 200

Mix HV + oats Mulch 80 200 200

zIn both N rates, 20 and 80% of total N fertilizer were applied by fast-release (ammonium sulfate) and slow-release
fertilizer (LPS100, N40%), respectively.
Source: Araki et al., Hort. Environ. Biotechnol. 50:324-328. 2009.

Table 2. Hairy vetch treatment and fertilizer application in tomato plots from 2006 to 2012.

Figure 1. Cover crops grown in plastic high tunnel (1), hairy vetch reside mulch plot (2) and bare plot (3).Source: Araki
et al., Hort. Environ. Biotechnol. 50:324–328. 2009.

Chemical fertilizers for tomato were applied on the ground surface on May 27, 2006. Two rates
of nitrogen fertilizer of 120 and 240 kg/ha were applied in the bare rows, and 120 kg N/ha
fertilizer was done in rows with cover crops. In both N rates, 20 and 80% of total N fertilizer
were applied by fast-release (ammonium sulfate) and slow-effect fertilizer (LP40, Chisso
ASAHI Co. Ltd.), respectively (Table 2). In every plot, 200 kg of P2O5 and K2O was added per
ha.
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Each plot was 0.8 m wide and 3 m long, 0.6 m between tomato lines and 0.5 m between plants.
Planting density was 22,220 plants/ha. Treatments were arranged in a randomized block
design with three replications.

Tomato production with cover crops was continued till 2012. N fertilizer application in cover
crop plots reduced to 80 kg/ha from 2008, and the plot of HV incorporation was set up from
2009.

2.2 Biomass production of cover crops

Wild oat grew to heading stage; however, seeds were not developed at the mowing time.
Flowering occurred in some HV plants. At the mowing, late in May, contents of N and C were
4.3 and 41.3% in HV (C/N: 10.1), and 1.4 and 37.1% in oats (C/N: 32.3) in average from 2007 to
2012 (Table 3).

Cover Concentration N,C FW DW N Contents (kg/ha)

Crop N (%) C (%) C/N
ratio

HV
(kg/ha)

Oats
(kg/ha)

Total
(kg/ha)

HV
(kg/ha)

Oats
(kg/ha)

Total
(kg/ha)

HV 4.3 41.3 10.1 33,000 – 33,000 4,709 4,709 203

Oats 1.4 37.1 32.3 – 28,270 28,270 – 5,301 5,301 87

Mix 11,570 26,270 37,840 1,595 4,950 6,545 148

Data was the average of values obtained from 2007 to 2012.

Table 3. Biomass production of cover crops, hairy vetch and oats, cultivated in the plastic house for 2 months, April
and May. 2007–2012.

Aboveground biomass (dry weight) was 4709 kg/ha in HV and 5301 kg/ha in wild oat late in
May. However, in mix-culture, it was 1595 kg/10a in HV and 4950 kg/ha in wild oat.

Sainju et al. [14] reported that bi-culture of legume and non-legume cover crops had greater
biomass yield, and also N and C contents in cover crops than monoculture of each species in
the southeast area of USA. On the other hand, aboveground and underground biomass yield,
and N and C contents of cover crops were varied by year and experimental location.

Experimental location of this examination, Sapporo, Japan, was snow cover region. More than
1 m high snow cover is observed in winter. HV is a typical winter annual legume crops
originally, but few plants survive after long snow cover [15]. Wild oat also cannot overwinter
under snow cover more than 3 month in Sapporo. HV and wild oat were usually sown in early
spring in Sapporo. Greater biomass in bi-culture of wild oat and HV was not observed than
monoculture of wild oat because of short growing period of cover crops.
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2.3 Tomato growth and yield, 2007

2.3.1 Nitrate in petiole sap

There was a difference in nitrate concentration in petiole sap in leaf below first fruit cluster
among treatments in July and August. Nitrate in HV plot showed 3650 and 3550 ppm in July
and August (Figure 2). Those in Bare + N240 kg plot were 3280 and 2966 ppm, respectively.
However, nitrate concentrations in other treatments were smaller than those in HV and
Bare + N240 kg plots. That in oat plots was smallest. Though nitrate value decreased from July
to August in bare plot (N120 kg), it increased in oat and mix (HV + Oat) plots. Such observation
accorded with the result that N content became high in the leaves of tomatoes produced with
HV mulch [16].

Figure 2. Effect of cover crop residue mulch on nitrate concentration of petiole sap on July 9 and August 10, 2007. 240
kg N fertilizer per ha was added into BareN240 plot and 120 kg N fertilizer per ha was done into other plots. Vertical
bars represents SE (n = 3).Source: Araki et al., Hort. Environ. Biotechnol. 50:324–328. 2009.

2.3.2 Growth and yield of tomato

Similar total marketable yield was shown in HV and Bare + N240 kg plots, 78.2 t/ha in the
former and 79.5 t/ha in the latter (Figure 3). Yield in first and second fruit cluster in
Bare + N240 kg plot was larger than those in HV plot. Yields in Bare + N120 kg and mix plots
were 68.8 t and 69.6 t/ha, smaller than those in HV and Bare + N240 kg plots. Oat plot showed
smallest yield, 61.5 t/ha.

To consider fruit yield, nitrogen absorption/application rate, and nitrate nitrogen concentra‐
tion, the proper range of petiole sap nitrate concentration was 4000–7000 ppm [4]. This has
been recognized as recommendable value of nitrate concentration for current yield in Hok‐
kaido prefecture. In this examination, nitrate concentrations in petiole sap in HV and
Bare + N240 kg plots were close to the recommendable value in July and August. These plots
have possibility to obtain the current yield. Those in other plots were obviously lower than
recommended value, and it is necessary to apply the N fertilizer for the current yield.
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Figure 3. Effect of cover crop residue mulch on total fresh marketable yield of tomato 2007. 24 kg N fertilizer per 10a
was added into BareN24 plot and 12 kg N fertilizer per 10a was done into other plots. Vertical bars represent SE (n = 3).
Means followed by different letters are significantly different at 5%, Tukey’s test.Source: Araki et al., Hort. Environ.
Biotechnol. 50:324–328. 2009.

In bare plots, especially adding with N120 kg, nitrate concentration in petiole tended to
decrease from July to August; however, it increased in oat and mix plots in spite of same rate
of N fertilizer. It is caused by decomposing the organic matter of cover crop residue applied
in 2006 and 2007.

Nitrate concentration in petiole sap was concerned with growth index (GI), indicator of
vegetative growth. GI values in Bare + N240 kg and HV plots were higher than other cover
crop plots. HV, typical legume crops, decomposes faster than non-legume crops because of
low C/N ratio [17], and released nitrogen is absorbed into tomato plant. However, C/N ratio
of wild oat is high, as much as 24 in our previous observation. Nitrogen absorbance into tomato
plants was restricted due to immobilization in soil.

Same trend in marketable tomato yield was observed as GI, with larger yield in Bare + N240 kg
and HV plots, medium yield in Bare + N120 kg and mix plots and smallest in oat plots. The
examined location is a cool summer region of which air temperature usually decreases from
September. It is necessary to obtain good vegetative growth until August for getting much
yield.

Even if N fertilizer decreases to half of conventional (240 kg/ha), current tomato yield was
obtained in the HV plots. Such tomatoes are recognized as organically grown agro-product in
combined with the reduction of fungicide and pesticide application.

2.4 Long-term evaluation of tomato yield, 2007–2012

Such tomato production system continued till 2012 (Table 4). The vegetative growth (GI) and
marketable yield showed same trend as 2007. That is, highest GI and yield were shown in Bare-
N240 plot. However, there was no significant difference between Bare-N240 and HV (N80 kg)-
incorporation. GI and marketable yield of HV mulch plot were a little smaller than those of
Bare-N240 and HV (N80 kg)-incorporation. From the long-term examination, 2008–2010, it was
clarified HV supports the vegetative growth and tomato yield even if N fertilizer reduces to
half or one third of conventional application in greenhouse.
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Mark (cover crops) Treatment of
cover crops

N fertilizery (kg/ha) Growth indexx Marketable
yield (t/10a)

N240 Bare 240 40514 aw 4.7 a

HV Incorporation 80 38424 a 4.3 a

HV Mulch 80 33200 b 4.1 a

Oats Mulch 80 25365 c 2.6 b

Mix Mulch 80 29.336 bc 3.0 b

Tukey’s testw * *

zData was average of the values obtained from 2007 to 2012.
yIn both N rates, 20 and 80% of total N fertilizer were applied by fast-release (ammonium sulfate) and slow-release
fertilizer (LPS100), respectively.
xGrowth index (GI) was measured 6 weeks after transplanting, just before the first harvest.
wMeans followed by different letters and asterisk are significantly different among the treatments at 5%, Tukey’s test.
NS: not significant.

Table 4. Effects of cover crops and N fertilizer on the growth and the yield of tomato: 2007–2012z.

2.5 Soil N and C content after tomato production

Increase of inorganic N increased near soil surface, 0–5 cm depth, in the rows with cover crops
in the case of N 120 kg/ha application, 2007. Considering the high nitrate in petiole, high GI
and large yield in plots with HV, it is thought that released N from cover crops was absorbed
into tomato plants in near soil surface. There was no significant difference in soil total N among
the plots though the examination period (Table 5).

Mark (cover crops) Treatment of cover crops 0.5 cm 15 cm

N (%) C (%) N (%) C (%)

2007 2012 2007 2012 2007 2012 2007 2012

N240 Bare 0.28 0.22 3.89 3.57 0.24 0.22 3.54 3.50

HV Incorporation 0.24 0.26 3.45 3.51 0.23 0.22 3.35 3.50

HV Mulch 0.30 0.24 4.24 3.87 0.24 0.23 3.70 3.32

Oats Mulch 0.27 0.23 4.08 3.69 0.25 0.23 3.57 3.55

Mix Mulch 0.30 0.27 4.61 4.07 0.26 0.25 3.77 3.78

Data in 2007 and 2012 were presented.

Table 5. Content of total nitrogen and total carbon in the soil of the plot cultivated cover crops for 7 years (2006–2012),
at the depth 5 cm and 15 cm.

As to soil carbon, the change of soil C content was observed in of 0–5 cm depth soil because of
leaving cover crop residue on the soil surface. There was tendency to increase in mix plot (oats
and HV); however, significant difference was recognized only 2 years, 2007 and 2008.
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Winter cover crops have the potential to increase soil organic C in agricultural soils [18].
Komatsuzaki and Mu [19] evaluated the effects of tillage in continuous field rice cropping with
rye and hairy vetch cover crops in Kanto region, non-snow cover region in Japan. Soil organic
carbon in the top soil, 0–2.5 cm depth, increased compared with winter fallow 2 years later
adopting cover cropping; however, other soil layer did not show any change in their obser‐
vation.

Organic matter level in the soils under mixed cover crops improved as much as 8.8% after
3 years of cover crop use [20]. Interestingly, soil under the legume-only cover actually dropped
slightly in organic matter content after 3 years, probably because the lower C/N ratio of the
incorporated organic matter caused more rapid microbial breakdown. Soil C varies from year-
to-year as a result of weather-affected changes in crop residue inputs or decomposition of
residues and organic matter [21].

As to one of the reasons of little change of soil C in our examination, ash soil is distributed
around plot area and soil C content is originally high, more than 3%. If the examination was
performed in the soil with low content of soil C, soil C will increase using of cover crop,
especially no legume cover crops. Content of soil C affects the biological properties of soil.
Some methods such as active carbon and SIR (substrate-induced respiratory) are applied for
the estimation of diversity of microorganisms.

3 N dynamics in tomato production with HV

3.1 Stable isotope technique

These results mentioned previous section showed that HV could be alternative fertilizer for
crop production instead of chemical N fertilizer and become a useful tool to solve the high
input problem in N management. It is important to clarify the tomato uptake of N mineralized
from HV residue for the establishment of effective N management in the cropping system with
cover crops.

The method using 15N-labelled plant materials has been effective for direct estimation of N
uptake from the cover crops. Earlier studies have found that the N uptake by the subsequent
crop was 6–25% of N applied by 15N-labelled cover crops, HV, ryegrass, etc [10, 22–25]. The
efficiency differed depending on subsequent crop species, cover crop species, or cultivation
circumstances.

In tomato production with cover crops, Thönnissen et al. [26] reported that when legumes
were incorporated or mulched into the soil, tomato absorbed 8.9 or 9.6% of soybean-derived
N and 10.0 or 15.0% of indigofera-derived N, respectively. In other report, the higher recovery
rate of cover crop-derived N was also reported; 56% of HV-derived N was recovered by rice
[27]. 15N-labeling method was used in the evaluation of N recovery from cover crops in these
reports.

The application effect of legume cover crop, hairy vetch (Vicia villosa R.; HV), on N dynamics
in fresh market tomato (Solanum lycopersicum L.), “House Momotaro,” was investigated using
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15N-labelling method [28]. Tomato seedlings were transplanted in the 1/2000a Wagner pot at
0, 80, 240 kg ha−1 of N application (N0HV, N80HV and N240HV) on June 9. Before transplant‐
ing, the labeled HV (0.86 atom% excess) and chemical fertilizer were incorporated into soil.

3.2 Absorption and distribution N derived from HV

HV-derived N uptake was recognized mainly in first 4 WAT. Especially, in N240HV, the
uptake of HV-derived N ceased at 4 WAT. The uptake amounts of HV-derived N at 10 WAT
were 587, 657, and 729 mg plant−1 in N240HV, N80HV, and N0HV, respectively, and there were
significant differences among three treatments (Figure 4). The ratio of N uptake derived from
HV to total N uptake in tomato plants (%Ndfhv) was the highest at 2 WAT, and %Ndfhv in N80HV
(52.1%) and N0HV (51.5%) were significantly higher than in N240HV (43.6%) (Figure 5). After
2 WAT, %Ndfhv was decreased gradually in all N rates as tomatoes grew, and it was decreased
to 24.8, 34.4, and 37.1% in N240HV, N80HV, and N0HV, respectively, until 12 WAT (Fig‐
ure 6). The nitrogen use efficiency (NUE) by tomato plant from HV-derived N was the highest
at 10 WAT, and N0HV (55.3%) was significantly higher than N240HV (44.5%) and N80HV
(49.8%) (Table 5).

The partition rate of HV-derived N into fruits was 63.9 and 39.7% of HV-derived N was
partitioned into low fruit clusters, first and second. The partition rate of N derived from soil
and fertilizer into fruits was 57.9%, significantly lower than that of HV-derived N. From these
results, it was clarified that (1) HV-derived N was used effectively in small rate of chemical N
fertilizer and (2) the N supply effect from HV was expressed in early period of tomato growth
(Table 6).

Figure 4. Effect of N fertilizer and HV treatment on the increase of the amount of tomato plant N uptake derived from
HV. The plots of N0HV (○), N80HV (●), and N240HV (Δ) were fertilized 0, 80, and 240 kg N ha−1, respectively, and
applied HV (1319 mgN pot−1). Means followed by different letters are significantly different at 5%, Tukey’s test.Source:
Sugihara et al., J. Japan. Soc. Hort. Sci. 82: 30–38. 2013. Available online at www.jstage.jst.go.jp/browse/jjshs1
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Figure 5. Effect of N fertilizer and HV treatment on the change of the ratio of plant N uptake derived from HV to total
N uptake. The plots of N0HV (○), N80HV (●), and N240HV (Δ) were fertilized 0, 80 and 240 kg N ha−1, respectively,
and applied HV (1319 mgN pot−1). Means followed by different letters are significantly different at 5%, Tukey’s
test.Source: Sugihara et al., J. Japan. Soc. Hort. Sci. 82: 30–38. 2013. Available online at www.jstage.jst.go.jp/browse/
jjshs1

Treatmentz Nitrogen use efficiency (%)

Weeks after transplant (WAT)

1 2 4 7 10 12

N240HV 5.1 29.4 43.4 45.2 44.5 cy 44.4 b

N80HV 4.8 27.8 41.2 48.7 49.8 b 47.5 ab

N0HV 4.4 25.9 40.3 49.9 55.6 a 49.4 a

Tukey’s testy nsy ns ns ns * *

zThe plots of N240HV, N80HV and N0HV were fertilized 240, 80 and 0 kg N ha−1, respectively, and applied HV
(1,319mgN pot−1).
yMeans followed by different letters and asterisk are significantly different among the treatments at 5%, Tukey’s test.
NS: not significant.
Source: Sugihara et al., J. Japan. Soc. Hort. Sci. 82: 30-38. 2013. Available online at www.jstage.jst.go.jp/browse/jjshs1

Table 6. Effect of N fertilizer and HV treatment on nitrogen use efficiency (NUE) derived from HV.

3.3 Combination of N fertilizer, HV, fast-release N and slow-release N

In order to improve the use efficiency of both hairy vetch (Vicia villosa R.; HV) and chemical N
fertilizer, N release and uptake patterns from HV, fast-release N fertilizer (FF), and slow-
release N fertilizer (SF) in fresh market tomato (Solanum lycopersicum L.) production were
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investigated using the 15N-labeling method. There was no difference in tomato fruit yield
between FF + SF and SF-only. HV-derived N was up taken by the tomatoes mainly until 4
weeks after transplant (WAT). The uptake amount of HV-derived N (Ndfhv) was same in the
pot with FF + SF and SF-only. The rate of N uptake derived from HV to total N uptake in tomato
plants (%Ndfhv) was 43% (480/1116 mg) in SF-only, higher than that in FF + SF(35%, 430/1204
mg) at 4 WAT; however, such difference disappeared after 4 WAT (Table 7). N uptake by
tomato plants was continued 12 WAT. From these results, HV has possibility of alternative
material for FF to ensure the tomato growth of early period after transplanting and continuous
supply of N is necessary to late stage of tomato.

Treatmentsz N uptake (mg/plant)

2 WATy 4 WAT 8 WAT 12 WAT

Totalx Ndfhv Ndfhv Total Ndfsf Ndfhv Total Ndfsf Ndfhv Total Ndfsf Ndfhv

N240HV (FF + SF) 767 508 259 1204 774 430 2010 1518 492 2497 aw 1983 a 513

N240HV (SF-only) 745 419 326 1116 636 480 1930 1435 495 2497 a 1959 a 538

N240 (FF + SF) – – – – – – – – – 1748 b 1748 b –

N240(SF-only) – – – – – – – – – 1786 b 1786 b –

t-test NSv * NS NS * NS NS NS NS – – NS

Tukey’s test – – – – – – – – – * * –

zPlots of N240HV were fertilized with 240 kg N·ha−1, and HV was applied (1007 mg N/pot−1). Plots of N240 were
fertilized with 240 kg N·ha−1 without HV. (FF + SF) contained 20% fast-release fertilizer + 80% slow-release fertilizer,
and (SF-only) contained 100% slow-release fertilizer.
yWAT: weeks after transplant.
xTotal = Ndfsf + Ndfhv, Ndfsf; N derived from soil and fertilizer, Ndfhv; N derived from HV.
wMeans followed by different letters and asterisk are significantly different among the treatments at 5%, t-test and
Tukey’s test. NS: Not significant.
Source: Sugihara et al., J. Japan. Soc. Hort. Sci. 83: 222–228. 2014. doi: 10.2503/jjshs1.CH-061

Table 7. Effects of N fertilizer and HV treatments on N uptake by tomato plants.

3.4 Absorption of HV-N remained in soil in the following year

After the tomato cultivation in 2011, the soil was stored in a greenhouse without any water
and fertilizer. Tomatoes were cultivated again in the Wagner pots in which contained used
soil of 2011 and were added same rate of N fertilizer (0, 80, and 240 kg ha−1 of N) and unlabeled
HV (935 mgN/pot) in 2012. Total N uptake of tomato plant was higher in N240HV (2377 mg/
plant), followed by N80HV (1760 mg/plant), N0HV (1498 mg/plant). On the other hand, the
uptake of N derived from HV applied in 2011 (HV2011, 1319 mgN/pot) was not different among
the treatments (57.7 mg/plant on average), so nitrogen use efficiency derived from HV2011 in
2012 was 4.4% on average (Figure 6). This value was much lower than that in 2011 (47.1% on
average), but HV2011-N also remained in the soil yet after the tomato cultivation in 2012 (500
mgN/pot). These results showed that although the N supplying effect of HV was small in the
following year, HV could be available for not only short-term N source, but also long-term N
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source, and HV-derived N applied in the previous year was absorbed by tomato plant during
relatively early growth period in the following year.

HV-derived N is probably available as alternate of fast-release fertilizer, but in order to
cultivate tomato healthy, it is supposed that the application of additional fertilizers for late
period growth is needed. Although reducing chemical fertilizer application improves the HV-
derived N use efficiency, the excess reducing fertilizer could lead to nitrogen deficiency during
late period. Therefore, it is important to balance reducing chemical fertilizers and ensuring
normal tomato fruit yield in order to establish the low input sustainable cropping system using
HV as a cover crop in tomato cultivation.

From the experiment 2012, the N derived from HV applied in the previous year contributed
slightly to the tomato growth, especially in the early growth stage. Although the contribution
rate of N derived from HV applied in the previous year was much lower than that from HV
applied in the current year, it was suggested that HV could be used for not only short-term N
source but also long-term N source as same as other organic materials. The result of this study
will be able to use as one of the knowledge to establish the HV-tomato rotation cropping
system.

Figure 6. Dynamics of HV2011-N’s input and output. The values show an average of three treatments.Source: Sugihara
et al., The Horticulture Journal 2016 (preview). doi:10.2503/hortj.MI-073
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4 Proof study of tomato production with HV

The positive responses of tomatoes grown under hairy vetch residues have economic and
environmental importance. From the results mentioned above, HV has the possibility of
alternative material for basal N fertilizer to ensure the tomato growth of early period after
transplanting and continuous supply of N is necessary to late stage of tomato. A proof study
to utilize HV in a real house is necessary because the examinations on N dynamics were carried
out in Wagner pot.

4.1 Fertilizer design

The application of ammonium sulfate (AS; 100-N kg/ha), HV (two seeding density; 20 kg and
50 kg/ha) and nothing, was for basal fertilizer management (Table 8). AS was applied into soil,
May 31, 2015, the previous day of tomato planting. HV grew for over 2 months; it was mowed
in late May. At the mowing time, flowering was observed in some plants. Aboveground
biomass (dry weight) of HV at densities 50 and 20 kg/ha were 7.2 and 5.9 t/ha, respectively.
This biomass accounts for the incorporation of organic nitrogen of 252 and 309 kg/ha of
equivalency into soil in HV20 and HV50, respectively. The C:N ratio of HV was low, 9.6,
suggesting rapid decomposition and mineralization of organic residues after incorporation
into soil.

LPS100 (Long player N fertilizer, slow release type, Chisso ASAHI Co. Ltd) was added in all
plots for side dressing. Similarly, in every plot, 200 kg/ha of P2O5 as fused magnesium
phosphate and 200 kg/ha of K2O as potassium sulfate were added. Transplanting occurred on
June 1, 2015.

Fertilizer or hairy vetch Basal N Top N LPS100
application (kg/ha)

Yield of marketable
tomato (t/ha)HV seeding (kg/ha) AS-N application (kg/ha)

Control 0 0 150 97 c

AS100 0 100 150 114 b

HV20 20 0 150 129 a

HV50 50 0 150 130 a

Yield means followed by different letters are significantly different among the treatments at 5%, Tukey’s test.

Table 8. Design of nitrogen application using HV and chemical fertilizer and marketable yield of fresh tomato.

4.2 Soil inorganic nitrogen and tomato yield

AS100 plots exhibited the highest soil inorganic nitrogen (9 mg/100 g) in the second week after
transplanting (2 WAT); however, it showed a decreasing trend (Table 9). The soil inorganic
nitrogen in HV20 and HV50 plots got to increase from 4 WAT until 6 WAT.
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Plots Inorganic nitrogen (mg/100g)

WAT
2 6 12

Control 2.6 3.1 1.0

AS100 9.0 3.1 1.1

HV2 2.8 5.0 1.6

HV5 5.4 4.0 2.1

Table 9. Change of inorganic nitrogen in the after tomato planting.

Similar and higher marketable yields were found in HV plots, 130 t/ha in HV50 and 129 t/ha
in HV20. These yields were higher than those in AS100 and control plots,114 and 97 t/ha,
respectively (Table 8).

Because of high N accumulation, HV increased soil inorganic nitrogen, tomato yield, and N
uptake [29]. The HV residues increased soil inorganic N in the early stages of tomato cultiva‐
tion. HV released more nitrogen in the first 6 weeks while ammonium sulfate provided more
nitrogen in the first 4 weeks after transplanting. The results were in agreement with previous
studies [28, 30–32]. The increased level of inorganic N with the HV at 15– 42 days after residue
incorporation may indicate that hairy vetch is suitable to be used as N source for the early
stages of tomato cultivation.

From this study, 40% of conventional N fertilizers were reduced by incorporating hairy vetch
residues in soil, even though good vegetative growth and high marketable yield were obtained.
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