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Abstract

In recent years, there has been a significant increase in the construction of energy-
efficient buildings. These buildings are mainly characterized by their thermal envelope,
which  needs  to  follow the  complete  outer  perimeter  of  the  building  without  any
interruptions, to avoid thermal bridges. It has been observed, however, that the specific
new details  which prevent  the  occurrence  of  thermal  bridges  can,  in  many cases,
substantially affect the structural integrity of such buildings during earthquakes. This
chapter deals with the seismic aspects of the application of thermal insulation (TI) boards
beneath the foundations of buildings. For this purpose, the mechanical characteristics of
the most commonly used material in practice (i.e., extruded polystyrene — XPS) were
experimentally determined. Additionally, the shear behaviour of differently composed
TI foundation sets was investigated and their friction capacity estimated. The authors
have proposed a new solution for the foundation detail, which is based on controlling the
sliding mechanism between the individual layers of TI boards in order to reduce the
seismic forces induced on the superstructure. The proposed detail with a specially
designed sliding layer surface is made of commonly used TI materials for modern passive
houses, thus reducing the potential additional costs. The solution was verified by means
of nonlinear dynamic analysis of several realistic building models and various friction
coefficients between XPS boards. The selected results are presented in terms of fragility
curves for the occurrence of sliding between the layers of XPS boards. Based on these
curves, the desired seismic response scenario and level of protection of a building structure
could be selected.

Keywords: thermal insulation, foundations, seismic response, energy-efficient build‐
ing, extruded polystyrene (XPS), friction, sliding isolation
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1. Introduction

In the European Union (EU), a large part of total energy consumption is due to the high
demands for the heating/cooling of the existing building stock. It has been estimated that
buildings alone cause 40% of the total energy consumption in the EU [1]. Reducing energy
consumption and producing energy from renewable sources therefore represent an impor‐
tant research issue in the building sector. Consequently, over the last 15 years there has been
an increasing trend towards the construction of energy-efficient buildings, which was also
stimulated by the implementation of the directive 2010/31/EU [1]. New requirements for the
energy efficiency of buildings have been set, and the year 2020 has been defined as a mile‐
stone for nearly zero-energy buildings. However, the earthquake safety of energy-efficient
buildings, as well as their new construction details, needs to be investigated. In those parts of
Europe where the construction of low-energy buildings has already become an established
practice,  earthquakes  are  for  the  most  part  unknown,  so  that  such  verification  of  new
construction details is not necessary. In recent years, however, low-energy building stand‐
ards [2–5] have been slowly gaining ground in areas where earthquakes (including strong
earthquakes) are frequent, such as Spain, Portugal, Italy, Greece, Croatia, Slovenia and others.
The suitability of the newly developed construction details for energy-efficient buildings
therefore needs to be verified, and appropriate solutions found also for earthquake prone
regions. This chapter emphasises on the investigation of a newly proposed structural detail
which would on the one hand prevent the formation of thermal bridges, while on the other
hand, it would reduce possible damage of the superstructure by acting as a seismic protec‐
tion fuse during strong earthquakes.

2. Materials for thermal insulation boards

The most frequently used technique for preventing a thermal bridge occurring beneath the
ground floor slab is founding of the building on thermal insulation (TI) boards, which need
to have adequate compressive strength. Extruded polystyrene (XPS) boards, expanded poly‐
styrene (EPS) boards and boards made of cellular glass are most frequently used for this
purpose. They are usually placed under the reinforced concrete (RC) foundation slab or un‐
der the strip foundations in one or more layers. In order that the insulation material remains
thermally functional during the whole of its expected life time, it should be resistant to long-
term loadings, temperature changes (i.e., freezing/thawing cycles), creep, shrinkage and all
the effects of frost, moisture and ground water. The most preferred type of boards are those
whose thermal and physical characteristics do not change even if they are in constant con‐
tact with water. An example of the casting of a RC foundation slab on top of layers of XPS
insulation boards is presented in Figure 1.

Insulation Materials in Context of Sustainability60



Figure 1. Example of extruded polystyrene (XPS) insulation boards used under a foundation slab [6].

Material property Cellular

glass

Extruded

polystyrene

(XPS)

Expanded

polystyrene

(EPS)

Polyurethane

(PUR/PIR)

Mineral

wool

Density

ρ [kg/m3]

100–165 25–35 15–30 30–100 40–200

Thermal conductivity

λD [W/mK]

0.040–0.065 0.030–0.040 0.031–0.043 0.020–0.035 0.03–0.045

Water absorption

Wlp [volume %]

<0.2 <0.3 <1.0 <1.6 <3.0

Compressive strength

σ10 [kPa]

400–1600 100–1000 30–500 25–800 10–90

Compressive creep strength

σcc [kPa]

100–700 20–300 10–150 5–250 2–30

Elastic modulus

E [MPa]

100–500 15–40 5–25 2–25 0.3–2.0

Shear strength

τ [kPa]

80–400 100–200 10–300 100–450 5–50

Shear modulus

G [MPa]

>4.0 3.0–8.0 1.5–9.0 1.0–5.0 0.3–1.5

Energy for production*

[kWh]

85 43–89 39–95 47–64 9–90

Relative material cost* 5.3–5.9 3.0–3.5 1.0–1.2 >3.0 1.0–1.5

*Energy for production and relative cost are calculated for the same thermal conductivity value of U = 0.4W/m2K for
both materials. The price of EPS is used as a unit [19].

Table 1. Properties of thermal insulation boards used for below-grade applications.
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The most important mechanical and TI properties of commonly used TI boards, as can be found
in recent catalogues and other available data in the literature [6–16], are presented in Table 1.
The values presented in Table 1 were obtained in monotonic static tests, whereas some of the
results of cyclic tests needed for earthquake simulations are presented in Section 3. Protocols
for the testing of materials and the obtaining of appropriate EU certificates are prescribed in
the corresponding EU standards. For example, the presented values for compressive strengths
were obtained according to the standards EN 826 [17] and EN 1606 [18], where the maximum
compressive strength σ10 is defined at a deformation of 10%, and the long-term maximum
compressive creep strength for an assumed building life-time of 50 years (σcc) is defined as the
strength corresponding to a deformation of 2%.

It can be seen from Table 1 that boards made of mineral wool have a very low compressive
strength and elastic modulus, so they are presumably not suitable as TI under the foundations
of a building. As well as this, mineral wool is not suitable because it can absorb more water
than other materials. Polyurethane, too, appears to be unsuitable because of its lower thermal
conductivity and also because the production of polyurethane is related to environmental
threats to the Earth’s ozone earth layer. Thus, three materials remain as being suitable for TI
under foundations: XPS, EPS and cellular glass. Their microstructures are shown in Figure 2.

Figure 2. The microstructure of thermal insulation materials, magnified 25 times [20, 21].

XPS and EPS boards are both made from polystyrene, but their production processes (expan‐
sion or extrusion) are different. They are both formed of round-shaped grains, which are in
the case of EPS polyhedral in shape and held together by process of expansion [8, 13]. The
extrusion process used to produce XPS results in a more homogenous structure, which is also
more repellent to water. This means that such material is more suitable in all structural details
where the presence of moisture can be expected. Research into the mechanical characteristics
of EPS has shown that it maintains its strength and stiffness also if it is in constant contact with
water [22–24]. However, it has been shown that its thermal conductivity might increase if it is
not additionally protected by a waterproofing layer. In comparison with EPS and XPS, cellular
glass is more similar to XPS, since it also has a closed cell structure and is therefore highly
repellent to water. Among all these three materials, EPS has the lowest strength and stiffness,
but it remains interesting due to the much lower costs of its production. EPS can also be pre-
moulded into various blocks and modules, which can replace formwork and therefore
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significantly speed up the construction of concrete buildings. Some house manufacturers [13]
allow EPS to be used under the foundation slabs of one or two storey RC/masonry houses, or
even more storeys in the case of houses made of lighter materials (e.g., wood). For higher/
slenderer buildings, the use of XPS or cellular glass is more appropriate. Among these, cellular
glass has the best strength and stiffness characteristics, but it is much more expensive to
produce and less thermally efficient. For these reasons, it is most frequently used for the
insulation of multi-storey or more complex structures, where higher strength is needed.

Presently XPS is the most frequently used material for TI under foundations. It is based on
the use of a polymerised polystyrol and a foaming agent. In general, rather limited research
has been performed up until now into the behaviour of XPS foam, although the behaviour of
this foam under monotonic compressive loading conditions is regularly controlled during the
production process. In the relevant scientific literature, only a few references can be found in
relation to the behaviour of XPS foam. Improved XPS foam insulation with better material
efficiency (and lower thermal conductivity) was developed in [9]. An experimental study
concerning the hygrothermal behaviour of retrofit solutions as applied to older stone masonry
walls has, for instance, been presented in [25]. In [26] XPS foam was applied as part of a
vibration isolating screen installed in soil near a test public transport track. In this research
some dynamic material characteristics of the used XPS were determined by means of a white
noise–forced vibration test on a freely suspended bar element: it was found that the dynam‐
ic Young’s modulus of the XPS was equal to 35 MPa, whereas its density was equal to 45 kg/
m3, its Poisson’s ratio to 0.2 and its material damping to 1.0%. The long-term mechanical
properties (i.e., compressive creep strains and modulus), which are of key importance for TI
placed under foundations, have been analysed in [27]. In the same reference, the modelling
of a foundation slab resting on a TI layer has also been schematically indicated. Vaitkus et al.
[28] experimentally analysed XPS short-term compression dependence on exposure time.
Significant changes in the XPS strength characteristics after 45 days were observed. The
relationship between the XPS foam microstructure and its response under compressive load
has been analysed in [29]. The average compressive strengths of the tested samples were equal
to 729, 347 and 179 kPa for the normal, transverse and longitudinal directions, respectively,
and the corresponding moduli of elasticity amounted to approximately 37.0, 16.7 and 5.7 MPa.
Morphological data about the XPS boards were obtained by using the X-ray tomography
imaging technique and then used to develop microstructure-based finite element models. In
the parametric study the effect of cell size and cell anisotropy on the mechanical response of
XPS boards under compressive loads was analysed. It was shown that the microstructure cell
size has no effect on the mechanical properties of XPS rigid boards when loaded in compres‐
sion as long as the density of these boards remains constant. On the other hand, the degree
of cell anisotropy was found to have a very important influence. Similar findings about the
influence of the polymeric foam’s density on mechanical properties in tension and compres‐
sion have been reported in [7], where the study concludes that the foam’s (e.g., XPS) defor‐
mation pattern beyond the yield point in compression is non-homogeneous. A structural
macro- and microstructure analysis of XPS foam with terahertz spectroscopy and imaging
was performed in [30].
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As far as is known, the cyclic compressive stress–strain behaviour of XPS foam, which is
essential for its seismic response in earthquake engineering applications, has not yet been
researched. Furthermore, information about the cyclic behaviour of this material when
subjected to shear loadings is currently a completely unresearched issue. From this point of
view, extensive experimental research addressing the cyclic behaviour of XPS foam in
compression, as well as in shear, has been recently performed in order to obtain a better
understanding of the fundamental behaviour of this foam in earthquake engineering applica‐
tions [31]. Laboratory tests were carried out on two different XPS products. These were XPS
boards that were manufactured by a Slovenian enterprise and denoted as 400 L and 700 L (the
number in the denotation indicates the nominal compressive strength of the XPS material in
kPa). The product data are given in [6]. A servo-hydraulic testing machine was used for these
tests, whereas the deformations of the XPS specimen were monitored by means of LVDTs. In
the next section, the main results of the performed laboratory tests are summarized.

3. Laboratory tests

3.1. The behaviour of the XPS boards under compressive load

The compressive behaviour of the investigated XPS products was determined according to the
standard SIST EN 826:1997 [17], with some modifications. The details can be found in [31].
During the performance of the monotonic compressive tests, the distance between the fixed
and the movable steel plates of the testing machine was reduced until the relative deformation
of the specimen reached a final value which was close to 90% (Figure 3). However, the
compressive stress at a relative deformation of 10% was still used to estimate the XPS product’s
compressive strength, according to the provisions of the corresponding standard [17]. The aim
of the measurements beyond a relative deformation of 10% was to determine the relative
deformations of the XPS specimens, where unloading would start in the case of cyclic
compressive tests. In these tests the testing procedure was similar to that used in the monotonic
tests, but with additional unloading-reloading cycles at 20%, 40%, 60% and the final relative
deformation of the XPS specimen.

The results of the compressive monotonic and cyclic tests are presented in Figure 4. The
estimated compressive strengths (σ10) and the compressive moduli of elasticity (E), calculated
as the average of all the test results (both monotonic and cyclic), are given in Table 2, along
with the corresponding coefficients of variation (COV). The obtained results show that the
behaviour of the XPS products in compression is characterized by three regions – elastic, plastic
and densification, which is typical behaviour for foamed products [28, 32–34]. The average
experimentally obtained compressive strengths (σ10) of the 400-L and 700-L products were 490
kPa and 752 kPa, respectively, which means that they were 22.5% and 7.4% greater than the
declared compressive strength of the two products, respectively. The response of the 400-L
product, which had a lower density due to the lower content of polystyrene than in the case
of the 700-L product, seems to be a combination of the behaviour of elastomeric foams up to
a compressive deformation of about 10%.
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By comparing the response of the XPS products subjected to the monotonic and cyclic
compressive tests, it can be seen that stress-strain envelope in the case of cyclic response
corresponds to the stress-strain response obtained in the monotonic test, for both the 400-L
and the 700-L products. When unloading the specimen at relative deformations of 20%, 40%
and 60%, the so obtained diagram is first parallel to the elastic region, whereas later on the
tangent E-modulus starts to decrease until a residual plastic deformation is reached at zero
stress.

Figure 3. XPS specimen before and at the end of the compressive test.

Figure 4. Compressive stress–relative deformation diagrams of the 400-L and 700-L specimens in the case of monotonic
(left) and cyclic (right) compressive tests.
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3.2. The behaviour of the XPS boards under shear load

The shear behaviour of the XPS products was determined according to the standard SIST EN
12090:1999 [35], using a double test specimen assembly. The test specimen consisted of two
XPS blocks which were glued onto a system of three parallel steel plates where the middle
plate was movable and the outer plates were fixed (Figure 5). The details can be found in [31].
When the monotonic shear test was carried out, the standard procedure was followed until
failure of the specimen, and the shear deformation at failure was used as a reference value in
order to determine the deformations where unloading of the specimen started in the case of a
cyclic shear test, in which some modifications of the standard procedure were introduced. One
cycle of the shear test consisted of loading until the selected deformation was reached in the
"+" direction, followed by unloading to zero load, reloading until the same absolute value of
deformation was obtained in the "−" direction, and then unloading to zero load. The selected
deformations where unloading of the test specimen began for the cyclic tests were equal to
20%, 40%, 60%, 80% and finally 100% of the reference deformation.

Figure 5. The XPS shear test setup.

Selected results of the shear tests are presented in Figure 6. The measured shear strengths (τ)
and shear moduli (G), calculated as the average of all the test results (monotonic and cyclic in
the "+" direction), are given in Table 2, together with the corresponding values of the coefficient
of variation. From the results presented in Table 2 it can be concluded that the shear strength
of the 400-L and 700-L products is 3.5 times less than their corresponding compressive strength,
whereas the G-modulus of the products is about 5 times less than the corresponding E-
modulus. Comparing the response of the XPS in compression and in shear, it can be seen that
the obtained shear ductility capacity is smaller, and that strength degradation is evident in the
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deep nonlinear behaviour range. By comparing the response of the XPS products obtained in
the monotonic and cyclic shear tests (Figure 6) it can be seen that the hysteresis envelope in
the case of cyclic response in the "+" direction corresponds to the stress-strain response obtained
in the monotonic test, for the 400-L and 700-L products. For both products the deformations
corresponding to the shear failure of the foam are about the same (between 9 and 11%), but
the shear strength is about 50% higher in the case of the 700-L product. Thus, the 700-L foam
is able to absorb more energy in shear, too. A similar finding has been made in the case of EPS
material [36]. Observing the cyclic behaviour of the 400-L and 700-L products it can be
concluded that unloading at 20% of the reference deformation occurred in the elastic region,
leading to zero or negligible residual plastic deformation in the tested material. When the
unloading deformation was increased to 40%, 60%, 80% and 100% of the reference shear
deformation, the residual plastic deformation gradually increased, too. It should also be noted
that the hysteresis is not symmetric – the symmetry axis is shifted slightly into the first quadrant
of the coordinate system.

COMPRESSIVE TESTS SHEAR TESTS

Product σ10 [kPa]/COV [%] E [kPa]/COV [%] τ [kPa]/COV [%] G [kPa]/COV [%]

XPS400-L 490/3.5 24200/5.8 138/1.7 4520/5.1

XPS700-L 752/1.1 36100/5.3 219/5.3 7460/2.6

Table 2. Average values of the compressive strength σ10 and the modulus of elasticity E, and of the shear stress τ and
shear modulus G.

Figure 6. Shear stress–relative deformation diagrams obtained for the XPS specimens in the case of monotonic (left)
and cyclic (right) shear loading tests.

3.3. Shear behaviour of the analysed TI foundation sets

In order to estimate the coefficients of friction between the different constituent elements in
the TI foundation set, various shear tests were carried out. These tests have not yet been
standardised and were specially developed for the needs of our experiments [31, 37]. Various
TI foundation sets were analysed (Figure 7) – consisting of one or two XPS boards, a concrete
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slab, with/without a waterproofing insulation (HI) or a polyethylene (PE) sheet. At a selected
level of pre-compression (from 50 to 300 kPa) in the vertical direction of the tested set,
horizontal displacements were induced by means of a servo-hydraulic actuator. The levels of
pre-compression were selected based on the likely levels of compressive stress beneath the
foundation slab during a moderate earthquake. For each tested TI foundation set the response
and the coefficients of static (μs) and kinetic (μk) friction were determined.

Figure 7. The tested TI foundation sets.

The tests have showed that, in the case of sliding, the XPS–HI sheet contact (without adhesive
on one/both sides) which was exposed to lower levels of pre-compression (e.g., 50 kPa) was
the critical one. The corresponding coefficient of friction was around 0.3 [31]. In practice this
means that, during a strong earthquake, it is possible that a passive house with such a
foundation set would slide in the horizontal direction (Figure 8).
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Figure 8. The 700-L TI foundation set with a HI sheet having adhesive on one side only between two XPS boards:
stress–displacement diagrams at different levels of pre-compression (left) and sliding at a pre-compression level of 100
kPa (right) [31].

Another tested TI foundation sets (1-XPS and 2-XPS) consisted of two XPS boards which
were in contact with the levelling concrete (without a HI or PE sheet being inserted between
them). The two contact planes were carefully monitored: the XPS–XPS contact, and the XPS–
levelling concrete contact. The results obtained in the tests showed that sliding occurred be‐
tween the two XPS boards before sliding between the XPS and the levelling concrete. How‐
ever, the test of a TI foundation set consisting of two 120 mm thick XPS boards (400-L) and
levelling concrete showed a higher sliding resistance than the corresponding TI foundation
set 3-XPS, which consisted of one thicker (200 mm) XPS board. The resulting coefficients of
friction are presented for both TI foundation sets in Table 3. In the same table the obtained
coefficients of friction for the TI foundation sets 4-XPS and 6-XPS are shown. These founda‐
tion sets consisted of one or two 400-L XPS boards, levelling concrete and a PE sheet insert‐
ed between them. In this case, at low pre-compression levels, sliding was observed at the
contact between the PE sheet and the XPS layer or levelling concrete. At a higher pre-com‐
pression level (300 kPa) deformation of the XPS boards was observed only in the case of the
two XPS boards. On the other hand, in the case of the TI foundation set with one thicker (200
mm) 400-L board (6-XPS) exposed to a pre-compression level of 300 kPa, a combination of
deformation of the XPS boards and sliding between the PE sheet and the XPS was the typi‐
cally observed response.

It can be concluded that TI foundation sets without a PE sheet between the levelling concrete
and the XPS in general provide higher shear capacity than corresponding foundation sets with
an inserted PE sheet. In the case of the TI foundation set with two 400-L boards (2 x 120 mm)
this increase amounted to about 50%. The same values as those given in Table 3 for the 2 x 120
mm 400-L boards (1-XPS, 4-XPS) can also be used in the case of the 2 x 100 mm 700-L boards
(2-XPS, 5-XPS) since the μs values are only slightly higher in the case of the foam with a higher
density.
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TI foundation set without a PE
sheet between the levelling
concrete and the XPS board(s)

TI foundation set with a PE
sheet between the levelling concrete and
the XPS board(s)

Number and thickness
of 400-L XPS boards in
the TI foundation set

μs μk μs μk

2 × 120 mm 0.600 0.570 0.413 0.365

1 × 200 mm 0.487 0.459 0.520 0.414

Table 3. Average values of the coefficient of maximum static (μs) and kinetic (μk) friction for the 1-XPS, 3-XPS, 4-XPS
and 6-XPS foundation sets at a pre-compression level of 50 kPa.

4. A new technological solution for the foundation of passive houses in
seismic areas

4.1. Description of the proposed foundation system

Recently, in [38], a new solution has been proposed with regard to the design of foundations
for thermally insulated passive houses. The proposed solution is based on controlling the
sliding between the individual layers of XPS boards in order to reduce the seismic forces which
are induced on the superstructure. It is protected by a patent that has been filed at the Slovenian
Intellectual Property Office (SIPO). The principle of the solution is analogous to that of sliding
seismic base isolation systems [39–47].

The solution has been developed based on existing passive house foundation details, which
were designed in order to prevent the occurrence of thermal bridges running from the heated
interior of the building to the ground underneath. The proposed solution still permits the use
of existing foundation construction details, while its added value consists of the additional
components for the controlled response of buildings in seismically active areas, taking
advantage of the sliding effect. The additional components are shown in Figure 9 and are
marked as follows; (1) vertical restrainers for the prevention of uncontrolled rocking and larger
lateral shifts, (2) a lateral sliding gap (ΔH), (3) the imposed sliding surface and (4) horizontal
stoppers for the prevention of sliding at the contact surface between the blinding concrete and
the first layer of TI. The red arrows shown in Section A-A of Figure 9 indicate the possible
movement of the building during earthquake ground motion — if the upper part of the
foundation detail shifts, together with the building, to the left, then the size of the lateral sliding
gap (ΔH) on the left hand side of the building will increase and the sliding gap on the right
hand side will decrease (until blocked by horizontal stoppers). In the case of very large
horizontal shifts, the sliding displacement is limited by the size of the lateral sliding gap (ΔH).
In this case the vertical restrainers collide with the horizontal stopper on one side of the
foundation slab, whereas they separate on the opposite side until a maximum gap opening
size of 2 · ΔH is reached. It should be mentioned that the size of the lateral sliding gap (ΔH) is
defined by the buildings’ designer, who can therefore limit the size of the maximum residual
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displacement. On the other hand, the vertical restrainers prevent uncontrolled rocking of the
building, as well as the occurrence of any irreversible compressive deformations of the TI
layer(s). The vertical restrainers are located at defined distances around the foundation slab
and are separated from one another by the distance ΔR (Figure 9). Vertical restrainers and
horizontal stoppers can, in practice, be produced in many different ways – depending on the
decision of the designer/investor and the availability/prices of the available components. It is,
however, necessary, that the vertical restrainers are made of material with a high compressive
strength and simultaneously a low thermal conductivity. They can consist of various hollow
steel sections filled with TI, or of special pressure bearings made of thermal insulating (nano)
concrete, or even of solid RC edge elements, which are additionally thermally insulated. At
the contact with the soil, the vertical restrainer ends with a flat and wide surface, which
prevents the negative effect of the restrainer penetrating into the soil due to the applied
concentrated load (the restrainers must be placed close enough to each other — ΔR). Horizontal
stoppers need to provide sufficient shear stiffness and shear strength. It is also recommended
that the perimeter of the foundation base (e.g., blinding concrete) should be strengthened in
order to increase the shear capacity of horizontal stoppers and to prevent protrusion of vertical
restrainers.

Figure 9. Section A-A and the foundation slab layout with the included anti-seismic sliding components.
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Figure 10. Overview of the characteristics of the possible seismic response scenarios.

The design of passive buildings could, according to the proposed solution, follow any of the
three different seismic response scenarios that are presented in Figure 10. The first scenario
avoids sliding and its potential benefits, but ensures basic protection of the superstructure.
This concept is mainly used for simple buildings (e.g., 1–2 storey buildings), which are not
vulnerable to strong seismic shaking. For such buildings the use of a sliding layer with a higher
friction coefficient is advisable, since the seismic forces do not need to be reduced. In this case
the application of the additional components of the proposed foundation detail (vertical
restrainers, horizontal stoppers and a sliding gap) is unnecessary. The main concern, in this
case, is only to ensure a sufficiently high friction coefficient between the individual layers of
the foundation detail, so that the sliding mechanism is eliminated and the building’s installa‐
tions remain intact as in the case of conventionally founded (fixed base) buildings. For this
reason, this scenario is referred to as "basic protection" (or "sliding prevention"). In the case of
the second and third scenarios a reduction in the seismic forces acting on the superstructure
can be achieved. The difference between the second scenario (referred to as: "extended
protection" or "sliding controllable") and the third scenario (referred to as "full protection" or
"sliding isolation system") depends on the seismic intensity which will activate the sliding
mechanism. In the second scenario the sliding mechanism is activated only in the case of
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earthquakes with seismic intensities higher than the design seismic intensity, whereas in the
case of the third scenario sliding can also occur in the case of weaker earthquakes. The building
designer and investor can therefore, together, choose the desired level of protection of the
building (basic, extended, or full protection). In the case of third scenario the friction coefficient
needs to have a much lower value, so that it is comparable with the friction coefficients of
sliding isolators. It should be noted that, in practice, it is difficult to achieve such a low friction
coefficient in the case of large areas of the foundation slab detail, so that additional costs would
probably be incurred. Furthermore, in the third scenario the building designer needs to
provide all of the additional components of the proposed solution which are necessary for it
to be effective, i.e., flexible installations, horizontal stoppers, a lateral sliding gap (ΔH) and
sufficiently wide clearance around the building. The latter is particularly important in order
to avoid any pounding of an isolated structure against adjacent buildings [47].

For all of the above stated reasons the authors believe that, in the case of modern passive
houses, it would be best, for the time being, to recommend the second scenario. The latter
makes use of commonly available materials that have already been used in existing passive
house foundation details, so that no additional costs would be incurred if a seismic fuse were
to be created which would be activated only when a strong earthquake occurs.

4.2. Numerical verification and selection of the seismic response scenarios

The applicability of the proposed solution was demonstrated by means of the nonlinear
dynamic analysis of some simplified parametric models, as well as of some realistic models of
two, four and six storey RC passive house buildings. An extensive description of the performed
analyses and the results obtained can be found in [38], whereas in this chapter only selected
results are presented.

4.2.1. SDOF superstructure model

In the first stage of the study the effectiveness of the proposed solution was analysed by using
a simplified Single Degree-of-Freedom (SDOF) model (Figure 11) which represents 2-storey
(H = 6 m) passive house structures with short fundamental periods (TFB = 0.10 – 0.30 s). The
structures were assumed to be founded on a foundation slab (with floor plan dimensions A/B
= 16/8 m) and supported by nonlinear springs in order to model the XPS boards with a nominal
strength of 400 kPa and a total thickness of d = 30 cm (2 layers of thickness 15 cm). The horizontal
spring for the sliding resistance of the TI foundation detail was defined based on the initial
vertical compressive stresses due to the assumed mass of the superstructure during an
earthquake (m + mb). Six different friction coefficients (TI foundation sets) were investigated.
Two different models of the superstructure were analysed, one showing elastic behaviour
(with a strength factor α = 1.0 and a ductility capacity δc = 1.0) and the other showing nonlinear
behaviour (α = 0.25 and δc = 4.0). The models showing elastic behaviour were investigated in
order to determine the maximum response of the foundation demand parameters such as the
base displacement (Dbase), whereas the nonlinear superstructure models were used for com‐
parison of the superstructure demand parameters, such as the ductility demand (δd). It should
be noted that such a selection was made according to [48, 49], where it was shown that elastic
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models yield maximum base engineering demand parameters (EDPs), whereas inelastic
models yield maximum superstructure EDPs. The seismic response of the structural models
was evaluated by means of nonlinear time-history analyses considering a set of 30 real ground
motion records (GMRs), which were selected so that they matched the target spectrum for stiff
soil sites (soil type A in EC8 [50]), with 5% damping and a seismic intensity of 0.25 g. Incre‐
mental dynamic analyses (IDA) were performed for each selected GMR, with a variation step
of 0.02 g up to a maximum seismic intensity of 1.0 g. Uni-directional dynamic analysis was
adopted, which was best suited to the available results of the uni-directional experimental tests
of the XPS material [31].

Figure 11. The numerical model considered in the parametric study.

In Figure 12 fragility curves for the occurrence of sliding between the XPS boards are shown
with the aim of illustrating the proposed seismic response scenarios. Sliding between the layers
of XPS was numerically detected when the model reached the maximum resistance force of
the horizontal spring (Figure 11). For each step of the IDA, the number of GMRs which caused
sliding was calculated. The numerical probability of base sliding was then calculated as the
ratio between the number of GMRs which caused sliding and the total number of analysed
GMRs (30). The calculated numerical probabilities are shown in Figure 12 in the form of
stepped curves. Lognormal cumulative distribution functions were also fitted to the numerical
probabilities. The fitted fragility curves were defined according to [51] and can be used to
predict the seismic response scenario and to design the foundation detail accordingly.
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Figure 12. Fragility curves for the occurrence of sliding between the XPS boards.

Based on the presented fragility curves, an appropriate friction coefficient for the proposed
foundation detail can be chosen in relation to the selected seismic response scenario. If the first
seismic response scenario is selected, then the coefficients with zero probability of sliding will
be the most appropriate solution for the detail. As can be seen from Figure 12, higher friction
coefficients show zero probability of sliding for lower PGAs. On the other hand, models with
lower friction coefficient values are vulnerable to sliding already at low PGAs. The third
seismic response scenario, which is described as a sliding isolation system, could, on the other
hand, be applied in the case of models with a 100% probability of sliding at the design PGA,
whereas, for the second response scenario of controllable sliding, the use of a 50% probability
of sliding at the design PGA is proposed. However, the probability of sliding for the second
seismic response scenario could be selected individually by the building designer. If the
desired level of protection of the superstructure is higher, the chosen probability of sliding will
be closer to 100% and more similar to the third seismic response scenario. On the other hand,
if the desired response at the design PGA is more similar to sliding prevention, the probability
of sliding will be between 0 and 50%.

In the selected case of elastic models with μ = 0.50 the proposed seismic scenarios can be
described as follows; (1) the first seismic response scenario would be allowed for PGA of less
than approximately 0.10 g, (2) the second response scenario would be allowed for PGAs
amounting to approximately 0.25 g and (3) the third response scenario would be required for
PGAs greater than 0.45 g. It can be concluded from the above that different friction coefficients
could be used for the sliding surface of the proposed foundation detail according to the selected
seismic response scenario and the design PGA.

4.2.2. MDOF superstructure model

In order to verify the effectiveness of the proposed technological system in more detail, in the
second stage of the study several variants of realistic multi-storey buildings were analysed. A
typical passive or energy-efficient multi-storeyed RC office-building founded on a 30 cm thick
RC foundation slab with a 2-layered XPS (the total thickness equal to 24 cm) beneath was used
as a test example. The same building was also analysed in [52], where an evaluation of the
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critical parameters which could affect the seismic behaviour of buildings founded on an XPS
layer can be found. In the same reference it is also possible to access all the other modelling
input data, which are not reported there. In this chapter only selected results of the character‐
istic (2D) frame of the analysed building are presented (Figure 13). In the case of the selected
concrete rectangular cross-sections of the beams and columns, the minimum amount of steel
reinforcement for the selected ductility class medium (DCM) according to EC8 was adopted.
Soil-structure interaction (SSI) effects were taken into account by assuming that the analysed
multi-storeyed frames are founded on real soils (type A according to EC8). Since, in practice,
no tensile resistance is provided by the soil-structure contact, the behaviour of the soil as well
as the XPS in compression was modelled by nonlinear contact springs. The behaviour of the
soil in shear was modelled by means of linear elastic springs, whereas the cyclic shear
behaviour of the XPS was modelled by means of a kinematic hysteresis loop with a backbone,
which is presented in (Figure 11), taking into account a sliding gap displacement (ΔH) equal
to 5 cm, and assuming that the stiffness of the third branch was equal to the initial stiffness.
Seismic analyses of the investigated frame systems were carried out by means of nonlinear
dynamic response analyses, which were performed by the computer program SAP2000 [53].
The vertical loads which corresponded to the seismic limit state defined in EC8 were assumed
as the initial loads in all the seismic analyses, in which a group of 7 real earthquake records
was applied in one (horizontal) direction. These records were scaled to three different PGA
levels (0.25 g, 0.375 g and 0.50 g). Details about these nonlinear dynamic analyses can be found
in [52].

Figure 13. The investigated building’s floor plan layout and the analysed 2D frame.

The seismic response of the selected analysed models which was obtained in the case of
moderate seismic excitation (with a PGA equal to 1.5-times the design PGA) is presented in
Figure 14. The typically obtained damage patterns of the 2- and 4-storeyed frames founded on
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foundation sets with different friction coefficients (μ) are presented, together with the absolute
maximum base (Dbase) and top displacements (Dtop) as well as the maximum compressive
deformations of the XPS layer (εXPS). The damage patterns show the performance levels of the
superstructure (measured with reference to the calculated rotations in the generated plastic
hinges).

Figure 14. Typical damage patterns and average maximum displacements of the analysed two- and four-storeyed
models subjected to PGA = 0.375 g.

It should be noted that, in all cases, the obtained base displacements (Dbase) were smaller than
the assumed gap width (ΔH = 5 cm). It can be seen that, in the case of the analysed PGA level
(0.375 g), a friction coefficient of μ ≈ 0.4 (for 2-storeyed model) and μ ≈ 0.2 (for 4-storeyed model)
could be used if the third seismic response scenario (i.e., a sliding isolation system) were to be
selected. In the case of higher values of the friction coefficient, the second (i.e., sliding con‐
trollable) or first (i.e., sliding prevention) seismic response scenario could be expected. In this
connection, the limited damage state (i.e., with plastic hinges generated in the beams only) can
be interpreted as acceptable for the second seismic scenario. In the analysed case the second
scenario was reached when a friction coefficient of up to approximately μ = 0.5 (for the 2-
storeyed model), or approx. μ = 0.25 (for the 4-storeyed model), was selected, whereas the first
scenario occurred in the case of the higher friction coefficient values ( μ ≈ 0.9 and μ ≈ 0.35 for
the 2- and 4-storeyed models, respectively). It should be mentioned that, in the case of 4-
storeyed model subjected to the design PGA level (0.25 g), the first (second) scenario occurred
when a friction coefficient equal to approximately μ = 0.5 (0.3) was selected, whereas the 2-
storeyed models remained within the elastic range at the design PGA 0.25 g for all the
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considered values of μ. Furthermore, it should be noted that the response of slender frames
with large height-to-width ratios (e.g., the analysed 6-storeyed frame, which – for the sake of
brevity – is not shown) is governed strongly by the rocking mode of oscillation, which is
evident from the obtained maximum edge compressive deformations of the XPS (εXPS). As can
be observed also from the results presented in Figure 14, the sliding isolation system success‐
fully protects the superstructure against a rocking mechanism, since, in the case of the 4-
storeyed frame, εXPS decreases from 1.7% (sliding prevention) to 0.8% (sliding isolation system).

5. Conclusions

To successfully thermally insulate a building’s foundations, a TI material with sufficient TI
characteristics, compressive strength, water resistance, minimal long-term creep and good
durability has to be used. In this chapter, the TI materials which are most commonly used
beneath foundations (i.e., XPS, EPS, cellular glass, polyurethane and mineral wool) are
presented, together with their basic mechanical properties. It can be seen that boards made of
mineral wool have very low strength, stiffness and water resistance, so they are unsuitable to
be used for this purpose. Boards made of polyurethane can also be deemed to be unsuitable
because the production of this material can have negative effects on the Earth’s ozone layer.
Thus, three materials remain as being suitable for TI layers under foundations: XPS, EPS and
cellular glass foam. Among them, at present boards made of XPS foam are the most commonly
used due to their high water resistance, relatively high strength and competitive price.

The mechanical characteristics of XPS foam boards, which need to be known for the seismic
analysis of buildings founded on XPS boards, were determined by means of laboratory tests.
The results showed their measured compressive strength is, in general, always greater than
the declared value, which defines the nominal class of the XPS. On the other hand, the obtained
values of the elastic moduli are, as a rule, slightly lower than the declared values, which can
be found in the producers’ catalogues. The compressive and shear behaviour of XPS under
monotonic and cyclic loading conditions has shown to have a very stable response, which is
true for all the investigated test specimens. In general, the capacity to absorb energy in
compression as well in shear is higher in the case of XPS material with a higher declared
compressive strength. The values of the measured shear characteristics, which up to now have
not been provided by the producers, were as follows: 0.14 (0.22) MPa (strength) and 4.5 (7.5)
MPa (modulus) for XPS 400-L (700-L).

Besides its behaviour under monotonic and cyclic compressive as well as shear loading
conditions, the sliding behaviour of differently composed TI foundation sets at different pre-
compression levels was also investigated and their friction capacity estimated. Based on the
results of an extensive parametric study of the seismic response of buildings [48], it was found
that sliding between the individual components of TI foundation sets is a likely failure
mechanism in the case of low-rise, light-weight and slender buildings subjected to seismic
loads. The TI foundation set consisting of two XPS boards and a waterproofing layer (HI) in
between (having adhesive on one side only) showed the smallest frictional capacity (the
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corresponding coefficient of friction at a pre-compression level of 50 kPa was around 0.3). It
can be concluded that, in the case of TI foundation sets consisting of two XPS boards without
a HI or PE sheet between them, the coefficient of friction amounted to 0.6, whereas coefficient
of friction around 0.5 was obtained in tests of the contact between the XPS and the concrete. It
was shown that the quality of the XPS boards (400 L and 700 L) did not significantly affect the
frictional capacity of the analysed TI foundation set.

The results obtained in the performed numerical study of typical passive buildings have shown
that foundation details, which permit sliding between the layers of TI boards by using low
friction contact surfaces, can significantly reduce or even eliminate damage to the superstruc‐
ture and thus act as a seismic fuse. The proposed seismic response scenarios (referred to as
“sliding prevention”, “sliding controllable” and the “implementation of a sliding isolation
system”) were demonstrated by means of nonlinear dynamic analysis for selected RC passive
house structures with two and four storeys. Based on the fragility curves obtained by IDA for
the occurrence of sliding between the layers of XPS boards, the likely seismic response scenario
can be estimated depending on the PGA and the available friction coefficient. It is shown that
lower values of the friction coefficient between the layers of TI boards reduce the level of
damage to the superstructure. However, in this scenario large base displacements can occur,
which must be taken into account when designing the size of the gap clearance, to prevent
unfavourable pounding effects.

Based on all of the results obtained, it seems that the best solution is the implementation of a
“sliding isolation system scenario”, which works in a similar way to base isolation systems,
and can provide full protection of the superstructure. However, from the financial point of
view, this scenario usually requires some additional direct and hidden costs, which are fre‐
quently difficult for future owners to accept. To achieve this scenario more elaborate low
friction material needs to be used, as well as more refined flexible installation systems,
which could influence the final price of the newly built energy-efficient building. In the au‐
thors’ opinion, at present the most feasible solution seems to be the “sliding controllable
scenario”, in which only easily available materials are needed. Such materials are already
required under the foundations of modern energy-efficient buildings in order to prevent
thermal bridges (they are governed by modern guides for low energy consumption). Thus,
in this case the additional costs for horizontal stoppers and vertical restrainers (if required)
would be low, as well as the costs of waterproofing (foil) materials with suitable low friction
coefficients, which are in any case needed for all energy-efficient buildings, where they act
as a waterproofing layer or a hydraulic barrier. The sliding controllable scenario can there‐
fore be achieved without any significant additional financial costs and is therefore appropri‐
ate for use, on a wide scale, in the design of new energy-efficient buildings in earthquake-
prone areas.
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