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Abstract

Skeletal muscle extracellular matrix (ECM), surrender of muscle fibers, the amount of
which is just <5%, appeals less attention in the field of skeletal muscle physiology. Thus,
at one time, the function of skeletal muscle ECM was arbitrarily considered as general
structural support that is typical in other tissues. However, an increasing number of recent
evidences  have  indicated  that  the  ECM plays  a  critical  role  in  muscle  fiber  force
transmission,  proliferation,  differentiation,  migration,  and  polarization  of  cells.
Alterations  of  molecules  within  the  ECM  are  involved  in  fibrosis,  muscle  aging,
regeneration, and myopathies. In this chapter, we review the composition and func‐
tions of ECM in skeletal muscle development.

Keywords: extracellular matrix, skeletal muscle, myogenesis, regeneration, fibrosis,
myopathies

1. Introduction

The process of skeletal muscle formation in vertebrates begins from myogenic progenitors
originating in the somites. However, somitic cells are the source of several cell lineages and only
a subset are committed to a muscle fate [1]. Those cells destined for a muscle fate then under‐
go the process of myogenesis, during which the progenitors become specified and deter‐
mined  as  myoblasts,  which  will  proliferate,  migrate,  and  fuse  to  one  another  to  form
multinucleated myofibers [2]. Thus, myogenesis seem to be critical in myoblast alignment and
fusion into multinucleated myotubes. And the formation of myotubes is central to skeletal
muscle development.
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Extracellular matrix (ECM) has been considered as a structural scaffold between cells. It has
been clear for many years that the ECM is a dynamic structure that influences cell behavior
through the interaction of ECM molecules with each other, interaction with growth factors,
and through cell– ECM signal transduction pathways [3]. Although the compositions of the
ECM differ between tissues, all ECMs share the common function of structural support, cell
adhesion, cell-to-cell communication, and differentiation [4]. Since the discovery that skeletal
muscle ECM participate in the conversion of myoblasts to myotubes [5], the field of skeletal
muscle physiology begins to focus on the relationship between muscle cells and ECM. In this
review, we will give more details about the compositions of skeletal muscle ECM and how
they affects muscle’s normal functions.

2. Composition of skeletal muscle ECM

Anatomic studies indicate that vertebrate skeletal muscle can be typically classified into three
layers: skeletal muscle fibers, enclosed by endomysium; muscle fasciculus, enclosed by
perimysium; and entire muscle enclosed by epimysium. Thus, skeletal muscle ECM can also
be organized into hierarchical structure: endomysial, perimysial, and epimysial connective
tissues. According to the structure topology studies, the ECM can be classified into two layers:
the interstitial matrix and the basement membrane. Interstitial matrix appears in the intercel‐
lular spaces, while basement membrane is a static structure on which cells rest. The interstitial
matrix is filled by fibrous proteins and fibroblasts which is responsible for producing collagen,
fibronectin, proteoglycans (PGs) and glycosidase, and matrix metalloproteinase (MMPs) [6–
8]; while basement membrane is composed of basal lamina and fibrillar reticular lamina [9].
Muscle ECM is made up of numerous macromolecules including collagens, glycoprotein and
matricellular proteins, PGs, and matrix remodeling enzymes [10].

In common with other tissues, the major protein of skeletal muscle ECM is collagen [11],
synthesized and excreted by fibroblasts, including types I, III, IV, VI, XI, XII, XIII, XIV, XV, and
XVIII [12–15]. According to their structure and functions, these types can be divided into
several groups. Fibrillar collagens: collagens that have the ability to self assemble into fibrils
including types I, III, XI. Network-forming collagens: collagens that have the ability to form a
network including types IV and VI. Association collagens: collagens that have the ability to
associate with fibrils including types XII and XIV. Transmembrane collagens including type
XIII. Multiplexin: multiple triple helix domains with interruptions including types XV and
XVIII [16]. Among these isoforms, the predominant distributors in ECM are types I and III as
type I appears in perimysium, whereas type III prefers to distribute between endomysium and
epimysium [17]. Types IV, VI, XV/XVIII, and XIII collagen are ingredients of the basement
membrane [12, 18, 19]. Types XII and XIV collagen are perimysial fibril-associated collagens
with interrupted triple helices [14].

Basement membrane, the specific region of ECM, is a reticular lamina knitted by collagen IV
and glycoproteins including laminins, fibronectins, and entactin/nidogen [20]. Specifically,
laminins bind to integrins and α-dystroglycan, while fibronectins bind to integrins and
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laminins. Laminins and collagen type IV are linked to each other by entactin/nidogen [21–25].
Besides, there are other functional matricellular proteins appear in skeletal muscle ECM
including tenascin-C, tenascin-Y, osteopontin, thrombospondin. Particularly, only during
muscle regeneration can osteopontin be detected. And Tenascin-C appear to be located to the
neuromuscular junction [26–31].

PG is heavily glycosylated proteins that is composed of a central core protein with one or more
covalently attached glycosaminoglycan (GAG) chain(s) [32, 33]. Typically, the GAG is a
polymer of disaccharide repeats including hyaluronan (HA), chondroitin sulfate (CS),
dermatan sulfate (DS), heparan sulfate (HS), and keratan sulfate (KS). Most of the PGs
appeared in skeletal muscle ECM belongs to the small leucine-rich proteoglycan (SLRP) family.
And the majority of SLRP family present in muscle ECM is decorin that is covalently attached
by CS/DS and biglycan [34]. Decorin can associate with fibrillar collagen, types I and III
collagens [3]. Moreover, heparan sulfate proteoglycans (HSPGs) including types XV, VIII
collagen, perlecan, and agrin are intrinsic constituents of basement membranes that are famous
for its interaction with growth factors [35, 36]. Matrilins are a novel family of oligomeric ECM
proteins. The matrilin family has four members, which are named matrilin 1, 2, 3, and 4 that
all share a structure made up of von willebrand factor A (VWA) domains [37, 38]. In skeletal
muscle ECM, matrilin-2 is widely distributed while other members are rarely present.
Matrilin-2 has two VWA domains that are connected by ten epidermal growth factor (EGF)-
like modules and is believed to be involved in the development and homeostasis of the ECM
network by participating in filamentous network forming [38–41].

Dynamic equilibrium of skeletal muscle ECM is maintained by degradation enzyme and cells
that can secrete ECM productions. It is well known that the majority of ECM components are
secreted the fibroblast. Besides, myogenic cells can also secrete collagens, MMP-2 and decorin
[42–44], and embryonic myoblasts secrete collagens [45]. There are at least six categories of
enzymes that can digest ECM compositions: prolinase, serine protease, cysteine protease,
asparagine proteinase, glycosidase, and matrix metalloproteinase (MMP). Since MMP can
widely degrade collages and PGs, it is regarded as the most important regulator in keeping
the integrity and homeostasis of ECM [43, 46–48].

Briefly, ECM is a complicated supermolecular network composed by collagen, glycoprotein,
and PGs. Each component contains different isoforms and form complicated complexes by
connecting with each other. Thus, it is hard to characterize skeletal muscle ECM constructors
fully, and for much more details about these components, new techniques are needed.

3. Role of ECM in skeletal muscle development

As a fundamental component of the microenvironment of muscle fibers, the functions of ECM
are traditionally considered as force transmission and structure integrity maintenance.
However, an increasing number of evidence demonstrating ECM also plays an important role
in myogenesis, cell proliferation, differentiation, migration, and muscle regeneration [49].

As mentioned above, providing structural and biochemical support to the surrounding cells
is a common function of ECM in all cells. However, the transmission of force from contractile
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elements in the muscle fiber to the resultant movement of a joint seems to be the primary
function of skeletal muscle ECM [50]. In order to achieve this function, ECM was linked to
cytoskeleton by integrins, dystroglycan, and PGs at the cell surface [51–53]. Specifically,
integrins can convert mechanical signals to adaptive responses in the cell [54–56] and dystro‐
phin–glycoprotein complex is critical in mechanotransduction of muscle and tendon tissue
[56]. In this way, adhesion complexes composed by ECM and transmembrane proteins
establish a mechanical continuum along which forces can be transmitted from inside of the
cell to outside, and vice versa.

One generally held idea is that many growth factors bind to their signaling receptors using
GAG chains attached to ECM and membrane proteins as cofactors. For example, the binding
of fibroblast growth factor (FGF) to FGF receptor depends on a HS chain binding at the same
time [57]. Fibronectin and vitronectin bind to hepatocyte growth factor (HGF) and form the
HGF receptor complexes to enhance cell migration [58]. And vascular endothelial growth
factor (VEGF) binds to fibronectin type III (FN3) domains to promote cell proliferation [59].
Together, these evidences suggested that ECM proteins bind and present growth factors as
organized solid-phase ligands. And considering growth factors including HGF, IGF, FGF, and
the TGF-β superfamily are involved in controlling the proliferation and differentiation of
myoblasts. Thus, it seems to be clear that ECM proteins can participate in skeletal muscle
development by connecting with growth factors.

In vitro studies have shown that collagen fibrils are necessary during orientation and align‐
ment of muscle fibers [60], and the inhibition of collagen synthesis suppresses the differentia‐
tion of myoblasts [49]. The functional importance of collagen network can be further proved
through studies of mutant knockout models. Defection of types IV, IX, XIII, XV collagen [61–
64] and mutations of collagen type VI will cause myopathy symptomatology [65]. Further‐
more, lacking collagen types IX or XI will lead to abnormal collagen fibrils [66, 67], while
lacking collagen type X chondrodysplasia will present [68].

PGs can also affect skeletal muscle development by modulating the activation of growth
factors. For instance, perlecan can activate basic FGF (bFGF) tyrosine kinase receptors, which
is a strong inhibitor of myogenic differentiation [69]. Syndecan-4 and glypican-1 participate in
muscle cell proliferation and differentiation by regulating FGF2 [70]. Furthermore, syndecan-1
and -3 can also modulate the biological activity of FGF-2 [71, 72].

Decorin obstructs muscle cell proliferation [73, 74], by inhibiting the activity of transforming
growth factor-β1 (TGF-β1). Myostatin, belonging to TGF-β superfamily, is a negative factor in
muscle development. And decorin can also enhance myoblasts differentiation by restraining
myostatin [75]. Moreover, fibromodulin, lumican, and biglycan can stimulate myostatin,
insulin-like growth factor (IGF), or HGF [76–78].

Laminin is another critical matrix component that affects myogenesis. Specifically, evidences
indicate that laminin can promote myoblast adhesion, proliferation, and myotube formation
by regulating myostatin activity [79–81]. And lacking laminin mice characterize growth
retardation and muscle dystrophy. On the other hand, laminin and collagen IV provide
binding sites for PGs that can regulate growth factors activity. However, fibronectin, another
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glycoprotein, prevents myoblast differentiation by selectively promoting adhesion of fibro‐
blasts [81, 82].

TGF-β1 signal pathway is reported to prevent myogenic differentiation partly by inhibiting
matrilin-2 expression. In return, the matrilin-2 promotes cell differentiation and regeneration
processes in myogenic by binding to other ECM proteins and integrins to regulate the TGF-
β/BMP-7/Smad and other signaling pathways [83].

Skeletal muscle is a regenerative tissues and such regeneration requires the activity of a
population of tissue-specific adult stem cells referred to as satellite cells. The satellite cell reside
in mature skeletal muscle and is normally quiescent; however, when injury occurs, these
muscle progenitor populations will proliferate, migrate, and fuse into new muscle fibers [84].
These special cells are wedged in basal lamina, of which the most abundant proteins are
collagen type IV and laminin-2. In vitro studies showed that when satellite cells will rapidly
enter cell cycle and proliferate after leaving basal lamina [85]. What is more, satellite cells
cultured on matrigel with collagen VI are more inclined to be quiescence compare to these
without collagen VI [86]. Thus, it seems that the basal lamina can prevent satellite cell prolif‐
eration and differentiation in the absence of damage [20]. When it comes to muscle regenera‐
tion, ECM components will positively participate in cell mitosis and differentiation as we
mentioned before. Syndecan-3, one member of HSPGs, can regulate homeostasis of the satellite
cell population and myofiber size by cooperating with Notch [87]. Together, these evidences
show that ECM compositions play an important role in keeping satellite cells quiescent under
normal circumstances and proliferation, differentiation during regeneration process.

4. ECM and myopathies

Abnormal accumulation of ECM is clinically termed “fibrosis”, which is characterized by
increased endomysium and perimysium in skeletal muscle. Skeletal muscle fibrosis can be
detected in nearly all muscular dystrophies, aging, and muscle injury [88–92]. However, it is
hard to precisely quantify skeletal muscle fibrosis as the components are complicated and
dynamically changed. Furthermore, in normal muscle, the amount of ECM area fraction is 5%,
but this value can dramatically increase in muscle fibrosis cases. This is because the muscle
fibers will become atrophic in diseased, such as severe atrophy, chronic inflammation, and
dystrophies or injured states even ECM structure remains the same [93]. Whether muscle
fibrosis is characterized by excessive production of ECM components remains unclear, but the
participation of these components in muscle fibrosis has been proved.

TGF-β has long been believed to be a central mediator of the fibrotic response as it can induces
fibroblasts to synthesize type-I collagen and fibronectin [94]. Moreover, TGF-β can induces the
expression of connective tissue growth factor (CTGF), a downstream mediator of the effects
of TGF-β on fibroblasts [95, 96], and the matrix protein fibronectin, a critical factor in enhancing
the expression of collagen type I [97].

In skeletal muscular dystrophies, the expressions of decorin and biglycan are increased [98,
99], which will cause alteration of TGF-β signaling and eventual fibrosis [100]. Besides,
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treatments using decorin and TGF-β inhibitors in injured muscle enhance regeneration and
prevent fibrosis [101–103].

Fibrin, a structural component of the ECM, accumulates in areas of degeneration and
inflammation in dystrophic muscle, whereas knockout fibrinogen was shown to reduce
fibrosis development in mdx mice. Fibrin can induce the expression of TGF-β to promote
fibrosis [104]. Fibrin can activate fibroblasts to synthesize and secrete collagens by binding to
αVβ3 integrin receptor [105]. Considering the synthesis and degradation of collagens is
controlled by MMPs, the importance of proteases in muscle fibrosis is absolutely obvious [106].

On the other hand, defects in or deficiencies of ECM molecules will cause myopathies and
inherited connective tissue disorders. As we mentioned before, ECM and cytoskeleton are
connected by transmembrane proteins named dystroglycan, sarcoglycan, integrin. Dystrogly‐
can has two subunits α and β, β-dystroglycan intracellularly binds to dystrophin and extrac‐
ellularly to α-dystroglycan, which is associated with the ECM proteins laminin α2, biglycan,
and perlecan [16, 107]. Defects in α-dystroglycan can lead to congenital muscular dystrophy
(MDC) and limb–girdle muscular dystrophy (LGMD) that can also be caused by deficiency of
laminin α2 [108]. Sarcoglycans can extracellularly binds to biglycan and is closely associated
with the dystroglycan complex [109–111]. Mutations in sarcoglycans result in autosomal-
recessive limb–girdle muscular dystrophies. In integrin knockouted mice, mild form of
muscular dystrophy appears [112]. Furthermore, clinical studies show that collagen VI
deficiency lead to Bethlem myopathy and Ullrich congenital muscular dystrophy [61, 113, 114].

Extracellular fat is another pathological response of skeletal muscle to disease or injury that is
accompanied by pathological diseases include Duchenne muscular dystrophy, obesity, type-2
diabetes, and aged muscle [115–117]. Recent studies have identified a PDGFRα+ progenitor
cell population that is responsible for intracellular fat deposition as the cell can differentiate
into adipose tissue under nonregenerating conditions [118]. Moreover, these cells were found
to distribute more in perimysium than endomysium [119].

5. MMPs and skeletal muscle

MMPs are famous for its irreplaceable role in degrading ECM compositions. In skeletal muscle,
MMP-2 and MMP-9 [43] can degrade type-IV collagen, fibronectin, PGs, and laminin, while
MMP-1 [48] and MMP-13 [120] degrade types I and III collagen. The activities of MMPs are
controlled by tissue inhibitors of matrix metalloproteinases (TIMPs). TIMP-1 binds to active
forms of MMPs forming noncovaent complexes, whereas TIMP-2 stabilizes the inactive form
of the enzyme, and thus inhibits the formation of active proteolyticenzyme [47, 48]. In normal
muscle tissues, the expression of MMPs are very low but increased in injured muscles mainly
because they are secreted by inflammatory cells [121]. Although studies rarely show the
functions of MMPs in skeletal muscle, they have been implicated in many pathological
processes including myogenesis, muscle growth, development, aging, and regeneration [122,
123]. MMP-2 knockout mice developed significantly less hypertrophy and ECM remodeling
in response to overload compared to a significant increase in MMP-2 activity and upregulation
of ECM components and remodeling enzymes in wild-type mice [124]. In vivo study shows
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that MMP-2 is essential for myoblast migration [125], while in vitro study indicates MMP-2 is
secreted at all stages from cell to myotubes [126]. Acute muscle ischemia results in remodeling
of the basal lamina which is accompanied by increased MMP gelatinases [127]. And increased
MMPs (MMP-2 and MMP-9) are also responsible to the degradation of ECM in skeletal muscle
atrophy [128]. Furthermore, satellite cells are reported to synthesize and secrete MMP-2 and
induce MMP-9 activity in human skeletal muscles [129]. During regeneration, MMP-2
activation appears go along with the formation of new myofibers, whereas MMP-9 expression
is related to the inflammatory response [43]. Expression changes of MMPs have been involved
in different myopathies. Distinctly increased MMP-9 appears in inflammatory myopathies
[130], MMP-7 upregulation is prominent in case of polymyositis, whereas MMP-2 is only
slightly elevated in inflamed muscle [131].

6. Conclusion

Skeletal muscle fibers are surrounded by ECM, and the ECM is an important part of the cellular
microenvironment consists of a complex mixture of structural and functional proteins
including glycoproteins, collagen, and PGs. These molecules interact with each other and form
a super molecular network in order to maintain skeletal muscle integrity and participate in the
development of skeletal muscle. Additionally, skeletal muscle fibrosis, characterized by
abnormal accumulation of ECM, is an obvious clinical characteristic of myopathies such as
age-related sarcopenia, muscular dystrophy, and Duchenne muscular dystrophy. Genetic
diseases, dysregulation of TGF-β signaling and physical activity can cause defects in or
deficiencies of molecules within the skeletal muscle ECM.
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