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Abstract

Among all kinds of green earth and renewable energy projects underway, semiconduc‐
tor photocatalysis has received wide interest because it provides an easy way to directly
utilize the energy of either natural sunlight or artificial indoor illumination. TiO2, the most
widely used photocatalyst, due to its wide band gap, can only be activated under UV
irradiation, and thus, the development of novel semiconductor photocatalysts makes a
significant advancement in photocatalytic functional materials. One of the effective
strategies  to  overcome  this  shortcoming  is  photosensitizing  these  wide  band  gap
semiconductors with narrow band gap semiconductors which have proper energy levels.
This method can not only improve the photocatalytic activity, due to increasing visible-
light-harvesting efficiency, but also can decrease the recombination of the charge carriers,
because the formation of n–n or n–p heterojunctions between the combined semiconduc‐
tors can induce internal electric fields between them. In this regard, this review presents
some unitary, binary, and ternary non-TiO2 photocatalysts used for the degradation for
organic pollutants and for water splitting.

Keywords: semiconductor photocatalysis, non-TiO2 photocatalysts, composite photo‐
catalysts, pollutant degradation, photoactivity under UV–Vis or visible light

1. Introduction

Among the various Advanced Oxidation Process methods, semiconductor-mediated photoca‐
talysis has been accorded a great significance in recent times due to its potential to mineralize
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a wide range of  organic  pollutants  at  ambient  temperature and pressures into harmless
substances, to produce hydrogen in photocatalytic water-splitting process, and to apply in dye-
sensitized solar cells [1–3].

From the simple oxides (e.g., TiO2, ZnO, WO3, Fe2O3), anatase–TiO2 is a dominant structure
employed for sunlight applications mostly due to its charge carrier handling properties.
However, the TiO2-based photocatalyst cannot effectively absorb visible solar light due to a
rather large band gap (>3.2 eV), rendering it of little practical significance for solar energy
harvesting. Additionally, pure TiO2 used during photocatalytic processes has few disadvan‐
tages, such as low quantum yield due to a high recombination rate between photogenerated
electron–hole pairs, or the need of high-energy photons to activate the semiconductors in the
UV region.

Qu et al. [4] pointed that designing of an efficient and stable photocatalysts must follow several
critical requirements: (i) Semiconductor must have band gap large enough to provide energetic
electrons and smaller enough to allow for efficient absorption overlap with the solar spectrum
(1.23 eV ≪ Eg ≪ 3.0 eV, typically >2.0 eV); (ii) there must be a mechanism to efficiently drive
charge separation and the transportation process; and (iii) there must be a mechanism to
efficiently drive charge separation and the transportation process.

Because, in most cases, single semiconductors are unlikely to satisfy all these requirements,
one of the important issues in the photocatalysis fields is to exploit new combining of some
semiconductors to form composites which can improve the efficiency of a photocatalytic
system. This fact provides an excellent opportunity to continue developing new materials with
higher photocatalytic activity and capable to use the sunlight as a green energy source.

The current review is focused on non-TiO2 materials with particular emphasis placed on
application of these photocatalysts in heterogeneous photocatalysis and insight into explana‐
tion the photocatalytic mechanism of the composite photocatalyst. This review is organized
into four sections: (1) single-semiconductor photocatalysts for pollutant degradation, (2)
single-semiconductor photocatalysts for water splitting, (3) semiconductor composite photo‐
catalysts, and (4) conclusions and perspectives.

2. Single-semiconductor photocatalysts for pollutant degradation

In general, fundamental principles of photodegradation mechanism was based on oxidation
and reduction reactions of induced charged carriers. Ultimately, in both reactions from water
oxidation and dissociation of H2O2, hydroxyl radical could be produced, which are highly
powerful and nonselective oxidizing agent. During the past few years, numerous efforts have
been made for the discovery of new visible-light-responding semiconductors. Among the
created groups of photocatalysts, the biggest part in the literature belongs to ferrates, halides,
oxides, tungstates, sulfides, and vanadates. All the groups utilized recently in heterogeneous
photocatalysis are listed in Table 1, while band gap values for selected groups of photocatalyst
are shown in Figure 1.
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Recently, metal sulfides received much attention because their promising properties. CdS is
one of the intensively investigated semiconductors owing to the narrow band gap (2.1–2.5 eV)
in comparison with TiO2 which may extend the utilization of visible light. For instance,
Eskandari et al. [99] synthesized CdS by simple chemical precipitation method using mercap‐
toethylamine hydrochloride (MEA) as a capping agent. CdS showed higher photocatalytic
activity than P25-TiO2 in the photodegradation of methylene blue under blue LED and solar
light irradiation. Reusability of the photocatalyst was checked five times; during the first three
times, the activity decreased gradually, but in the last two cycles, they observed very sharp
drop in photoactivity. Chen et al. [100] also observed higher activity of CdS in comparison
with P25-TiO2, after 60 min of UV irradiation nearly 95% of rhodamine B (RhB) was degraded.
The band gap (2.24 eV) was calculated according to the UV–Vis absorption spectra [100].
Another very often mentioned material is ZnS. Chen et al. used ZnS rods as photocatalysts for
the degradation of methyl orange (95% of MO was degraded after 20 min) and 2,4-dinitro‐
phenol (54% of 2,4-NP was degraded after 20 min) under UV irradiation [105]. ZnS with a band
gap equals to 3.84 eV exceeded activity of commercial P25-TiO2. Chen et al. also proposed
photocatalytic degradation mechanism of OM and 2,4-NP over ZnS under UV light. For this
reason, EDTA-Na2 and potassium iodide (KI) were introduced as the scavengers for h+,
isopropanol, and ethanol were used for •OH, and 1,4-benzoquinone for •O2

−, respectively. They
confirmed that the photocatalytic process proceeds analogously like for TiO2, and thus, h+ and
•O2

− are the crucial in the degradation pathway under UV irradiation [105]. Chen et al. [115]
applied simple wet chemical method for obtaining Bi2S3. The photocatalytic activity was
measured by methyl orange degradation in the presence of UV light. After 4 h of irradiation,
97% of methyl orange was decolorized in the presence of Bi2S3 photocatalyst with specific
surface area about 20 m2 g−1 [115]. Luo et al. [116] performed Bi2S3 nanorods which exhibited
superior activity than P25-TiO2 in rhodamine B degradation under visible light (λ > 420 nm).

Another extensively examined groups are wide band gap oxides such as ZnO, WO3, Nb2O5,
and Bi2O3. Nanosized ZnO photocatalysts were synthesized by Liu et al. Obtained samples
exhibited high activity in methyl orange degradation under UV light. After 30 min irradiation,
the efficiency was nearly 100%. ZnO was proved to be very stable during 4 cycles. In many
publications, some of the photocatalysts are perceived as a narrow band gap semiconductor
such as Bi2O3, CeO2, Fe2O3, and WO3. This dispersion in the values of the band gap is inter alia
due to different preparation method. Zheng et al. [166] synthesized WO3 nanorod arrays by
hydrothermal method, and the results showed that the pH value of the precursor solutions
plays crucial role in the formation of the as-prepared structures, which leads to different band
gap values. Ameen et al. [50] synthesized ZnO flower-like photocatalysts (Eg = 3.24 eV) which
showed very high efficiency for crystal violet degradation under UV light irradiation. After
80 min of irradiation, about 96% was degraded. Mahmodiet al. [51] investigated the photoca‐
talytic activity of ZnO on stainless steel support. The activity measurements were concerned
with photoreduction of carbon dioxide in the presence of H2, H2O, and CH4. It was noticed
that TiO2 has better photoreduction activity while the highest result for ZnO was achieved in
the presence of CH4 [51]. Li et al. [52] tested ZnO nanoparticles in the degradation reaction of
methyl orange under UV light illumination. ZnO exhibited excellent degradation efficiency of
methyl orange reached 97.84% after 30 min. Moreover, ZnO showed no significant loss of
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photocatalytic activity during four repeated cycles [52]. Bismuth oxide with optical band gap
value of 2.7 eV could be utilized as a visible-light-driven photocatalyst [79]. Iyyapushpam et
al. prepared Bi2O3 by sol–gel method. Samples were calcined at two different temperatures
(600 and 700°C), and the highest degradation efficiency was attained by semiconductor with
higher crystallinity and specific surface area (sample calcined at 600 C). The degradation
percentage of methyl orange was found to be 76% [79].

Figure 1. Band gap values for selected groups of photocatalyst collected based on the literature review.

Tungsten-based materials with a low band gap seemed to be promising candidate for the
degradation of organic compound under visible light. For instance, Phattharanit et al. [128]
obtained multi-layered flower-like Bi2WO6 by hydrothermal method and estimated activity of
the powder in the degradation of rhodamine B under visible light. The results shown that after
360 min of irradiation, 88% of rhodamine B was degraded, which could be related to photo‐
sensibilization of semiconductor by dyes. In comparison, Saison et al. [129] synthesized
Bi2WO6 with the band gap equals 2.9 eV and measured photocatalytic efficiency for Bi2WO6

and TiO2. They observed relatively low activity of Bi2WO6 during rhodamine B and stearic acid
degradation process under visible light. After calculation of the band diagram, Saison et al.
explained that bismuth tungstate has inadequate band positions resulted in rapid recombina‐
tion of excited pairs because electrons are not able to react with dioxygen.

Among the vanadates, BiVO4 paid much attention because of the stability, nontoxicity, and
relative high activity under the visible irradiation. In the most of the published papers, the
photocatalytic activity of BiVO4 was measured on model reaction of rhodamine B degrada‐
tion [145–152]. Lin et al. [145] synthesized BiVO4 (Eg = 2.36 eV) by simple hydrothermal
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method. After 180 min of visible light illumination, 100% of rhodamine B (λ >420 nm) was
degraded. The stability was evaluated during four cycles, which indicated no significant
decrease in photocatalytic activity [145]. Tan et al. [148] synthesized BiVO4 powders by
hydrothermal method. By the manipulation of reaction condition, different hierarchical
structures such as octahedron, decahedron, spherical, and polyhedral were obtained [148].
The influence of pH values on the crystalline phase and morphology of the BiVO4 pow‐
ders was examined. The highest visible light photocatalytic activity for the rhodamine B
degradation was achieved by sample prepared at pH 7.81 with specific surface area equals
5.15 m2 g−1. Lin et al. [145] also observed high activity of fishbone-like BiVO4 for RhB
degradation. The band gap around 2.36 eV was estimated from UV–Vis spectra. After 180
min irradiation, 100% of dye was removed.

Recently, encountered research about silver halides provides information about excellent
activity, however, suffers by very low stability of AgX, which radically limited potentially
reuse and application [38]. On the other hand, majority of the bismuth oxyhalides described
in literature are perceived as a wide band gap semiconductor with high stability. Guan et al.
[21] compared properties of two different kinds BiOCl nanoplates and ultrathin nanosheets.
They indicated that these powders varied in band gap value, for BiOCl nanoplates Eg reached
3.25 eV while for nanosheets 3 eV. The higher photocatalytic activity for the degradation of
RhB was observed in the case of ultrathin BiOCl. This phenomenon was explained by the
creation of different defects which are formed after reducing the thickness of the nanosheets
to the atomic scale [21]. Xiao et al. [35] prepared Bi7O9I3 microsheets using simple microwave
heating route. The degradation of bisphenol A induced via visible light irradiation was
investigated. After 60 min of irradiation, almost 100% of bisphenol A was degraded. The
reaction rate constant of the optimal sample was over 16 times greater than that of TiO2-P25.
Bi7O9I3 microsheets revealed high mineralization capacity of bisphenol A and good stability
during the recycle tests, implying a promising forecast in the industrial application of the
photodegradation of organic pollutants. The mechanism analyses conducted by LC–MS
suggested that the degradation of bisphenol A under visible light irradiation occurred
predominantly by direct holes, and the main detected intermediates were hydroquinone and
methyl 4-hydroxybenzoate [35].

Ferrates can be specified as a semiconductor with narrow band gap. There are several
synthesis methods described in the literature used for ferrate preparation such as hydro‐
thermal [11, 13, 14, 17], microwave hydrothermal [15], microwave [16], solid-state reactions
[12], and solution combustion method [18]. These photocatalysts possess superior proper‐
ties, and therefore, they seemed to allow their use in environmental purification. Due to
magnetic properties of ferrates, they can be easily separated from reaction suspension.
Shahid et al. reported high photocatalytic activity of MgFe2O4 in the degradation of methyl‐
ene blue under UV (350 nm) and visible light (λ > 420 nm). In comparison with ferrate,
TiO2-P25 exhibited poor photocatalytic activity under visible light; after 50 min of irradia‐
tion, only 10% of dye was decomposed, whereas in the presence of MgFe2O4 even 95% of
MB was degraded [12]. Tang et al. indicated that LaFeO3 with band gap equals 2.36 eV and
strong visible light absorption exhibited much higher activity in the MB degradation than
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TiO2-P25 [16]. Li et al. [11] have examined activity of GdFeO3 in the degradation of 4-
chlorophenol under visible light irradiation (λ > 420 nm). After 5 h of illumination, only 20%
of 4-chlorophenol was removed by TiO2-P25, while almost 85% was degraded over GdFeO3.
That obtained GdFeO3 microspheres have characterized by broad absorption in visible light
region and quite well photocatalytic stability after fifth run [11].

According to the literature data, many other groups of semiconductors are also used in
heterogeneous photocatalysis, such as tantalates, titanates, molybdates, niobates, selenides,
phosphates, stannate, carbonate, germanate, and cobaltites. Most of tantalate- and titanate-
based materials can be activated only via UV light due to generally wide band gap, which
can reached even 5.05 eV [167–169]. Nevertheless, it has been reported that these photoca‐
talysts exhibited high activity which may be attributed to crystal structure of perovskites.
Liang et al. [47–49]. Microcrystalline AgNbO3 was synthesized by Wu et al. [47] by sol–gel
method. The photocatalyst has proved to be stable for all recycle experiments. However,
AgNbO3 has shown high activity only for the decomposition of methylene blue and
rhodamine B, and for 4-chlorophenol and methyl orange, there was no obvious drop of
contaminants concentration. Bismuth niobate prepared by a facile hydrothermal route
showed very good visible-light-induced performance for the removal of nitrogen monox‐
ide [48]. It has been shown that the activity results of bismuth niobate are better than that
for C-doped TiO2, InVO4, and BiOBr nanoplates [48]. Promising properties have been noticed
also for molybdate-containing materials such as Bi2MoO6 with interesting layered perov‐
skite structure [40]. Sun et al. [40] tested Bi2MoO6 with nanoplate like morphology pre‐
pared via hydrothermal method. The photocatalytic performance was evaluated by the
degradation of rhodamine B and phenol under environment-friendly blue light emitting
diode (λ = 465 nm) irradiation. They have found that after 30 min of illumination, almost
100% of rhodamine B was degraded, while in the presence of TiO2-P25, only several percent
of dye was removed even with addition of H2O2. Phenol was chosen as another model
substance in order to exclude the influence of photosensitization. They have examined
synergistic effect of photocatalysts and H2O2 for the phenol degradation. After 2 h of
irradiation, the amount of phenol decreased up to 8% in over Bi2MoO6. They have conclud‐
ed that Bi2MoO6 with narrow energy gap is able to respond directly to blue light emitting
diode in contrast to TiO2-P25 [40]. Bi et al. [41] have investigated the stability of Bi2MoO6,
and during five-cycle experiments, they have not observed any obvious decrease in photo‐
catalytic activity for rhodamine B degradation. Hipolito et al. [46] prepared bismuth
molybdate photocatalysts using co-precipitation method. The activity of so obtained
Bi2Mo3O12 was further investigated for the removal of nitric oxide under UVA light irradia‐
tion. In comparison with Bi2MoO6 with a band gap equals 2.44 eV, the Bi2Mo3O12 (Eg = 2.7 eV)
turned out to be more active reaching around 30% more of NO removal. This dispersion of
results could be attributed to higher surface area of Bi2Mo3O12 and its abundant adsorption
sites for NO adsorption [46].

Summarizing, it is possible to find several photocatalysts which provide better light-harvesting
performance than TiO2, and it is assumed that they can be good replacement of TiO2. Unfortu‐
nately, there is still lack of precise research related to possibility of reuse the powders. It is
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needed to search new materials which will be environmental friendly, resistant to photocor‐
rosion, and will not dissolve in water; otherwise, toxic metals and compounds such as Cd, Pb,
or semiconductor sulfides will be useless for practical application. Most of the current research
based on degradation of dyes, which can act as an organic semiconductor and participate in
charge transition into CB under visible light irradiation. Therefore, the use of dye-photocata‐
lysts system should be taken into consideration in the process of sewage treatment. Also, it
should be noticed that the examination of activity in the degradation compounds such as 4-
chlorophenol under UV light must be consider due to sensitivity to photolysis. Furthermore,
results from the photolysis should be always placed with actual photocatalytic activity in order
to make a reasonably comparison. There is still need for the standardization of photocatalytic
measurements by utilizing the identical test equipment, photocatalysts dosage, kind and
concentration of model compound, and other experiments condition, which allow making
proper worldwide comparison of photocatalytic results.

Group Semiconductor, Eg (eV) Model pollutant Irradiation range Ref.

Antimonate GaSbO4 (3.7) Acetone, salicylic acid UV [5]

AgSbO3 (2.6) Rhodamine B Vis [6]

Carbonate Ag2CO3 (2.46) Rhodamine B, methyl
orange, methylene blue

Vis [7]

(BiO)2CO3 (3.09–2.67) Rhodamine B UV [8]

Cobaltites LaCoO3 (n/a) Methyl orange Vis [9]

La1–xBaxCoO3 (2.80–2.21) Formalachite green Vis [10]

Ferrate GdFeO3 (1.97–2.18) 4-Chlorophenol Vis [11]

MgFe2O4 (n/a) Methylene blue Vis [12]

BiFeO3 (2.1) Rhodamine B Vis [13]

Bi2Fe4O9 (1.94–2.06) Methyl orange Vis [14, 15]

LaFeO3 (2.36) Methylene blue Vis [16]

ZnFe2O4 (1.9) Rhodamine B Vis [17, 18]

Germanate CeGeO4 (3.1) Terephthalic acid UV [19]

ZnGa2O4 (4.5) Ethylbenzene, methyl orange,
rhodamine B, methylene
blue benzene, toluene

UV-Vis [20]

Halides BiOCl (2.87–3.2) 17 Alpha-ethinyl estradiol
(EE2) and estriol, methyl
orange, methylene green,
rhodamine B, tetracycline
hydrochloride

UV, Vis [21–29]

BiOBr (2.45–2.9) Methyl orange, rhodamine
B, tetracycline hydrochloride

UV, Vis [22–24, 28, 30, 31]
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Group Semiconductor, Eg (eV) Model pollutant Irradiation range Ref.

BiOI (1.43–2.03) Methyl orange, rhodamine
B, tetracycline hydrochloride,
17 alpha-ethinyl estradiol
(EE2), estriol

UV, Vis [22–24, 32–34]

Bi7O9I3 (2.23–2.30) Bisphenol-A Vis [35]

Bi5O7I (1.73) Rhodamine B Vis [36]

HgI2 (2.10) Rhodamine B Vis [37]

AgBr (2.58–2.68) Methylene blue, methyl orange Vis [38, 39]

Molybdate Bi2MoO6 (2.51–2.73) Phenol, rhodamine B Vis [40, 41]

BiMoO6 (2.64) Phenol, ibuprofen, rhodamine B Vis [42, 43]

PbMoO4 (3.1–3.2) Methyl orange, rhodamine B ,
indigo carmine, orange G

UV, Vis [44, 45]

Bi2Mo3O12 (2.73–2.70) Nitric oxide UV [46]

Niobate AgNbO3 (2.9) 4-Chlorophenol, methyl blue,
methyl orange, rhodamine B

Vis [47]

Bi3NbO7 (2.89) Nitrogen monoxide Vis [48]

SnNb2O6 (2.3–2.6) Rhodamine B, methyl
orange, malachite green

UV, Vis [49]

Oxides ZnO (2–3.37) 4-Chlorophenol, alizarin
red S, CO2 reduction,
hexane, methylene
blue, reactive
brilliant red K-2BP,
methyl orange,
rhodamine B,
thionine, estrone,
H2O2 generation,
yellow 15

UV, UV-Vis [50–70]

ZrO2 (n/a) Direct Red 81
victoria Blue

UV-Vis [71]

WO3 (2.4–3.21) CO2, CR, methyl
blue, methylene blue,
Orange II, rhodamine B

UV, Vis [72–77]

In2O3 (3.6) Perfluorooctanoic acid UV [70]

a-Fe2O3 (2.33) Methylene blue Vis [78]

Bi2O3 (1.3–2.73) Cr(VI], aldehydes,
congo red, rhodamine
B, methyl orange

UV, Vis [79–82]
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Group Semiconductor, Eg (eV) Model pollutant Irradiation range Ref.

CeO2 (2.81–3.2) 4-Nitrophenol, indigo
carmine, AO7, methylene
blue, rhodamine B

UV, Vis [83–86]

Cu2O (n/a) Methyl orange Vis [87]

Ga2O3 (n/a) Methyl orange,
rhodamine B

UV [88]

Nb2O5 Rhodamine B UV, Vis [89]

Phosphates Ag3PO4 (2.35–2.47) Bisphenol A,
rhodamine B

Vis [90–92]

BiPO4 (3.35–4.4) Benzene, rhodamine B UV [93, 94]

selenides ZnSe (2.9) Methylene blue Vis [95]

Stannates CdSnO3 (4.4) Benzene UV [96]

Zn2SnO4 (n/a) Reactive Red 141 Sunlight [97]

ZnSnO3 (3.34) Methylene blue UV-Vis [98]

Sulfides CdS (2.1–2.5) Methyl orange,
methylene blue,
methylene blue,
rhodamine B

UV, Vis [99–104]

ZnS (3.37–3.97) 2, 4-Dinitrophenol,
dinitrobenzene
methylene
green, rhodamine
B, methyl orange

UV [105–108]

SnS2 (2.1–2.25) Methyl orange
phenol, rhodamine B

Vis [109–111]

In2S3 (1.89–2.0) DNA purine bases,
formic acid,
hydrogenation
of 4-nitroaniline

UV, Vis [112, 113]

SnS (1.6–1.3) Methylene blue Vis [114]

Bi2S3 (n/a) Methyl orange
rhodamine B

UV, Vis [115, 116]

Ce2S3 (2.1) Nitrobenzene reduction UV, Vis [117]

ZnIn2S4 (2.72–1.92) Benzyl alcohol Vis [118]

CdIn2S4(n/a) Inactivation of
Escherichia coli

Vis [119]

ZnIn2S4 (n/a) Methyl orange Vis [120]
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Group Semiconductor, Eg (eV) Model pollutant Irradiation range Ref.

CdIn2S4(n/a) Methyl orange Vis [121]

Tantalates Sr0.25H1.5

Ta2O6 H2O (4.9)
Benzene oxidation UV [122]

β-BiTaO4 (2.45–2.65) Methylene blue Vis [123]

Ba4Ta2O9 (5.05) Methyl orange UV [124]

Titanate K2Ti6O13 (3.06–3.48) Methyl orange UV [125]

FeTiO3 (2.54–2.58) Rhodamine B Vis [126]

BaTiO3 (n/a) Rhodamine B Vis [127]

Tungstates Bi2WO6 (2.48–3.4) 2,4-Dichlorophenoxyacetic
acid, methylene
blue, rhodamine
6G, rhodamine
B, tetracycline

UV, Vis [128–139]

FeWO4 (2.17 eV) Methyl orange UV-Vis [140]

SrWO4 (n/a) Rhodamine B,
rhodamine 6G

UV [141]

Na4W10O32 (n/a) Coumarin propan-2-ol UV [142]

NiWO4 (n/a) Methylene blue Vis [143]

PbWO4 (3.54) Acid orange II UV [144]

Vanadates BiVO4 (1.85–3.3) Blue, ciprofloxacin,
methylene phenol,
rhodamine B

UV, Vis [145–158]

AgVO3 (2.11–2.25) Bisphenol A,
rhodamine B

Vis [159]

Ag3VO4 (1.95) Rhodamine B Vis [160]

InVO4 (2.4–3.0) Ciprofloxacin,
methylene
blue, rhodamine B

Vis [161–163]

FeVO4 (2.02–2.55) Phenol UV-Vis [164]

Cu3V2O8 (2.11–2.05) Methyl orange Vis [165]

Table 1. Selected representative photocatalysts and model substances used for activity measurements.

3. Single-semiconductor photocatalysts for water splitting

Photocatalytic water splitting, which is a process of decomposition of water into hydrogen and
oxygen, is a promising method for obtaining clean and renewable energy. When light with an
energy equivalent or greater than band gap of the semiconductor photocatalysts is irradiated,
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the electrons in the valence band are excited into the conduction band. The excitation of
electrons creates holes in the valence band. These photogenerated electrons and holes trigger
the redox reaction [170]. There are three main steps of photocatalytic water splitting: (1) The
photocatalyst absorbs photon energy and electron–hole pairs are generated in the bulk; (2) the
photo-excited charge carriers should separate and migrate to the surface with minimal
recombination; and finally, (3) the free charge carriers triggers the oxidation and reduction
reaction respectively at the surface, that is, the electron reduces H2O to H2 and the hole oxidized
H2O to O2, respectively.

The production of hydrogen using a particulate photocatalyst has been examined by various
research groups since 1972 and since that time scientists are trying to obtain the most efficient
combination of semiconductors which will give payable level of hydrogen recovery [171]. In
recent years, many various types of homogeneous and heterogeneous photocatalysts have
been developed and intensively analyzed. Summary of studied heterogeneous photocatalysts
used for water-splitting process are presented in Table 2. In fact, heterogeneous photocatalysis
received lately more attention because of wider application scale. There is no single photoca‐
talyst which can meet all the requirements to proceed efficient water-splitting process for H2

production. The success is not only in careful selection of semiconductor photocatalysts but
also their optimal surface structures. Additionally, a suitable band gap, matching energy band
for H2 and O2 evolution, high quantum efficiency and stability are also important. The main
task of scientists is to develop the composition of semiconductor materials, which will carry
out suitable optical absorption, reduction, and oxidation abilities and increase efficiency in
solar energy conversion [197]. It is thought that co-catalyst components such as Pt, Ni, Rh, and
Ru can promote H2 evolution because of their lower over potentials, while they are also active
for the oxygen reduction reaction (ORR), which corresponds to the reverse of the water-
splitting reaction [36]. Positive water splitting was also observed in the presence of co-catalysts
such as Pt, Pd, and Rh or a metal oxide such as NiO, RuO2, and Cr2O3, which are loaded onto
the photocatalyst surface to produce active sites for water reduction reaction [171]. Following
the assumption of water-splitting process for hydrogen production, we chose these examples,
which demonstrate the best perspectives.

Following the idea of development of better photocatalysts for water splitting in visible light
spectrum, we chose the most promising examples by comparing energy band gaps and
hydrogen production rate, not considering TiO2 photocatalysts. The apparent quantum yield
(AQY) for the production of hydrogen and oxygen gas can be estimated by the following
Equation (1):

( ) number of reacted electronesAQY % 100
number of incident photons

= ´ (1)

Liao et al. [180] conducted water-splitting process using cobalt oxide particles. The
photocatalysts were obtained from nonactive CoO micropowders with two distinct methods
—femtosecond laser ablation and mechanical ball-milling. Water-splitting experiments were
performed in air-tight flasks with CoO nanoparticles suspended in neutral water. Generation
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of hydrogen and oxygen was measured by a gas chromatograph (GC) equipped with a thermal
conduction detector (Gow-Mac). High photocatalytic activity of the nanoparticles was
analyzed by electrochemical impedance spectroscopy (SRS residue gas analyser, RGA200),
which comes from a significant shift in the position of the band edge of the material with regard
to water redox potential. The conduction band of CoO micropowder is located below the
hydrogen—evolution potential what leads to inactivity in water splitting process. A mass
spectrometer was also used to identify isotope gas species from water splitting. Received CoO
nanoparticles can decompose pure water under visible light irradiation without any co-
catalysts or sacrificial reagents with the hydrogen production assessed for 71,429 μmol/h g−1

[180].

Twinned Cd0.5Zn0.5S anisotropic nanocrystals (called nanorods) with controllable aspect ratios
and a high proportion of long-range ordered twin planes were investigated by Liu et al. [195].
Between the planes in the crystal, the zinc–blende (ZB) and wurtzite (WZ) were generated.
The TEM image revealed that nanorods consisted of a high density of stacking faults with
parallel distribution, which were coherent twin boundaries. During the process between the
segments of ZB and WZ, the type II staggered band was created which in particular dimension
cause the generation of myriad homojunctions. This formation leads to photocatalytic hydro‐
gen production with a remarkable QE of 62% and 25,800 μmol/h g−1. Different combinations
of the same elements were investigated by Li et al. [194], where the solid solution of Zn1−xCdxS
was analyzed. Obtained structures characterized with a small crystallite size and precise band
structure. The photocatalytic hydrogen production experiment was performed at ambient
temperature and atmospheric pressure, using 350 W xenon arc lamp through a UV cut-off filter
(λ > 400 nm). Study revealed that sample containing Zn0.5Cd0.5S is the most promising in terms
of hydrogen production with the rate of 7420 μmol/h g−1, which is much more than amounts
produced with the pure CdS or ZnS samples.

Group Semiconductor,
Eg (eV)

Irradiation
range(nm)

H2 production
rate (μmol/h g−1)

O2 production
rate (μmol/h g−1)

Apparent
quantum
yield (%)

Ref.

Sulfides CdS (2.4) λ>420 25 n/a n/a [172]

CaIn2S4(1.84–168) λ>420 2.64 n/a n/a [173]

Sb2TiS5 (1.87) UV 10.4 n/a n/a [174]

(CuAg)0.15In0.3

Zn1.4S2 (2.72–1.92)
λ>420 1750 n/a 12.8 [175]

ZnIn2.3S4+y

(4.894)
λ>420 363 n/a n/a [176]

Cu3SnS4(1.38) λ>420 1100 n/a 3.9 [177]

Mn0.24Cd0.76

S(2.28)
λ>420 10,900 n/a 9.5 [178]

Oxides Ta2O5 (3.9) λ>420 7100 n/a n/a [179]
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Group Semiconductor,
Eg (eV)

Irradiation
range(nm)

H2 production
rate (μmol/h g−1)

O2 production
rate (μmol/h g−1)

Apparent
quantum
yield (%)

Ref.

CoO (2.6) λ>420 71,429 35 714 5 [180]

Fe2O3 (2.3) λ>420 n/a 3 n/a [181]

Vanadates InVO4(3.0) λ>420 14.16 n/a n/a [182]

Ag2Sr(VO3)4(2.4) λ>420 n/a 8,1 n/a [183]

Sr(VO3)2 (2.7) λ>420 n/a 12 n/a [183]

Halides LaOF (4.7) UV 27 n/a n/a [184]

Tantalites NaTaO3 (4.1) UV 3106 n/a n/a [185]

Cd2Ta2O7 (3.35) UV 173 86.3 n/a [186]

Ferrates GaFeO3

(2.02-2.18)
λ>395 289 n/a n/a [187]

LaFeO3 (2.07) λ>420 3315 n/a n/a [188]

ZnRh2O4(1.2-2.2) UV, Vis 500 n/a 27 [189]

NiFe2O4 (1.7) λ>420 1.97 n/a 0.07 [190]

Ta3N5 (2.08) λ>420 410 n/a – [191]

ZnIn2S4(2.59-2.83) λ>420 220.45 n/a 13.16 [192]

Bi0.5Na0.5TiO3

(2.82-2.92)
UV-Vis 324.5 n/a 3 [193]

Zn0.5Cd0.5S
(2.45)

λ>420 7420 n/a 9.6 [194]

Cd0.5Zn0.5S
(2.62)

λ>420 25,800 n/a 62 [195]

K0.5La0.5Bi2
Ta2O9/ K0.5La0.5

Bi2Nb2O9

(3.22-3.9)

UV 5.9–531 3.4 – 182 n/a [196]

Table 2. Non-TiO2 single photocatalysts for water splitting in UV/visible light spectrum.

Solid solutions of Mn1−xCdxS were fabricated by hydrothermal route in low temperature
(130°C) by Liu et al. [178]. The H2 evolution from water was performed under 300 W Xe lamp.
0.025 g of powder photocatalyst was dispersed in a pyrex cell with aqueous solution of 0.1 M
Na2S and 0.5 M Na2SO3. The characterization of samples revealed that with growing value of
x, the rate of hydrogen increases. The highest value of H2 production presented Mn0.24Cd0.76S
which in fact exceeds rate for pure CdS. The procedure was continued, and after third turn,
the amount of H2 decreased, what can be the result of consumption of the sacrificial agents—
Na2S and Na2SO3. The examined solution shows good photocatalytic stability and anti-
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photocorrosion capability during water-splitting reaction what can be a promising discovery
for the future. There are some examples of semiconductors which generate smaller amount of
hydrogen than compounds described above; however, it still have potential for further studies
in water-splitting area. ZnRh2O4with rate of hydrogen production of 500 μmol/h g−1 was
studied by Takimoto et al. [189]. The measurements were conducted under monochromatic
light and full Xe light lamp in wide range of wavelengths (400 < λ ≤ 770 nm) with an intensity
of 10 μW/cm2. The amount of hydrogen produced is much less than in case of other presented
semiconductors, but it is extraordinary because of a high efficiency yield (12%) at a wavelength
of λ = 770 nm. The study revealed that this photocatalyst should be deeper investigated mainly
because of possible usage in a wide range of light spectrum both visible and infrared light what
is quite unique [189].

The overall compilation of already conducted experiments shows that there is a big potential
for hydrogen production in photocatalytic water splitting in visible light range. The values of
energy band gap indicate that non-TiO2 single photocatalysts should be good candidates used
in hydrogen production process without light limitations. The most promising results were
obtained for different combinations of Cd composite what can lead to further studies in this
particular area. Unfortunately, it is clear that single photocatalysts are not as efficient as should
be expected. This is the reason why attention of researchers has been moved to more promising
topics as the binary and ternary compounds or doping processes. Moreover, the demonstration
of the simultaneous evolution of H2 and O2 is extremely difficult in the two-step water-splitting
system because backward reactions easily proceed over each photocatalyst.

4. Binary composite photocatalysts

There are number of different types of photocatalytic materials, which are inefficient or not
active during the light-mediated process of pollutants degradation. Various methods are used
to improve the oxidation ability of photocatalysts in purification systems, such as doping with
nonmetal ions, rare-earth metals, noble metals and transition metal ions, surface modification,
dye sensitizing [198]. Among them, enhancing the photocatalytic activity can be achieved by
coupling single semiconductors in composites.

Synthesis of new 3D semiconductor composites creates the opportunity to use materials with
lower energy activation as a photocatalysts. Furthermore, application of the composite
structures can lead to photocatalysts activated by low powered and low cost irradiation
sources (such as LEDs or black fluorescent UV lamps) and can be used both in air and water
purification systems. Therefore, it is important to develop convenient, low-cost, and environ‐
mental-friendly methods to synthesize high-quality photocatalysts.

Nowadays promising idea based on combining wide band gap semiconductors with narrow
band gap materials. The narrow band gap photocatalyst can be excited in visible light region.
The photogenerated holes and electrons can be transported to the wide band gap semicon‐
ductor and photo-excited with lower energy transfer. Furthermore, the nanocomposites
materials exhibit improved quantum efficiency. Therefore, composites with narrower band
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gap semiconductors have been developed to extend the photo-absorption range, facilitate the
separation of the photo-induced carriers, and extend the activity into the visible light region.
A composite of two photocatalysts with surface contact formed a heterojunction which limits
the electron transfer. There are three main processes which may lead to consumption of the
photo-induced electrons: (i) volume recombination (recombination with produced holes inside
the photocatalyst), (ii) surface recombination (reaction with spices on surface of the particle,
and (iii) the H2 production as a result of reaction with protons.

4.1. Photo-excitation mechanisms of binary composites

In general, there are three different mechanisms of binary composite photo-excitation under
ultraviolet and visible light. Most of the current research is focused on efficiently suppression
of the recombination processes. Summary of studied composites and possible mechanisms of
photo-excitation (named mechanism A, B, and C) are presented in Table 3. During the
irradiation, both photocatalysts can be excited with photogenerated charge carriers depending
on the band gap energy (Eg). Usually under visible light irradiation, the electrons produced in
narrow band gap semiconductor (named semiconductor A) with less positive conduction band
(CB) can be transferred quickly to the more positive CB of the photocatalyst with the wider
band gap (semiconductor B). In the other hand, the photo-excited holes from semiconductor
B could be shifted easily into the valence band (VB) of the semiconductor A. The each position
of conduction and valence band in photocatalysts according to the mechanism A is presented
in Figure 2a. The Ag3PO4/ZnFe2O4 composite was synthesized by Chen et al. via a solvothermal-
liquid phase deposition method [230]. The photocatalytic activity test was performed as a 2,4-
dichlorophenol degradation under visible light irradiation. During the process using Ag3PO4/
ZnFe2O4 with mass ratio 9:1, 95% of the pollutant was decomposed after 70 min of irradiation
(two and three times higher than result for single photocatalyst). It was found that the
conduction and valence band of ZnFe2O4 is more negative than CB and VB of Ag3PO4. Structure
formation of Ag3PO4/ZnFe2O4 material resulted in expanding the spectral responsive range of
Ag3PO4. High-effective photocatalyst under Vis light was obtained by combining the single
BiVO4 with FeVO4 [222]. The heterojunction composite photocatalysts was stable in photoca‐
talytic removal of metronidazole in aqueous phase. Moreover, enhanced oxidation properties
resulted from the fast transfer of photogenerated charge carriers. The optimal weight ratio in
Ag3PO4/BiOBr composite was equal to 0.7. The process of energy bias generation at hetero‐
junction plays significant role in electron and hole pair transfer. The rate of removal rhodamine
B under visible light was maintained at 95% after 6 recycling processes [224].

In view of the internal field between semiconductors, in some composites used for photode‐
gradation under visible light, only electron transfer exists without hole migration in the valence
band (the process is named mechanism B, see Figure 2b) [199, 213, 214, 218, 219]. Xu et al. [213]
synthesized CdS/MoS2 composite active under visible irradiation range. The favorable
heterojunction between CdS and MoS2 extended lifetime of the charge carriers [213, 214]. The
same type of mechanism was observed for CdS/SnO2 photocatalyst where electrons shift from
cadmium sulfides conduction band to the thin oxides band [199]. Consequently, the charge
carriers in junction between semiconductors were effectively separated via one-step process.
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All types of described mechanisms (mechanism A, B, and C) are caused by the presence of
heterojunctions among different semiconductors that enhance the separation of the photo‐
generated electron–hole pairs, hindering their recombination.

Whereas, under the ultraviolet light illumination, both semiconductors simultaneously or the
semiconductor with wider band gap in the composite could be excited. The mechanism of
photo-excitation in binary composites was investigated by Hamrouni et al. Two photocata‐
lysts: ZnO/ZnWO4 and ZnO/SnO2 prepared by a facile sol–gel method were examined in the
photocatalytic decomposition of 4-nitrophenol under ultraviolet light range [200]. It was found
that the local heterojunction between the photocatalysts pair facilitates the separation of the
photogenerated e−/h+ pairs (mechanism C, see Figure 2c). A photocatalysts with enhanced
electron–hole separation and excellent photocatalytic performance was investigated by Duo
et al. [215, 217]. The methyl orange solution and Rhodamine B were used as a model substance
in degradation under simulated sunlight. Both composites BiPO4/BiOCl and BiPO4/BiOBr
exhibited significantly higher activity in dyes elimination than single semiconductors [216,
217].

Figure 2. Possible mechanism of semiconductors composite photo-excitation: (a) Mechanism A under UV–Vis light, (b)
Mechanism B under Vis light, and (c) Mechanism C under Vis light.

Semiconductor A Semiconductor B Irradiation range Excitation mechanism Ref.

CdS (2.17) SnO2 (3.3; 3.55) Vis Mechanism C [199]

ZnO2 (3.2) UV Mechanism A [200]

ZnO2 (3.2) ZnWO4 (3.14) UV Mechanism A [200]

ZnO2 (3.2) Bi2O3 (2.8; 2.38; 2.75; 2.89) UV Mechanism A [201]

NaBiO3 (2.36) Vis Mechanism B [202, 203]
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Semiconductor A Semiconductor B Irradiation range Excitation mechanism Ref.

BaTiO3 (3.18) UV Mechanism A [204]

NaBi(MoO4)2 (3.08) Vis Mechanism B [205]

Bi5O7l (3.13) Vis Mechanism B [206, 207]

Bi2O3 (2.9) Bi2WO6 (2.8; 3.1; 2.97) Vis Mechanism B [208]

ZnWO4 (3.75) UV-Vis Mechanism A [209]

CeO2 (2.58) UV-Vis Mechanism A [210]

Bi12TiO20 (2.57 UV-Vis Mechanism A [211]

CdS (2.22) Bi2MoO6 (2.8) Vis Mechanism B [212]

CdS (2.25) MoS2 (1.75) Vis Mechanism C [213, 214]

BiOBr (2.62) BiPO4 (4.16; 3.83; 4.11) Sunlight, Vis Mechanism A, Mechanism C [215, 216]

BiOCl (3.12) Sunlight Mechanism A [217]

Bi2MoO6 (2.53) Vis Mechanism C [218]

Bi2MoO6 (2.71) BiIO4 (3.02) Vis Mechanism C [219]

Cu2O (2.5) BiVO4 (2.0; 2.47) Vis Mechanism B [220, 221]

FeVO4 (2.05) Vis Mechanism B [222]

BiVO4 (2.49) Bi4V2O11 (2.22) Vis Mechanism B [223]

Ag3PO4 (2.36) BiOBr (2.74; 3.13; 2.76; 2.81) Vis Mechanism B [224]

BiOI (2.45; 1.74; 1.72) Vis Mechanism B [225–227]

BiOI (1.90) WO3 (2.60) Vis Mechanism B [228]

WO3 (2.68) H2WO4 (2.45) Vis Mechanism B [229]

ZnFe2O4 (1.88) Ag3PO4 (2.44) Vis Mechanism B [230]

Ag3VO4 (2.05) Co3O4 (2.07) Vis Mechanism B [231]

ZnFe2O4 (1.90) Vis Mechanism B [232]

Ag4P2O7 (2.63) AgBr (2.6) Vis Mechanism B [233]

AgBr (2.64) ZnO (3.0; 3.22; 3.3; 3.37; 3.26) Vis Mechanism C [234–237]

Ag2S (1.0) Sunlight Mechanism A [238]

AgI (−) Vis Mechanism C [239]

AgI (2.51) Ag2CO3 (2.30) Vis Mechanism B [240]

SmCrO3 (2.7) Sm2Ti2O7 (3.2) Sunlight Mechanism A [241]

In2O3 (2.90) α-Fe2O3 (2.03) Vis Mechanism B [242]

Table 3. Summary of studied composites and possible mechanisms of photo-excitation.
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4.2. Ternary composite photocatalysts

Based on the literature data, it could be expected that ternary semiconductor composites
provide an opportunity for multi(two)-photons excitation of photoactive materials with lower
energy photons and utilization of heterojunction to drive electronic processes in the desired
direction. Consequently, the selective photo-excitation of localized electronic states to gain
better selectivity should be achieved [243].

The composite of KTaO3–CdS–MoS2 with different molar ratio was synthesized by Bajorowicz
et al. [244] via hydrothermal method. The micromaterials were prepared under strictly
controlled conditions of temperature and pressure depending on the material type.
Hydrothermal method does not require a calcination step and is easy to carry out technological
conditions. Various structures of the photocatalysts such as cubic, hexagonal, nanoleaf, and
microspheres were obtained. Calcination at 500°C for 3 h and hydro/solvothermal mixed
solutions method were used to combine single semiconductors. The highest phenol
photodegradation (80% under UV–Vis and 42% under Vis light) was observed for the KTaO3–
CdS–MoS2 at the 10:5:1 molar ratio. In the toluene oxidation process under ultraviolet light,
the powder exhibit very good stability and efficiency during four measurement cycles (activity
reached about 50%) [244]. A comparatively to SnO2/ZnO/ZnWO4 composites in this case
probably a two-photon excitation occurs under UV–Vis irradiation [200, 244]. The KTaO3/CdS/
WO3, KTaO3/CdS/MoS2, KTaO3/CdSe/SrTiO3 composites preparing by various route with
different molar ratio were compare in photocatalytic degradation of gaseous toluene under
ultraviolet light. The results suggest that the structure, morphology, and photoactivity depend
on the type and molar content of additional semiconductors as well as on the preparation
method. Samples prepared by one-pot hydrothermal synthesis had higher surface area.
Unfortunately, the morphology was not well developed and crystal structures of each single
semiconductor were not formed. In four subsequent cycles, the photoactivity using the
KTaO3/CdS/MoS2 (10:5:1) ranged 60% after 60 min of irradiation [245]. Hong et al. found that
highly enhanced photocatalytic activity is due to synergistic effects of heterostructured
ZnS/CuS/CdS material which can improve light absorption and charge carriers flow. The
photocatalyst was stable under applied conditions (under solar irradiation 1 kW/m2, AM 1.5
G) in H2-production from a water splitting. The optimum ratio of loading the Cu equal to
0.81 wt% and Cd equal to 14.7 wt% was selected. The authors believed that the solar light
causes electron excitation and separation in CdS (because of relatively narrow band gap), and
consequently, efficient separated carriers flow to CuS conduction band during the holes from
the ZnS were transferred to the valence band of CdS. Additionally, enhancing the H2

production may result from the interfacial charge transfer between valence band of ZnS and
CuS and partial reduction of CuS to Cu2S [246]. It was observed that for some composites (i.e.,
ZnO/AgBr/Ag2CrO4), two semiconductors are excited and act as electron donors for wider
photocatalyst. Reduction processes of the pollutant occur in the conduction band of the
electron acceptor, whereas the electron donors will responsible for the oxidation reactions on
valence band [247]. On the other hand, other mechanism, where ZnO plays a role of electron
donor, was observed for SnO2/ZnO/ZnWO4 composite [200]. The SnO2/ZnO/ZnWO4 composite
was examined under UV irradiation in 4-nitrophenol degradation process. Generated
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electrons in the conduction band of ZnO are shifted to those of SnO2 and ZnWO4; meanwhile,
holes may be transferred from the valence band of SnO2 and ZnWO4 to that of ZnO. It was
established that the elimination efficiency of a pollutant depends on adsorption level on the
photocatalytic surface and ability to react with the photogenerated charge carriers. The amount
of each semiconductors in the photocatalytic material determined the photocatalytic activity
[200]. Enhanced photocatalytic activity in rhodamine B degradation process was observed for
In2O3/AgBr/Bi2WO6 ternary composite (see structure on Figure 3a) [248]. Photocatalyst has
exhibited higher activity under UV, visible, and simultaneous sunlight in comparison to single
Bi2WO6 semiconductor, binary AgBr/Bi2WO6 material and pure P25. Proposed mechanism
based on electrons transfer from In2O3 with the widest band gap to AgBr and consequently
transition e− from AgBr to Bi2WO6, which is semiconductor with the least negative CB in
composite. The generated O2*− radicals in the conduction band plays a role in oxidation
processes of pollutant. The produced holes (h+) in the VB of semiconductors can oxidize the
water molecules on the photocatalyst surface and leads to produce hydroxyl radicals (*OH)
which are able to degrade dyes into CO2 and H2O (see Figure 3b.) [248]. A various materials
are tested in different model photocatalytic reactions and under various conditions. Therefore,
it is intricate to summarize and compare properties and photoactivity of new 3D structures.
Some already investigated combinations of ternary composites are presented in Table 4.

Semiconductor

I, Eg (eV)

Semiconductor

II, Eg (eV)

Semiconductor

III, Eg (eV)

Irradiation range Ref.

ZnO (3.2) AgBr (2.6) Ag2CrO4 (1.8) Vis [247]

ZnO (−) Ag3VO4 (2.1) Fe3O4 (−) Vis [249]

ZnO (3.2) AgI (2.8) Fe3O4 (0.1) Vis [250]

ZnO Ag1 Ag2CrO4 Vis [251]

SnO2 (3.2) ZnO (3.55) ZnWO4 (3.14) UV [200]

CdS (2.25) PbS (1.2–1.5) ZnO (3.36) Vis [252]

ZnS CuS CdS Sunlight [246]

Fe3O4 (−) AgBr (−) ZnO (3.2) Vis [253]

Fe3O4 (0.1) SiO2 (8.9) Bi2MoO6 (2.71) Vis [254]

BiOBr (2.72) SiO2 (−) Fe3O4 (−) UV-Vis, Vis [255]

Bi2S3 Bi2O3 Bi2O2CO3 Vis [256]

In2O3 (3.75) AgBr (2.6) Bi2WO6 (2.76) UV, Vis, sunlight [248]

Ag2O Ag3VO4 Ag4V2O7 Vis [257]

PdS (−) CdS (−) NiS (−) Vis [258]

Table 4. Compilation of ternary composites and photo-excitation irradiation range.
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Figure 3. Ternary In2O3/AgBr/Bi2WO6 photocatalyst (a) Scanning Electron Microscope image, (b) Possible mechanism
of photo-excitation in composite structure. Adapted with permission from Ref. [248].

Concluding the mechanism of photo-excitation of ternary composites, it is still not well
understood. According to Serpone theory, photo-excitation of components A and B would be
very efficient because the two nanomaterials are activated through their fundamental absorp‐
tion band [243, 259]. There are some interactions which probably occur, while the irradiation
excites photocatalyst. The process could be sophisticated and need further investigation.

5. Conclusions

Semiconductor photocatalysis affords a potential solution to the problems of energy shortages
and environmental pollution. However, photo-efficiency of the most single semiconductors is
limited because of the rapid electron–hole recombination. Therefore, the development of
efficient visible-light-driven photocatalysts is a major challenge in this field. The photocatalytic
activity of semiconductor photocatalysts depends on its physical and chemical properties, and
additionally, depends on the recombination of photo-excited electrons and holes occurs at
crystal lattice defects. Fortunately, the coupling of two or three semiconductors with different
band gap values could improve the stability, necessary for practical applications and could
extend the energy range used for excitation. Especially, the fabrication of a p–n junction is
believed to be the most effective because of the existence of an internal electric field. Moreover,
the hybrid photocatalyst can benefit from the synergistic effects such as enhanced light-
harvesting ability, efficient photogenerated electron–hole separation, and improved photo‐
stability, and thus, the photoactivity is remarkably improved. However, it should be noted
that the reason for the improvement of composite photocatalyst is not only due to the effects
described above but also due to enhancement of surface acidity or alkalinity and the surface
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population of OH groups, which can promote the adsorption of reaction substrates and
facilities the generation of hydroxyl radicals (•OH), respectively.

Based on the literature data, it can be concluded that most of the photocatalytic investigations
are focused on dyes oxidation (such as methyl orange, rhodamine B, methylene blue, and
malachite green) as the model degradation process of pollutants. According to Ohtani
recommendation, the use of organic dyes as a model compound for photocatalytic decompo‐
sition reaction, enabling the feasible determination of photocatalytic activity, especially using
spectrophotometric analysis [260]. He indicated at least three reasons for its inappropriateness.
One is that the dye molecules absorb photons, especially in the visible light range, and thus
photo-excited electrons may be injected into photocatalyst particles as has been suggested by
the action spectrum similar to the absorption spectrum of the dye. Another reason is that the
absolute molar amount of dye contained in the reaction system can be much smaller than that
of a solid photocatalyst. Since the photo-absorption coefficient of dyes is generally large, for
example, >105 mol−1 L cm−1, the concentration can be 10−5 mol L−1 and the absolute molar amount
can be 10−6 mol when the volume of the solution is 100 mL. The third reason is that the
mechanism of dye degradation is so complicated that efficiency of the photocatalytic reaction
cannot be measured.

In this point of view, there are still few works investigated on the photoactivity of composite
photocatalyst shows enhanced photocatalytic activity for water splitting and organic degra‐
dation except dyes. Additionally, to better understand the properties of semiconductor
composites and their role in photocatalysis processes, novel preparation methods need to be
developed. Moreover, photocatalytic mechanisms and relationships among the structures
forming the composites, surface, and crystal properties and photocatalytic activity should be
thoroughly investigated and clarified.
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