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1. Introduction  

Today, power demand grows rapidly and expansion in transmission and generation is 
restricted with the limited availability of resources and the strict environmental constraints. 
Consequently, power systems are today much more loaded than before. In addition, 
interconnection between remotely located power systems turned out to be a common practice. 
These give rise to low frequency oscillations in the range of 0.1-3.0 Hz. If not well damped, 
these oscillations may keep growing in magnitude until loss of synchronism results. 
Power system stabilizers (PSSs) have been used in the last few decades to serve the purpose 
of enhancing power system damping to low frequency oscillations. PSSs have proved to be 
efficient in performing their assigned tasks. A wide spectrum of PSS tuning approaches has 
been proposed. These approaches have included pole placement (Chen & Hsu, 1987), 
damping torque concepts (Gibbard, 1988), H  (Klein et al, 1995), variable structure 
(Samarasinghe & Pahalawaththa, 1997), and the different optimization and artificial 
intelligence techniques (Abdel-Magid et al, 1999; Abido, 2001; Abido & Abdel-Magid, 1997). 
However, PSS may adversely affect voltage profile and may not be able to suppress 
oscillations resulting from severe disturbances, such as three-phase faults at generator 
terminals (Mehran et al, 1992). 
On the other hand, Flexible AC Transmission Systems (FACTS) have shown very promising 
results when used to improve power system steady-state performance. In addition, because 
of the extremely fast control action associated with FACTS-device operations, they have 
been very promising candidates for utilization in power system damping enhancement. 
A unified power flow controller (UPFC) is the most promising device in the FACTS concept. 
It has the ability to adjust the three control parameters, i.e. the bus voltage, transmission line 
reactance, and phase angle between two buses. A major function of the UPFC is to 
redistribute power flow among transmission lines during steady state. During transients, it 
can be used to improve the damping of low frequency oscillations. To perform these tasks, 
the UPFC needs to be equipped with a power flow controller, a DC voltage regulator, and a 
supplementary damping controller.  
Till now, not much research has been devoted to the analysis and control of UPFCs. Several 
trials have been reported in the literature to model a UPFC for steady-state and transient 
studies. Based on Nabavi-Iravani model (Nabavi-Niaki & Iravani, 1996), Wang developed a 
linearized UPFC model (Wang, 1999a & b) which has been incorporated into the Heffron-
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Phillips model (Heffron & Phillips, 1952).  Only a single operating point has been considered 
in the design process presented in (Wang, 1999a), which does not guarantee robust 
performance.
A number of control schemes have been suggested to perform the oscillation-damping task. 
Huang et al. (2000) attempted to design a conventional fixed-parameter lead-lag controller 
for a UPFC installed in the tie line of a two-area system to damp the interarea mode of 
oscillation. Mok et al. (2000) considered the design of an adaptive fuzzy logic controller for 
the same purpose. Dash et al. (2000) suggested the use of a radial basis function NN for a 
UPFC to enhance system damping performance. Robust control schemes, such as H  and 
singular value analysis, have also been explored (Vilathgamuwa et al, 2000; Pal, 2002).  To 
avoid pole-zero cancellation associated with the H  approach, the structured singular value 
analysis have been utilized in (Seo et al, 2001) to select the parameters of the UPFC 
controller to have the robust stability against model uncertainties.   However, the adaptive 
and robust control schemes proposed in (Mok et al, 2000; Dash et al, 2000; Vilathgamuwa et 
al, 2000; Pal, 2002; Seo et al, 2001) are still not widely implemented in power systems. In 
addition, the work cited proposed different techniques to design the damping controller 
without considering the power flow controller and the DC voltage regulator, or to design 
the three controllers sequentially, i.e. one at a time. To the best of the authors’ knowledge, 
there has been no attempt till now to design the three controllers simultaneously. 

1.1 Objectives 

The objective of this chapter is to investigate the potential of particle swarm optimization as 
a tool in designing UPFC-based stabilizers to improve power system transient stability. To 
estimate the controllability of each of the UPFC control signals on the electromechanical 
modes, singular value decomposition is employed. The problem of designing all the UPFC-
based stabilizers individually is formulated as an optimization problem. Particle swarm 
optimizer is utilized to search for the optimum stabilizer parameter settings that optimize a 
given objective function. Coordinated design of the different stabilizers is also carried out by 
finding the best parameter settings for more than one stabilizer at a given operating 
condition in a coordinated manner.  
To further illustrate the potential of PSO in handling complex design problems, robust 
controller design using simultaneous stabilization is also explored. That is, to ensure the 
robustness of the proposed control schemes, the design procedure is repeated considering a 
wide range of operating conditions simultaneously in the design stage. To assess the 
effectiveness of the proposed designs, eigenvalue analysis as well as nonlinear time-domain 
simulations are carried out.  
Two different objective functions will be considered. The first objective is eigenvalue-based 
while the other is time-domain-based. It will be shown that using a time-domain-based 
objective function has two advantages: 

• Nonlinear models of the power system can be used in the design stage without the need 
for linearization. 

• Coordinated designs of several controllers with different objectives can be achieved. 
(Abido et al, 2006b) 

This chapter aims to demonstrate the potential of PSO in: 

• Designing an individual UPFC-based stabilizer considering a single operating 
condition. 
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• Designing an individual UPFC-based stabilizer considering a wide range of operating 
conditions, i.e. robust control. 

• Designing multiple UPFC-based stabilizers in a coordinated manner considering a wide 
range of operating conditions. 

• Designing multiple UPFC-based stabilizers with different objectives in a coordinated 
manner using a time-domain objective function. 

1.2 Definitions 

At this point, it is worth emphasizing the meaning of the following terms: 
Individual and coordinated designs: Individual design refers to the process of designing a 
single controller in the absence of any other controllers. Coordinated design, however, refers 
to the process of designing more than one controller concurrently so that coordination 
among the different controllers is achieved. 
Single-point and robust tuning: Single-point tuning refers to the situation where a single 
operating condition is considered in the design stage. Robust tuning refers to the situation 
where multiple operating conditions are considered in the design stage to achieve robustness. 
Simultaneous stabilization: Simultaneous stabilization refers to the technique used to design 
a controller taking into account several operating conditions. This technique guarantees the 
stability of the system at all the operating conditions considered in the design stage. The 
way simultaneous stabilization is implemented in this work, for the case of the eigenvalue-
based objective function, is:  
1. Declare a vector J
2. Pick an operating condition. 
3. Linearize the system model around that operating condition.  
4. Find the system complex eigenvalues and stack them in the vector J.

5. Repeat the same process (steps 2-4) until all operating conditions are covered. That is, 
vector J will contain all complex eigenvalues corresponding to all the considered 
operating conditions. 

6. Search for the optimum controller’s parameters that will push all those complex 
eigenvalues of J furthest to the left of the complex s-plane. 

2. Problem Statement 

Figure 1 shows a SMIB system equipped with a UPFC. The UPFC consists of an excitation 
transformer (ET), a boosting transformer (BT), two three-phase GTO based voltage source 
converters (VSCs), and a DC link capacitors. The four input control signals to the UPFC are 
mE, mB, E, and B, where 

mE is the excitation amplitude modulation ratio, 
mB is the boosting amplitude modulation ratio, 

E is the excitation phase angle, and 

B is the boosting phase angle. 

2.1 Power System Nonlinear Model 

By applying Park’s transformation and neglecting the resistance and transients of the ET 
and BT transformers, the UPFC can be modeled as (Wang 1999a); Abido et al, 2006b): 
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Figure 1. SMIB power system equipped with UPFC 
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where vEt, iE, vBt, and iB are the excitation voltage, excitation current, boosting voltage, and 
boosting current, respectively; Cdc and vdc are the DC link capacitance and voltage, 
respectively.
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 where xE and xB are the ET and BT reactances, respectively; the reactances xqE, xdE, xBB, xd1-
xd7, and xq1- xq7 are as shown in (Abido et al, 2006b). 
The non-linear model of the SMIB system of Figure 1 is: 

δ ω ω
•

= −( 1)b  (10) 

ω ω
•

= − − −( ( 1))/m eP P D M  (11) 

•
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Pm and Pe are the input and output power, respectively; M and D the inertia constant and 
damping coefficient, respectively; b the synchronous speed;  and  the rotor angle and 
speed, respectively; Eq', E'fd, and v the generator internal, field and terminal voltages, 
respectively; T'do the open circuit field time constant; xd, x'd, and xq the d-axis reactance, d-
axis transient reactance, and q-axis reactance, respectively; KA and TA the exciter gain and 
time constant, respectively; Vref the reference voltage; and uPSS the PSS control signal. 

2.2 Power System Linearized Model 

The non-linear dynamic equations can be linearized around a given operating point to have 
the linear model given by: 

= +x Ax Bu  (14) 

where the state vector x, control vector u, and matrices A and B are 
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where K1 – K9, Kpu, Kqu, and Kvu are linearization constants. 

2.3 Structures of UPFC Controllers 

The UPFC damping controllers are of the structure shown in Figure 2, where u can be mE, E,
mB, or B.
In order to maintain the power balance between the series and shunt converters, a DC 
voltage regulator must be incorporated. The DC voltage is controlled through modulating 
the phase angle of the ET voltage, E. In addition, to dispatch the power flow among 
transmission lines, a power flow controller is included. The power flow is controlled 
through modulation the amplitude of the BT voltage, mB. Therefore, the E and mB damping 
controllers to be considered are those shown in Figure 3 and Figure 4, where the DC voltage 
regulator and the power flow controller are PI-controllers.

2.4 Objective Functions and Stabilizers’ Design 

To select the best stabilizer parameters that enhance most the power system transient 
performance, two objective functions are considered, one is eigenvalue-based and the other 
is time-domain-based. The eigenvalue-based objective function is: 

Je = max[ ] (19) 

where  is a vector of the real parts of all the complex eigenvalues (the damping factors) of 
the system at all loading conditions considered. 

Figure 2. UPFC with lead-lag damping controllers 

The objective function Je identifies the maximum value of the damping factors, i.e. the real 
parts of the eigenvalues, among all the system complex modes of all loading conditions 
considered in the design process. Hence, the goal is to Minimize Je to shift the poorly 
damped eigenvalues to the left in the s-plane improving the system response settling time 
and enhancing the system relative stability. It is worth emphasizing that by minimizing Je,
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all the operating conditions considered in the design stage are damped simultaneously.  It is 
noteworthy that Je is used to design the damping controllers only. That is, the UPFC DC 
voltage regulator and power flow controller must be designed beforehand. 
In order to be able to design the damping controller, DC voltage regulator, and power flow 
controller in a coordinated manner, a time-domain-based objective function is used. This 
objective function is called the integral of time multiplied by absolute error (ITAE) and is 
defined as 

α ω β γ= Δ + Δ + Δ2| | | | | |t e dcJ t dt t P dt t V dt  (20) 

where ω, Pe2, and Vdc are the deviations in system speed, real power flow of line 2, and 

DC voltage of the capacitor link, α, β, and γ are weighting factors. 

Figure 3. UPFC with lead-lag damping controller and DC voltage regulator 

Figure 4. UPFC with lead-lag damping controller and power flow controller 
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where i = 1, 2, 3, or 4, and Kj and Tji are the gain and time constants of the jth damping
controllers.  
The proposed approach employs PSO to search for the optimum parameter settings of the 
given controllers. 

3. Controllability Measure 

To measure the controllability of the EM mode by a given input (control signal), the singular 
value decomposition (SVD) is employed. The matrix B can be written as B = [b1 b2 b3 b4 b5]
where bi is a column vector corresponding to the ith input. 
The minimum singular value, min, of the matrix [ I-A bi] indicates the capability of the ith

input to control the mode associated with the eigenvalue . Actually, the higher the min,
the higher the controllability of this mode by the input considered. As such, the 
controllability of the EM mode can be examined with all inputs in order to identify the most 
effective one to control the mode. (Hamdan, 1999; Al-Awami et al, 2005) 

4. Particle Swarm Optimization 

Particle Swarm Optimization (PSO) was introduced first in (Kennedy & Eberhart, 1995).   
PSO approach features many advantages; it is simple, fast and can be coded in few lines.   
Also, its storage requirement is minimal.    
Moreover, this approach is advantageous over evolutionary and genetic algorithms in many 
ways.   First, PSO has memory.   That is, every particle remembers its best solution (personal 
best – pbest) as well as the group best solution (global best – gbest).   Another advantage of 
PSO is that the initial population of the PSO is maintained, and so there is no need for 
applying operators to the population, a process that is time- and memory-storage 
consuming. (Kennedy & Eberhart, 1995; Eberhart & Kennedy, 1995; Shi & Eberhart, 1998) 
PSO starts with a population of random solutions “particles” in a D-dimension space. The ith

particle is represented by Xi=(xi1, xi2, …, xiD). PSO consists of, at each step, changing the 
velocity of each particle toward its pbest and gbest according to equation (21). The velocity of 
particle i is represented as Vi=(vi1, vi2, …, viD). The position of the ith particle is then updated 
according to equation (22) (Kennedy & Eberhart, 1995; Eberhart & Kennedy, 1995; Shi & 
Eberhart, 1998).    

= + − + −1 1 2 2( ) ( )id id id id gd gdv wv c r p x c r p x  (21) 

= +id id idx x v  (22) 

where,        =idp pbest   and    =gdp gbest

An excellent simplified description of the PSO algorithm can be found in (Abido, 2001).  
Figure 5 shows a flow chart of the PSO algorithm that is adopted for this specific problem. It 
is described as follows: 
Step 1: Define the problem space and set the boundaries, i.e. the acceptable limits of the 
controller parameters. 
Step 2: Initialize an array of particles with random positions and their associated velocities 
inside the problem space. These particle positions represent the initial set of solutions. 



Application of PSO to design UPFC-based stabilizers 243

Figure 5. Particle Swarm Optimization algorithm

Step 3: Check if the current position is inside the problem space or not.   If not, adjust the 
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Step 7: If the current global minimum is better than gbest, then assign the current global 
minimum to gbest and assign the current coordinates to gbestx coordinates. 
Step 8: Change the velocities according to (21). 
Step 9: Move each particle to the new position according to (22) and return to Step 3. 
Step 10: Repeat Step 3- Step 9 until a stopping criteria is satisfied. 
To adopt the PSO algorithm so that simultaneous stabilization is achieved, i.e. several 
operating points are considered simultaneously, the fitness function evaluation process 
contains an inner loop, see Figure 6. That is, for every operating point i, the objective Ji is 

computed. Then, 1 2( , ,..., )max
op

NJ J JJ = , where Nop is the number of operating points 

considered, is evaluated. (Al-Awami et al, 2006a; Al-Awami et al, 2007; Abido et al, 2006b) 
The proposed PSO–based approach was implemented using a MATLAB library built by the 
authors. In all implementations, the inertia weight, w, is linearly decreasing from 0.9 to 0.4, 
c1 and c2 are selected as 2, and the maximum number of iterations is 400. 

5. Simulation Results 

5.1 Electromechanical Mode Controllability Measure 

Singular value decomposition (SVD) is employed to measure the controllability of the 
electromechanical mode (EM) from each of the four UPFC inputs: mE, E, mB, and B. For 
comparison, the power system stabilizer input, upss, is also included. The minimum singular 
value, min, is estimated over a wide range of operating conditions. For SVD analysis, Pe

ranges from 0.05 to 1.4 pu and Qe= [-0.4, 0, 0.4]. At each loading condition, the system model 
is linearized, the EM mode is identified, and the SVD-based controllability measure is 
implemented. (Al-Awami et al, 2007) 

Figure 6. Particle Swarm Optimization adopted for simultaneous stabilization  
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For comparison purposes, the minimum singular value for all inputs at Qe = - 0.4, 0.0 and 0.4 pu 
is shown in Figures 7, 8, and 9, respectively.  From these figures, the following can be noticed: 

• EM mode controllability via E is always higher than that of any other input. 

• The capabilities of E and mB to control the EM mode is higher than that of PSS. 

• The EM mode is more controllable with PSS than with either mE or B.

• All control signals except mB at Qe = 0 and E suffer from low controllability to EM mode 
at low loading conditions.  

5.2 Design and Analysis Using Eigenvalue-based Objective Function Je
In this section, stabilizer design is carried out using the eigenvalue-based objective function, 
Je, given by (19). Both single-point tuning and robust tuning using simultaneous 
stabilization are presented. A coordinated design of stabilizers is also demonstrated. The 
system used is that shown in Figure 1 and the system data used is given in the Appendix. 
(Al-Awami et al, 2007; Al-Awami et al, 2005; Al-Awami et al, 2006) 
To assess the effectiveness of the proposed controllers, four different loading conditions are 
considered for eigenvalue analysis, see Table 1. 
Moreover, the nominal and light loading conditions with 6-cycle three-phase fault 
disturbances are considered for nonlinear time-domain simulations. 

Loading Condition (Pe, Qe) pu 

Nominal 
Light 

Heavy
Leading Pf  

(1.0, 0.015) 
(0.3, 0.015) 
(1.1, 0.400) 
(0.7, -0.30) 

Table 1. Loading conditions 

5.2.1 Single-point Tuning Using Je
The PSS, mE-, E-, mB-, and B-based stabilizers are designed individually considering the 
nominal loading condition. PSO is used to search for the optimum parameter settings of 
each controller individually so as to minimize the maximum damping factor of all the 
system complex eigenvalues at nominal loading condition. The final settings of the 
optimized parameters for the proposed stabilizers and the minimum damping factors 
achieved are given in Table 2. 
The system electromechanical mode without and with the proposed stabilizers at the four 
operating points, nominal, light, heavy, and leading Pf, are given in Table 3. Table 3 clearly  
demonstrate the effectiveness of the E- and mB-based stabilizers in enhancing system 
stability. Again, It can be observed that, in most cases, the EM mode is either unstable or 
poorly damped when driven by mE- or B-based stabilizers. This conclusion is in line with 
those already drawn from SVD analysis. Because of their poor performance, the mE- and B-
based stabilizers will be excluded from the analysis hereafter. 
The system behaviour due to the utilization of the proposed controllers under transient 
conditions has been tested by applying a 6-cycle 3-phase fault at the infinite bus at t = 1s. The 
system response at nominal loading is shown in Figures 10 and 11, and the response at light 
loading is shown in Figures 12 and 13. From these figures, the following can be observed: 

• The three stabilizers designed with the proposed PSO-based technique effectively 
improve the stability of the power system under study. 
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• As expected from SVD analysis, the E-based stabilizer is robust to operating point 
variations. 

• Both UPFC-based stabilizer outperform the PSS in terms of their effect on voltage 
profile.  

Figure 7. Minimum singular value with all stabilizers at Qe = – 0.4 

Figure 8. Minimum singular value with all stabilizers at Qe=0.0

Figure 9. Minimum singular value with all stabilizers at Qe=0.4
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 PSS mE E mB B

K

T1

T2

T3

T4

29.26

2.92

1.19

0.13

0.01

-29.83

0.25

2.46

2.95

0.01

-100.00

5.00

1.08

0.06

1.44

100.00

0.11

0.01

2.18

2.35

-72.89

2.02

0.13

2.94

2.42

Je -5.44 -1.69 -4.63 -4.15 -1.39 

Table 2. Optimal parameter settings with Je, single-point tuning, individual design 

 No Control PSS mE E mB B

N

L

H

Lpf

1.50 ±  5.33i

1.39 ± 5.08i

1.41 ± 5.00i

1.45 ± 5.35i

-5.44 ± 0.18i

-1.10 ± 4.67i

-1.71 ± 2.00i

-5.70 ±16.79i

-1.69 ±  7.62i

0.90 ±  5.37i

0.08 ±  7.05i

-0.81 ± 6.34i

-4.62 ±  5.88i

-3.17 ± 5.88i

-1.81 ± 1.74i

-1.97 ± 5.48i

-4.15 ±  6.06i

-3.24 ± 6.88i

-4.62 ± 3.75i

-1.37 ± 6.07i

-1.39 ±  6.02i

1.30 ± 5.12i

-1.79 ± 5.48i

-0.26 ± 5.58i

Table 3. System electromechanical modes at all loading conditions with no parameter 
uncertainties with Je settings, single-point tuning, individual design (N: Nominal, L: Light, 
H: Heavy, Lpf: Leading power factor) 

5.2.2 Robust Tuning with Simultaneous Stabilization Using Je
In this situation, the objective is to design robust stabilizers to ensure their effectiveness over 
a wide range of operating conditions. Both individual and coordinated designs are 
considered. The design process takes into account several loading conditions including 
nominal, light, heavy, and leading Pf conditions. These conditions are considered without 
and with system parameter uncertainties, such as machine inertia, line impedance, and field 
time constant. The total number of 16 operating conditions is considered during the design 
process as given in Table 4. 

Figure 10. Speed response for 6-cycle fault with nominal loading, Je settings, single-point 
tuning, individual design 
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Figure 11. Terminal voltage response for 6-cycle fault with nominal loading, Je settings, 
single-point tuning, individual design 

Figure 12. Speed response for 6-cycle fault with light loading, Je settings, single-point tuning, 
individual design 

Figure 13. Terminal voltage response for 6-cycle fault with light loading, Je settings, single-
point tuning, individual design 
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Loading Condition (Pe, Qe) pu Parameter Uncertainties 

N

L

H

Lpf

(1.0, 0.015) 

(0.3, 0.100) 

(1.1, 0.100) 

(0.7, -0.30) 

No parameter uncertainties 

30% increase of line reactance XBV

25% decrease of machine inertia M

30% decrease of field time constant T'do

Table 4. Loading conditions and parameter uncertainties considered in the design stage 

Table 5 lists the open-loop eigenvalues associated with the electromechanical modes of all 
the 16 operating points considered in the robust design process, respectively. It is evident 
that all these modes are unstable. 
In the individual design, the PSS, E-, and mB--based stabilizers are designed individually 
considering all the operating points mentioned above. PSO is used to optimize the 
parameters of each controller that minimize the maximum damping factor of all the 
complex eigenvalues associated with the 16 operating points simultaneously. The final 
settings of the optimized parameters for the proposed stabilizers and the minimum 
damping factors achieved are given in Table 6.  
The system electromechanical mode without and with the proposed stabilizers at the four 
operating points, nominal, light, heavy, and leading Pf, are given in Table 7. Table 7 clearly 
demonstrate the effectiveness of the proposed stabilizers in enhancing system stability. 
Comparing Table 7 with Table 3, the effectiveness of robust tuning with simultaneous 
stabilization can be observed. For example, the maximum damping factor of the system 
electromechanical modes using single-point tuning for PSS is -1.10. However, the maximum 
damping factor using robust tuning with simultaneous stabilization is -2.58.  
The system behaviour due to the utilization of the proposed stabilizers under transient 
conditions has been tested by applying a 6-cycle 3-phase fault at the infinite bus at t = 1s. 
The system response at nominal loading is shown in Figures 14 and 15, and the response at 
light loading is shown in Figures 16 and 17. These simulation results prove the effectiveness 
of the proposed technique in designing robust stabilizers. It can be observed by comparing 
Figure 12 with Figure 16 that including the light loading condition in the robust tuning 
technique helped improve PSS response to transients in the system. In addition, it can be 
readily seed again that both UPFC-based stabilizer outperform the PSS in terms of their 
effect on voltage profile.  

No parameter 
uncertainties 

30% increase of 
line reactance X

25% decrease of 
machine inertia M

30% decrease of 
field time 

constant T'do

N

L

H

Lpf

1.50 ± 5.33i

1.39 ± 5.08i

1.41 ± 5.00i

1.45 ± 5.35i

1.41 ± 4.99i

1.32 ± 4.74i

1.25 ± 4.52i

1.40 ± 5.08i

1.80 ± 5.94i     

1.67 ± 5.66i

1.70 ± 5.57i

1.74 ± 5.97i

1.5034 ± 5.40i

1.3951 ± 5.09i

1.4038 ± 5.08i

1.4498 ± 5.39i

Table 5. Open-loop eigenvalues associated with the EM modes of all the 16 points 
considered in the robust design process 

Although the controllability measure analysis based on the singular value decomposition 
and the nonlinear time-domain simulation show the relative robustness of the E-based 
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stabilizer in damping the EM mode oscillation, there is still room for more improvement 
through coordination with the mB-based stabilizer. In the following, the coordinated design 
of E- and mB-based stabilizers is considered at all the 16 operating points described earlier. 
PSO is used to simultaneously search for the optimum parameter settings of both controllers 
that minimize the maximum damping factor of all the system complex eigenvalues at all the 
16 operating points concurrently. The final settings of the optimized parameters for the 
proposed stabilizers are given in Table 8. 

PSS E mB

K

T1

T2

T3

T4

95.58

4.34

0.01

0.07

3.51

-100.00

5.00

1.03

0.06

1.54

96.8

4.99

2.57

0.12

0.01

Je -1.95 -1.77 -3.54

Table 6. Optimal parameter settings with Je, multiple-point tuning, individual design 

 No Control PSS E mB

N

L

H

Lpf

1.50 ±  5.33i

1.39 ± 5.08i

1.41 ± 5.00i

1.45 ± 5.35i

-2.58 ± 17.5i

-3.91 ± 3.62i

-2.80 ± 17.0i

-2.72 ± 16.2i

-3.52 ± 5.32i

-2.93 ± 5.65i

-1.92 ± 1.76i

-1.82 ± 5.47i

-3.91± 12.7i

-3.71 ± 12.1i

-3.56± 13.1i

-3.53 ± 2.61i

Table 7. System electromechanical modes at all loading conditions with no parameter 
uncertainties with Je settings, robust tuning, individual design  

Figure 14. Speed response for 6-cycle fault with nominal loading, Je settings, robust tuning, 
individual design 

The system electromechanical modes without and with the proposed E- and mB-based 
controllers when applied individually and through coordinated design at the four loading 
conditions; nominal, light, heavy, and leading Pf, are given in Table 9. It is evident that the 
damping factor of the EM mode is greatly enhanced using the proposed coordinated 
stabilizers design.  
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Figure 15. Terminal voltage response for 6-cycle fault with nominal loading, Je settings, 
robust tuning, individual design 

Figure 16. Speed response for 6-cycle fault with light loading, Je settings, robust tuning, 
individual design 

Figure 17. Terminal voltage response for 6-cycle fault with light loading, Je settings, robust 
tuning, individual design 
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Moreover, the nonlinear time-domain simulations are carried out at the nominal and light 
loading conditions specified previously. The speed deviations, DC voltage, electrical power, 
and E and mB control signals for a 6-cycle three-phase fault at nominal loading conditions 
are shown in Figures 18-22, respectively. The simulation results indicate a clear 
enhancement of the proposed coordinated E-mB design over both individual designs. This 
enhancement can be easily recognized from the sound reduction in overshoot and settling 
time of the speed, electrical power and DC voltage responses as well as the reduction in the 
control efforts of the coordinated design as compared with the control efforts of the two 
individual designs. Similar conclusions can be drawn from light loading results. Due to 
limitation in space, only speed deviations at light loading conditions are shown, see Figure 
23. It is noteworthy that using coordination, the problem of low effectiveness of the mB-
based stabilizer individual designs at light loading level has been solved. 

 Individual Coordinated 

E mB E mB

K
T1

T2

T3

T4

-100.00
5.00
1.03
0.06
1.54

96.8
4.99
2.57
0.12
0.01

-66.18
1.53
1.61
4.42
3.95

100.00
5.00
3.09
5.00
3.32

Table 8. Optimal parameter settings with Je, multiple-point tuning, coordinated design 

Loading E mB E & mB

N
L
H
Lpf

-3.52 ± 5.32i
-2.93 ± 5.65i
-1.92 ± 1.76i
-1.82 ± 5.47i

-3.91 ± 12.72i
-3.71 ± 12.19i
-3.56 ± 13.12i
-3.53 ± 2.61i

-7.51 ± 10.64i
-5.81 ± 11.04i
-7.21 ± 11.65i
-5.86 ± 6.46i

Table 9  System eigenvalues with all the stabilizers at different loading conditions 

5.3 Coordinated Design of Damping Stabilizers and Internal Controllers Using Time-
domain-based Objective Function Jt
In this section, stabilizer design is carried out using the time-domain-based objective 
function, Jt, given by (20). Using Jt, the need for linearizing the nonlinear power system 
model is eliminated. That is, the nature of the objective function makes it suitable for both 
linear and nonlinear systems (Al-Awami et al, 2006b; Abido et al, 2006b). Moreover, it is 
possible to design several controllers with different objectives in a coordinated manner 
(Abido et al, 2006b). As will be shown, using the time-domain-based objective function, it is 
possible to design the UPFC damping controller, DC voltage regulator, and power flow 
controller, each of which has a different objective, in a coordinated manner. In this section, a 
coordinated design of UPFC damping stabilizers and internal controllers at nominal loading 
conditions is demonstrated. The effectiveness of the proposed controllers in damping low 
frequency oscillations is verified through eigenvalue analysis and non-linear time 
simulation. A comparison with a sequential design of the controllers under study is also 
included. The system used is that shown in Figure 1 and the system data used is given in the 
Appendix. (Abido et al, 2006b) 
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Figure 18. Speed response for 6-cycle fault with nominal loading, Jt settings, robust tuning, 
coordinated design 

Figure 19. UPFC DC voltage response for 6-cycle fault with nominal loading, Jt settings, 
robust tuning, coordinated design 

Figure 20. Electrical Power response for 6-cycle fault with nominal loading, Jt settings, 
robust tuning, coordinated design 
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Figure 21. E control signal response for 6-cycle fault with nominal loading, Jt settings, 
robust tuning, coordinated design 

Figure 22. mB control signal response for 6-cycle fault with nominal loading, Jt settings, 
robust tuning, coordinated design 

Figure 23. Speed signal response for 6-cycle fault with light loading, Jt settings, robust 
tuning, coordinated design 
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5.3.1 Sequential Controller Design 

In this stage, the three controllers are designed sequentially (Abido et al, 2006b). That is, (1) 
the DC voltage regulator (VR) is designed first, then (2) the power flow controller (PFC) is  
designed in the presence of the regulator, and finally (3) the damping controllers (DC) are 
designed, one at a time, in the presence of the other two controllers (VR and PFC). In each 
step, PSO has been used to find the optimum parameters of each controller that optimize the 
objective function defined by (20). A nominal loading condition has been considered in the 
design stage, see Table 10.  
Since each of the three controllers has a different function, the objective function weights 
and the disturbances used in the design stage are different. Table 11 shows the details of 
each step in the sequential design. Step (1) resulted in the following optimum parameters for 
the DC voltage regulator: kdp = – 4.56, kdi = – 19.98. Step (2) resulted in the following 
optimum parameters for the power flow controller: kpp = 0.0005, kpi = – 0.0047. The final 
settings of the optimized parameters for the proposed damping controllers are given in 
Table 12.  
To test the performance of these stabilizers, eigenvalue analysis and nonlinear time-domain 
simulations are carried out. The system data is given in the Appendix The system EM 
modes and their corresponding damping ratios with the PSS and UPFC-based controllers 
when tested at nominal loading are given in Table 13. Moreover, the speed deviations for a 
6-cycle three-phase fault at nominal loading conditions are shown in Figure 24. It is evident 
that the sequential designs give rise to poorly damped or even unstable responses.  

Loading Condition Pe (pu) Qe (pu) 

Nominal 
Light 

1.000
0.300

0.015
0.100

Table 10. Loading Conditions  

Weights of J
Controller 

α β γ
Disturbance 

VR

PFC 

DC

0

0

1

0

1

0

1

0

0

step change in VDCref

step change in Pe2ref

Impulse change in Pm

Table 11. Objective Function Weights and Disturbances Used in Steps (1)-(3) for the 
Sequential Design 

E mB PSS

K

T1

T2

T3

T4

83.94

1.18

1.01

1.50

0.57

92.31

0.40

0.63

1.49

0.72

71.37

0.27

0.69

0.34

0.05

J 36.21 139.88 0.29 

Table 12. The Optimal Parameter Settings of the Individual Controllers – Sequential Design 
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E mB PSS

EM

ζ
1.30 ± 3.10i

-0.39
1.79 ± 7.39i

-0.24
-0.80 ± 5.04i

0.16

Table 13. System Eigenvalues of the Individual Controllers at Nominal Loading – Sequential 
Design

Figure 24. Speed response for a 6-cycle fault with nominal loading – sequential design 

5.3.2 Coordinated Controller Design

In this stage, the three controllers are designed in a coordinated manner (Abido et al, 2006b). 
That is, PSO is used to concurrently find the optimum parameters of the VR, PFC, and DC 
minimizing the error objective function defined in (20). In order to end up with the optimum 
controllers, the objective function weights and the disturbances have to be selected carefully. 
Table 14 shows the objective function weights used in every case. In all cases, the following 
two disturbances have been used: 

1. An impulse change in Pm

2. A step change in Pe2ref.
The final settings of the optimized parameters for the proposed controllers are given in 
Table 15.  
To test the performance of the proposed stabilizers, eigenvalue analysis and nonlinear time-
domain simulations are carried out.  
The system EM modes and their corresponding damping ratios with the proposed PSS and 
UPFC-based controllers when tested at nominal and light loading conditions are given in 
Table 16. It is evident that system stability is greatly enhanced by the proposed coordinated 
designs.  

Weights of J
Damping Controller 

α β γ

E

mB

PSS

100

120

100

1

1

1

30

10

10

Table 14. Objective Function Weights and Disturbances Used in the Simultaneous Design 
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E mB PSS

K
T1

T2

T3

T4

kpp

kpi

kdp

kdi

100.00
1.28
0.76
0.05
0.57
0.51
-0.92
-7.69
-2.19

100.00
1.50
0.49
1.50
0.49

-13.21
-14.60
-20.00
-15.46

1.64
0.62
0.17
1.01
0.05

-19.93
-17.44
-13.77
-5.41

J 124.9 35.0 27.0 

Table 15. The Optimal Parameter Settings of the Individual Controllers – Simultaneous 
Design

E mB PSS

N
EM

ζ
-2.15 ± 6.97i

0.30
-2.37 ± 6.49i

0.34
-1.97 ± 5.25i

0.35

L
EM

ζ
-2.18 ± 6.59i

0.31
-2.44 ± 6.30i

0.36
-1.80 ± 8.72i

0.20

Table 16. System Eigenvalues of the Individual Controllers at Nominal (N) and Light (L) 
Loading – Simultaneous Design 

Moreover, the nonlinear time-domain simulations are carried out at nominal and light 
loading conditions. The deviations in speed, power flow of line 2, and DC voltage for a 6-
cycle three-phase fault at nominal loading condition are shown in Figures 25-27, 
respectively. From these figures, it is observed that: 

• The proposed coordinated designs give rise to superior responses. 

• After the fault, the three signals shown in Figures 25-27 have settled with no steady-
state error, excellent settling time, and reasonably good overshoot. 

• The E-based controller outperforms the mB-based controller and PSS, especially in 
terms of overshoot. 

Figure 25. Speed response for a 6-cycle fault with nominal loading – Coordinated design 
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Figure 26. Power flow response of line 2 for a 6-cycle fault with nominal loading – 
Coordinated design 

Figure 27. DC voltage response for a 6-cycle fault with nominal loading – Coordinated 
design 

Figure 28. Speed response for a 6-cycle fault with light loading – coordinated design 
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Figure 29. Power flow response of line 2 for a 6-cycle fault with light loading – simultaneous 
design 

Figure 30. DC voltage response for a 6-cycle fault with light loading – simultaneous design 

In addition, the deviations in torque angle, power flow of line 2, and DC voltage for a 6-
cycle three-phase fault at light loading conditions are shown in Figures 28-30, respectively. 
From these figures it can be concluded that the E-based controller is the most effective 
controller in terms of overshoot, settling time, and steady-state error. This shows that the 
performance of E-based controller is almost unaffected with the loading level. The 
performance of mB-based controller and PSS, however, is degraded at this loading condition. 

6. Conclusion 

In this work, the problem of enhancing the power system dynamic stability through 
individual and coordinated design of UPFC-based damping stabilizers has been 
investigated. The controllability of the electromechanical mode over a wide range of 
operating conditions by a given control input has been measured using a singular value 
decomposition-based approach. Such a study is very important as it laid the foundations of 
the requirements of the coordinated design problem. The stabilizer design problem has been 
formulated as an optimization problem with an eigenvalue-based as well as a time domain-
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based objective functions, which was then solved by particle swarm optimization. The use 
of the first objective function results in placing the electromechanical modes of oscillations 
furthest to the left of the complex s-plane, thus improving the damping of these modes. The 
use of the second objective function results in improving the time domain specifications of 
the system performance in terms of overshoot and settling time.  
Individual design as well as coordinated design of the proposed stabilizers with and 
without system parameter uncertainties have been investigated and discussed. It has been 
concluded that the eigenvalue-based objective function can be used to design efficient 
individual as well as coordinated stabilizers. However, the time-domain-based objective 
function has the advantage of designing several controllers with different objectives in a 
coordinated manner. This feature has been utilized to design the UPFC damping stabilizers 
and internal controllers in a coordinated manner.  
In all cases, the damping characteristics of the proposed control schemes to low frequency 
oscillations over a wide range of operating conditions have been evaluated using the 
eigenvalue analysis. The effectiveness of the proposed control schemes in enhancing the 
power system dynamic stability has been verified through comprehensive nonlinear time-
domain simulations for a variety of loading conditions. It was clearly shown that the 
coordinated design approach outperforms the individual designs.  

7. Appendix 

M = 8.0s; T’do = 5.044; D = 0.0; xd = 1.0; 
x’d = 0.3; xq = 0.6; XT = 0.6; 0.2PSSu ≤ pu;

KA = 50;  TA = 0.05; Tw = 5.0; 7.3fdE ≤ pu;

v = 1.05 pu; xtE  = 0.1; xBV = 0.6; Ks = 1.0;  
Ts = 0.05; xE = 0.1; xB = 0.1; Cdc = 3; 
Vdc=2;    

All resistances and reactances are in pu and time constants are in seconds. 
Notes:

1. All simulations using the eigenvalue-based objective function Je are carried out 
assuming line 1 open, i.e. xT = .

2. All simulations using the eigenvalue-based objective function Je are carried out 
assuming kdp = - 10 and kdi = 0. 
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sciences. This way of thinking led to emergence of many biologically inspired algorithms that have proven to

be efficient in handling the computationally complex problems with competence such as Genetic Algorithm

(GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), etc. Motivated by the capability of

the biologically inspired algorithms the present book on "Swarm Intelligence: Focus on Ant and Particle Swarm

Optimization" aims to present recent developments and applications concerning optimization with swarm

intelligence techniques. The papers selected for this book comprise a cross-section of topics that reflect a

variety of perspectives and disciplinary backgrounds. In addition to the introduction of new concepts of swarm

intelligence, this book also presented some selected representative case studies covering power plant

maintenance scheduling; geotechnical engineering; design and machining tolerances; layout problems;

manufacturing process plan; job-shop scheduling; structural design; environmental dispatching problems;

wireless communication; water distribution systems; multi-plant supply chain; fault diagnosis of airplane

engines; and process scheduling. I believe these 27 chapters presented in this book adequately reflect these

topics.
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