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Abstract

Bone is a complex organ with the capacity to regenerate. Even with this healing potential,
healing results in fractured bone are unsatisfactory in a considerable patient cohort even
with a good treatment regimen. These delayed healing cases encourage further research
into possible new treatment approaches. The recently developed field of osteoimmunol‐
ogy addressing the tight interconnectivity of the skeletal system and the immune system
could be a promising opportunity in this regard. In this review, the complexity of bone
and the bone healing process are highlighted with an emphasis on the early healing phase.
Specific immune cell subsets are considered for their potential to enhance bone healing
and thus to develop new treatment strategies for patients in need.
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1. Introduction

1.1. Fracture Incidences

Bone injuries are frequent occurrences in daily life. Considering Germany as an example for a
country with a health system guaranteeing treatment for fracture patients at a high standard,
fractures of the extremities ranged between 560,000 and 640,000 cases per year over the past 10
years, with around 150,000 fractures of the femur and tibia, respectively (Figure 1). The statistical
federal ministry recorded 802,662 fractures in Germany in the year 2014 (Statistisches Bundes-
amt, Wiesbaden, 2016-01-11). These numbers can be split up even further by age, where 38% of
the patients with fractures of the extremities were older than 75 years, 33% between the age of
50 and 75 years, 16% between 25 and 50 years, and only 13% were younger than 25 years
(Figure 2A, B).

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



Figure 1. Fracture incidence in Germany (Gesundheitsberichterstattung des Bundes, 2016-01-11)—fractures of hand,
arm, shoulder, leg and foot—incidence for 2004–2014.

Even in an environment with a good healthcare system and the normally very good healing
potential of bone, 10–20% of all fracture patients still experience a delayed or nonunion after
osseous injury [1–3] (Figure 2C). To overcome these delays in healing or reduce the nonhealing
ratio, further research to gain understanding on the causes of healing delay or lack of healing
is essential to enable new treatment strategies that support bone regeneration even under
compromised conditions. With respect to the development of our population, the research into
fracture treatment strategies becomes even more important as demography predicts an aging
of the population. In Europe, it is Germany with the highest percentage of people over 65 years
of age, and this percentage is rising (Figure 2A). In 1990, about 15% of the Germans were older
than 65 years, and in 2011, this percentage had grown to 21% of people being over 65 years
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old (Statistisches Bundesamt, Eurostat 2011). This is important because the fracture incidence
is higher in elderly people (Figure 2B). The demographic projection of the UN World Popu‐
lation Projections for the years up to 2025 foresees an increase of over 50-year-old people of
20%, which equals 219 million people in 2025. Further stratifying this by age groups, the highest
growth of 32% is expected for people aged 80 years or older. Consequently, the fracture
incidence in elderly will increase by 28% of the 4.5 million fractures estimated for 2025. With
this high number of fracture patients with an advanced age, it is eminent to consider age-
related alterations that might influence the capacity of osseous tissue to regenerate normally.
With increasing age, it is the immune system that undergoes major transformation influencing
bone regeneration considerably. To provide adequate treatment options, it is essential to
unravel the interactions of the immune and skeletal system.

Figure 2. (A) Age distribution in Germany 2014 and (B) fracture incidence according to designated age groups. (C) Un‐
satisfactory healing results in fracture patients in corresponding age groups are shown, this includes malalignment,
delayed healing and pseudarthrosis (nonunion) (M84 classification) (based on Statistisches Bundesamt, Wiesbaden
2016).

1.2. Primary and secondary healing

Bone is a remarkable organ because it is capable of regeneration and complete restoration of
the osseous integrity both in form and function. Bone repair and fracture healing are unique
because they recapitulate many of the ontological events that occur during the embryological
development of the skeleton [4, 5]. To reach the “restitutio ad integrum,” bone provides two
mechanisms of scarless healing and regeneration: primary and secondary bone healing.
Primary bone healing is only possible when the bone fragments are realigned anatomically,
and the fracture zone is held under compression by an adequate fixation without a gap between
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the bony ends (Figure 3A). Stable fixation and no relative movement are required when basic
multicellular units consisting of cutting cones with osteoclasts and following bone-forming
osteoblasts cross the fracture line to directly rebuild bone and thus re-establishing the osseous
integrity at the fracture side [6, 7]. During this process, the new bone is directly organized as
osteons and oriented along the dominant mechanical loading direction [8, 9]. Primary bone
healing was for a long time considered as the best possible healing process and thus was the
aim when fractured bone was clinically treated [10].

Figure 3. X-ray images from fracture patients: (A) fracture treated with an open reposition and internal fixation (ORIP)
procedure with correct anatomical reconstruction of the fracture ends without fracture gap consistency—the bone will
heal without callus formation through primary bone healing. (B) Comminuted fracture treated with an internal nail.
Several gaps between the fractured bone ends remain and healing takes place by secondary bone healing as the callus
visible in the image B2 taken 3 months after treatment clearly shows.

Secondary bone healing occurs whenever a gap persists between the fractured ends or when
there is instability and thus interfragmentary movement (Figure 3B). This for example is the
case if anatomical repositioning is not possible due to comminuted fractures or large bone
defects. In secondary bone healing, a substitute tissue is formed to regain stability as fast as
possible: an intermediate cartilage callus ensues. While intramembranous bone formation
starts to consolidate the injured bone in the periosteal regions of the fracture gap, endochondral
ossification processes start with the formation of cartilage islands in the gap between the
fracture ends, forming an intermediate soft callus. Cartilage mineralization starts the woven
bone formation process, which results in a hard callus. The final remodeling then restores the
form of the continuous bone [11]. The intermediate cartilage step that provides a fast regaining
of stability and reduces any interfragmentary movements often has a larger diameter than the
original bone, especially if, as it would occur in nature, the bone remains untreated. It provides
an increased polar moment of inertia against torsion and also withstands bending loads [12,
13]. While the large callus provides an evolutionary advantage to quickly regain mobility, it
can be prevented in clinical settings by a stable fixation of the fractured bone [14].
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1.3. Fracture treatment

In the wild, a fractured long bone often leads to death of the injured animal. However, it seems
that the younger the animal is when the fracture occurs, the higher are the chances of survival
[15]. If an animal survives a long bone fracture, the bones most likely heals with a severe
misalignment. The potent remodeling capacity of the bones will however strive to restore the
mechanically defined form of the bone, which is dictated by the surface strains the bone sense
during physiological activities.

In our society, most fractures are treated in such an efficient way that only in rare cases bone
fractures lead to death. Fracture treatment in the form of stabilizing the fractured bone goes
back at least to 2400 years before Christ as excavated mummies from an Egyptian tomb proved.
Prof. G. Elliott Smith discovered the splintered bones during the Hearst Egyptian expedition
at Naga-ed-Der in 1903 on two mummies [16]. Both died shortly after the fracture because no
healing signs were observed on the bones even though the Egyptians seemed to have reached
some proficiency in fracture treatment as other relicts with healed fractures, found later on,
could prove. In most cases, healed femoral fractures showed limb shortening or deformation,
whereas forearm fractures healed well, demonstrating the challenge of reestablishing weight
bearing capacity with the fracture treatment. An Arab surgeon, El Zahrawi (936–1013 AD)
described in his treatise “The Surgery” a splinting technique, which was used for a long time,
consisting of several layers of bandages combined with splints to provide stability for the
fractured limb [17]—a fracture treatment also described by Hippocrates and Celsus [18] and
one that is to an extend still valid today.

In the early 1770, first records on internal fracture fixation using ligatures or wire fixation are
reported from France [19]. This was followed by the introduction of screws around 1850, again
in France [20], and the development of plate fixation reported in 1886 by Hansmann [21] of
Hamburg.

Robert Danis (1880–1962) furthered the development of the concept of internal fixation to
permit functional rehabilitation. He stated that an osteosynthesis is not entirely successful until
it provides immediate mobilization, complete restoration of the form of the bone, and enables
primary bone healing without the formation of a callus. This thesis was published in “Danis
R.: Théorie et Pratique de l’Ostéosynthèse, Paris, Masson, 1949”. Between the 15th and 17th of
March 1958, a number of orthopedics met in the Kantonsspital of Chur and based on the work
of Danis they formulated a number of papers on osteosynthesis and thus the AO—Arbeitsge‐
meinschaft für Osteosynthesefragen—was founded. The AO has continued to improve the
principles of fracture treatment since then and is still a renowned entity in the orthopedic
community.

Even with these tremendous progresses in fracture treatment, there are still several open
questions concerning the treatment regimen: mal-fixation with too stable or too unstable
fixation [22–25], critical gap size [26, 27], a deficit in angiogenesis together with the formation
of atrophic pseudarthrosis [28–31], and deficits in the control of the inflammatory cascades
[32–34] are challenging clinical situations that still lead to unsatisfactory healing results for
patients and surgeons as well.
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2. Immune cells and bone regeneration

2.1. Bone – a complex organ

Bone is not simply a hard nonorganic material that functions as an anchor for muscles and
tendons providing stability and form for our bodies and enabling movement through the
interplay of our musculoskeletal system; it is also protecting vital organs, such as the brain,
lungs, and heart, and it is a living organ regulating homeostasis. Additionally, it is an organ
that is essential for our immune system, as these cells arise and/or mature from stem cells in
the bone marrow, it is also an organ that interacts with our hormonal balance through a
multitude of factors, including the hormone osteocalcin [35], and acts as a storage not only for
calcium, phosphate, and magnesium but also for growth factors, as for example transforming
growth factor-β (TGF-β).

Figure 4. Bone is a complex organ. A long bone can be divided into epi-, meta-, and diaphyseal regions. The epiphy‐
seal region contains the growth plate—the region of length growth of the bone. The epiphyseal zone is broad in young
individuals and diminishes with age. Details are shown in a histological image where the transition from cartilage to
trabecular bone is shown (A). Bone building cells are the osteoblasts. On the bone surface, they are arranged in pali‐
sade formation while synthesizing new bone matrix, the osteoid. They mature while they encase themselves in osteoid
and finally mineralized bone matrix and become osteocytes (E). Osteoclasts on the other hand degrade bone; they are
large multinucleated cells with a ruffled border directed at the bone surface (D). To emphasize the size difference, scale
bars are enclosed in the image of the osteoclast and osteoblast. The bone marrow cavity is filled with bone marrow
cells and a network of vessels (C). The vessel structure is explained more in detail with a cross section of long bone on
the right-hand side. The cortical bone is covered by the endosteum on the inside and the periosteum on the outside.
The periost is a rich source of cells, which are located in the stratum cambium (indicated in the histological out take),
here visible by their dark nuclei. The stratum fibrosum covers the stratum cambium and is followed by a fascia and
muscle closely adjacent to the bone (B). Blood vessel structure in the bone marrow: The bone is highly vascularized,
next to a central vein and an artery system of sinusoids, arterials and transient zone vessels pervade the bone marrow
cavity as indicated in the cross section of the bone on the right. Osteon structure of lamellar bone: The histological out
take of the cross section shows the osteon structure of lamellar bone with its Haversian system. The bones are depicted
as μCT 3D reconstruction images of mouse femura. Histological stainings are HE, hematoxylin eosin; MP, Movat pen‐
tachrome; and Ab, Alcian blue on paraffin- or plastic-embedded sections of long bone samples of mouse and sheep.
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Bone healing is a complex process that involves a variety of different cells and signaling
molecules, which originate not only from the bone, and here specifically from the periosteum,
the cortical or cancellous bone, the endosteum and the bone marrow, but also from surround‐
ing muscle tissue (Figure 4). An important supplier for cells and signals is the vasculature and
thus the blood as a carrier. Bone is a very well-vascularized organ. Osteons are tube-shaped
structures within the bone with an open space for blood vessels, veins, and nerves in the center.
Small capillaries are found in the bone marrow near the endosteum, which continue into
arterioles and sinusoids (with fenestrated basal membranes) towards the center where a large
artery and central sinusoid transverse longitudinally through the bone marrow space [36].
Through the vessel connectivity, any osseous injury is prone to be influenced by systemic
effects and vice versa to influence the systemic homeostasis. For example, the callus formation
of injured bone is heightened in patients with traumatic brain injury. In this case, systemic
changes caused by the brain injury influence the bone healing, most likely due to a competition
for nutrients between the two injury sites and an altered hormone homeostasis [37, 38].
Another systemic effect that is most likely communicated to the bone is a change in the
inflammatory state of an injured person—a higher systemic inflammatory reactivity will
disturb the bone healing process and prolong the healing time necessary to achieve bridging
[39]. Upon fracture, the vascular system of the bone is disrupted at the injury site, and it is
imperative that revascularization swiftly occurs in order for a successful healing process.
Tissue formation relies on the supply through the vasculature with oxygen, nutrients, signaling
molecules and cells [29, 31, 40–42]. Restoration of the vasculature also enables cell recruitment
of circulating regenerative cells towards the fracture site [41–44].

The cells partaking in the bone healing process do not only originate from the bone itself, but
they also migrate out of different cell sources, which contribute finally to the healing process.
A rich cell source for cells contributing to bone healing after injury is the periosteum as well
as the bone marrow from where cells are attracted to migrate towards the injury site [45–47].
The muscle surrounding the fractured bone is also a valuable source for growth factors and
stem cells, promoting revascularization and thus the bone healing process [48].

On analyzing bone healing, it is important to keep in mind that there are several different
compartments involved, including the bone itself, the medullary cavity, the surrounding
muscle and connective tissue, the blood supply, the metabolism, and the immune system.

2.2. Fracture healing

The fracture healing process itself is a strictly controlled complex process composed of
consecutive and partly overlapping phases, which progress towards rebuilding bone integrity
in form and function. Different cell types (immune cells, progenitor cells, and mesenchymal
cells) [11] and their signaling molecules (cytokines, growth factors, and chemokines) [49] are
partaking during a successful regenerative process.

Several growth factors involved in the healing cascade are currently under investigation to
develop new therapeutic approaches to enhance bone healing: fibroblast growth factor [50],
insulin-like growth factor [51], platelet-derived growth factor [52], transforming growth factor-
β [53], vascular endothelial growth factor [50], and growth and differentiation factor 5 [54,
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55]. However, the only growth factors so far clinically applied to further bone healing are bone
morphogenetic protein 2 and 7 [56, 57].

The bone healing process can be roughly divided according to the healing steps into an
inflammatory phase, a soft callus phase, and a hard callus phase (Figure 5). Upon closer
observation, however, it becomes apparent that the healing process is more complicated than
that. A more in-depth sequence of the healing cascade would be hematoma phase, proinflam‐
matory phase, hypoxic phase, anti-inflammatory phase, revascularization phase, organized
connective tissue phase, cartilage phase, hypertrophic cartilage phase, revascularization
phase, cartilage mineralization phase, woven bone formation phase and remodeling phase
[58].

Figure 5. Fracture healing cascade: On closer examination, the inflammatory phase can be divided into at least six con‐
secutive and partly overlapping phases showing the transition from the hematoma (red blood cells with some lympho‐
cytes with dark stained nuclei) towards fibrocytes in the organized connective tissue (hematoxylin–eosin staining,
different magnifications and an immunohistological staining for alpha smooth muscle for the revascularization phase).
Soft callus phase can be divided into three phases (Movat pentachrome staining and Safranin van Kossa staining for
the revascularization). The hard callus phase is divided into cartilage mineralization, woven bone formation and re‐
modeling (Movat pentachrome staining).

Due to the complexity of the bone healing cascade with the multitude of different cell types
involved and the plethora of tightly interacting and simultaneously highly controlled signaling
molecules aiming to rebuild an organ consisting of periosteum, cortical bone, endosteum, and
bone marrow in a way that optimally withstands the ruling mechanical strains, the process of
bone regeneration is so far not understood. Therefore, research is compelled to use heuristic
approaches to gain a more in-depth understanding and in conclusion develop new treatment
approaches for patients in need.

2.3. Osteoimmunology

For a long time, bone homeostasis was explained with the balanced interaction of bone-forming
osteoblasts and bone resorbing osteoclasts (Figure 4), however, this simple concept has
changed. The interconnectivity of the skeletal system and the immune system has come into
the focus of current research, consecutively leading to the founding of the new research field
of “osteoimmunology.” This new research field aims to elucidate the complex interactions
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between these two systems in health and disease and already more and more knowledge has
accumulated [59–63], enabling us to consider new treatment possibilities for regeneration in
general and also specifically for bone [64]. The opportunity to control the inflammatory cascade
to stimulate successful bone healing has now been confirmed [32–34, 65].

Both cell systems, the skeletal system and the immune system, originate in the bone marrow.
They share progenitor cells (e.g. osteoclasts/macrophages) and signaling pathways, and due
to their colocalization, which often cross react with each other. This is apparent for example
when considering the RANK/RANKL/OPG system, the system controlling osteoclast differ‐
entiation/activity and thus bone resorption. Activated T cells and osteoblasts are able to express
the membrane-bound and the soluble form of RANKL (receptor activator of nuclear factor
kappa-B ligand) promoting osteoclastogenesis. B cells and osteoblasts produce and secrete
OPG (osteoprotegerin), a decoy receptor blocking the RANK-RANKL ligation, thus inhibiting
osteoclastogenesis [59, 62, 66]. This example illustrates that immune cells are involved in bone
homeostatic processes directing either bone resorption or bone apposition.

Due to the interdependency of the two systems, any considered treatment option of immune
modulation must take into account that by affecting the immune system the skeletal systems
could also be targeted unintentionally.

2.4. The initial inflammatory phase

Vessels are disrupted and bleeding occurs upon injury and the fracturing of bone. The
infiltrating blood coagulates and forms the initial hematoma in the fracture gap. The formation
of a fracture hematoma in the early healing phase is an indispensable step for successful healing
because it develops an angiogenic and osteogenic potential [29, 67]. The removal of the early
fracture hematoma can delay bone healing as it has been demonstrated in animal studies,
where the transplantation of a fracture hematoma can lead to ectopic bone formation [68, 69],
demonstrating its osteogenic potential. The coagulation process and a simultaneous proin‐
flammatory reaction are phylogenetically connected [70]. During evolution, the closure of a
breached outer shell and the defense against possible pathogenic intruders were performed
by one cell, the amebocytes, capable of clotting and a defensive immune response. This
connection has survived evolutionary diversification of the clotting system and the immune
system—both reactions still occur simultaneously upon bleeding. The amebocytes can still be
found today in living fossils, such as the horse shoe crab [70]. Their immune response is so
potent that it is used to monitor endotoxin levels within solutions by pharmaceutical compa‐
nies. The limulus amebocyte lysate (LAL) test is capable of detecting contaminations as low
as one part per trillion [71]. In evolutionary younger organisms, this highly effective immune
cell is being replaced by a whole array of immune cells, which can be divided into an innate
immunity and an adapted immunity, the latter is only found in vertebrates (Figure 6). Each of
these is composed of various different cells: macrophages, neutrophils/granulocytes, mast
cells, natural killer cells, dendritic cells and the complement system belong to the innate
immune system, whereas T and B cells and the humoral immunity belong to the adaptive
immune system. The cells of the adaptive immune system provide their host with a long lasting
and protective immunity by maturing from naïve T and B cells to effector cells, when they
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come in contact with their cognate antigen, and in some cases to memory cells, which allow a
rapid immune response upon recurrent infection with an antigen previously encountered by
the host. It has to be pointed out that the immune system is not only a barrier for extracellular
microbes but also a regulatory system for body homeostasis. The immune system senses
alteration in the environment, for instance damaged or aged cells [72, 73], expressing Toll-like
receptors and other pattern-recognition receptors (PRRs).

Figure 6. Diversity of cells of the immune system. Cells from the bone marrow give rise to the immune cells of the
innate and adaptive immune system and also to the osteoblasts and osteoclasts of the skeletal system.

During fracture healing, both the cells of the innate and the adaptive immunity are involved,
and immune cells play essential roles during all the fracture healing phases [74–77]. The initial
inflammatory reaction ensuing upon hematoma formation initiates the healing cascade and
thus can significantly affect the healing outcome [33, 34]. This initial inflammatory reaction is
characteristic for bone, tightly controlled and different from other tissue healing with scar
formation [32]. In fracture repair, the anti-inflammatory signaling is up-regulated between 24
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and 36 hours after injury to terminate the proinflammatory reaction needed to attract necessary
cells to the injury side [32, 33]. In parallel, the angiogenic signaling is up-regulated to initiate
the essential revascularization process. The timely down-regulation of the initial proinflam‐
matory reaction has been shown to be important as a prolonged proinflammatory reaction
delays the bone healing process [29, 33].

The complexity of the initial immune reaction becomes even more apparent when considering
cytokines expressed by immune cells during the different stages of the bone healing cascade.
Tumor necrosis factor-α (TNF-α) has been reported to peak 24 hours after injury and return
to baseline levels afterwards. During the remodeling phase, TNF-α shows a second expression
peak during normal bone healing [64]. It is suggested that the first wave is due to activated
tissue-resident cells, like macrophages, triggered through PRRs, and the second wave directly
and indirectly by activated T cells. Looking closer into the role of this factor during bone healing
is has been shown that too little, but also too much TNF-α leads to a delay in bone healing [78–
80]. This demonstrates that the cytokine pattern has to be tightly controlled during the
regenerative healing cascade to lead to a satisfactory healing outcome. Interleukin (IL)-17 is
another cytokine that has been acknowledged to influence bone formation. On one hand, this
cytokine has been reported to enable osteoblast formation [81], thus supporting bone forma‐
tion; on the other hand, in the context of osteoporosis treatment, evidence occurred that IL-17
furthered osteoclastogenesis [82], thus supporting bone degradation. Contradictory reports
can also be found for IL-6, which enhances fracture healing [83, 84] but reduces the mechanical
strength of noninjured bone [85]. The microenvironment seems to be highly important for
determination of the effect the cytokines have on the bone healing process, a fact that indicates
the difficulties in using inflammatory cytokines to improve bone healing. The balanced
immune response is highly important for a successful bone regenerative cascade [32, 33, 67].

Upon injury and disruption of the blood vessels, the nutrient and oxygen supply as well as
the transport of metabolic waste is interrupted. The early tissue in the fracture gap consisting
of the hematoma becomes hypoxic because oxygen is no longer provided by the vasculature.
Therefore, cells trapped in the hematoma have to switch towards an anaerobic energy supply.
The use of the remaining glucose in glycolysis to produce adenosine triphosphate (ATP), the
energy molecule of the cellular metabolism, without the consecutive citrate cycle, results in
lactate, an acid that consecutively lowers the pH value during the initial healing phase.
Simultaneously, the sodium and potassium concentrations rise. These conditions present a
milieu that is difficult for some cells, such as progenitor cells [86]. However, innate immune
cells are well equipped to deal with these conditions and thus can be seen as the first responders
to an injury. They express a range of cytokines that attract scavenger cells to clear the detritus
that ensued upon tissue disruption and also direct the cells needed for the regenerative process
towards the injury side. They readily switch from an aerobic energy supply towards an
anaerobic and are often activated upon injury. Not only macrophages but also some T cell
subsets are the most important actors during this first response [87, 88]. Hypoxia is a strong
inducer of hypoxia inducible factor 1α (HIF1α), a transcription factor that is important for
revascularization, cell migration, energy metabolism and growth factor expression, and
therefore involved in the regenerative bone healing cascade [89]. HIF1α is expressed by most

The Role of Immune Reactivity in Bone Regeneration
http://dx.doi.org/10.5772/62476

179



innate and adaptive immune cells, including macrophages and lymphocytes; they stabilize
HIF1α and are being influenced by HIF1α in their immune cell function [90].

The swift up-regulation of a proinflammatory reaction upon injury activates immune cells,
which are capable to withstand the unfavorable environment and initiate the healing cascade
through a very specific and highly controlled release of cytokines. Hypoxia is an important
trigger for the transcription factor HIF1α that in turn initiates gene expression to instigate
revascularization. For this process to succeed, effective anti-inflammatory signaling has to
begin to terminate the initial proinflammatory reaction. During this initial phase, the track for
a successful healing is thus determined, and it becomes apparent that a skewed first reaction
leads to a delayed healing by consecutively retarding the following healing steps.

2.5. Challenging immune constraints

The interdependency of the immune and skeletal system indicates that there is a change in the
interaction as the immune system changes with the advancement of age. Due to the memory
function of the adaptive immunity in vertebrates, the naïve T and B cell population diminishes
upon aging, whereas the compartment of memory T and B cells grows. More and more
lymphocytes encounter their antigens and the library of known pathogens enlarges. Recent
studies could show that CD8 positive terminally differentiated memory and effector cells
(CD8+ TEMRA cells) have a negative impact on bone healing and osteogenic differentiation of
stem cells [91, 92]. Elderly people with a longer exposure time to antigens thus are prone to
experience delayed healing.

Mice, a common laboratory animal to investigate bone healing, are mostly kept under sterile
conditions. If these animals are housed under less sterile conditions, their immune cell
composition changes so that after 4 weeks of semi-sterile housing the percentage of memory
and effector (CD8+) T cells was markedly enhanced. If bone healing is compared between
sterile raised mice and those exposed mice, our group could show that the regenerative
capacity was reduced [91, 93]. This is an important aspect that should be kept in mind during
future research questions, which are analyzed in mice.

Nonsteroidal anti-inflammatory drugs (NSAIDs) offer pain relief and are commonly used also
on fracture patients. As the name already indicates, these selective cyclooxygenase-2 (COX-2)
inhibitors have anti-inflammatory functions. After reviewing the importance of the initial
inflammatory reaction, the question arises whether this pain medication could delay fracture
healing or not. Indeed there are numerous reports that state that NSAIDs delay healing [94–
98]. The effect, however, depends on the dose and time frame of application and seems to be
more pronounced in older nonselective anti–COX-2 agents [99]. Clinically, NSAIDs are a
valuable alternative to opioids (painkillers directly addressing the nervous system) and still
remain in use also in fracture patients for short-term pain relief.

Several diseases have also been reported to delay bone healing through a changed immune
response. Diabetic-related delay of fracture healing has been linked to higher TNF-α levels
[100]. A weakened immune response in diabetic patients results in a dampened chemotactic
function and defective macrophage activity—two factors that are needed in a successful bone
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healing cascade [101]. A systemic disease with a high impact on the immune system is human
immunodeficiency virus (HIV), and these patients have a bone phenotype with a high
prevalence of osteoporosis and fragility fractures [102]. The impact on fracture healing,
however, is unclear and difficult to determine due to the highly active antiretroviral therapy
that these patients receive [102, 103]. Transplant patients receiving severe immune suppressive
medication also show a higher risk for fractures and delayed healing outcomes. In contrast to
these examples – where the immune system is weakened – conditions where a patient has a
heightened immune answer or is already in a chronic proinflammatory systemic state, such
as rheumatoid and arthritis patients, the prolonged proinflammatory reaction can result in
delays in fracture healing [104–106].

Currently, the patient’s immune status is not being evaluated when a fracture treatment is
considered. However, this could help in the future to stratify patients who would benefit from
an immune modulatory intervention to prevent a delay in fracture healing. This would
especially be true in elderly patients because being bed-ridden for longer periods of time
enhances frailty considerably.

2.6. Specific immune cell subsets that have been identified as important players in the bone
regenerative process

In fracture healing, immune cells from the innate immune system and from the adaptive
immune system are involved with specific and essential roles. Main cell types of the adaptive
immunity are B and T cells with highly specific antigen receptors. Another important aspect
of the adaptive immune system is its memory that enables its fast reaction towards recurring
pathogen invasion. Adaptive immune cells can be activated not only through their antigen
receptors, but also probably more important for the bone healing process through signals
released by the innate immune system. From the innate immune system, especially macro‐
phages have been in the current focus of osteoimmunology.

2.6.1. Macrophages

Macrophages are an important part of the innate immune system; they are among the first
responders in case of an injury. Not only do they prevent pathogen invasion, but they also
help in clearing ensuing cell debris [107]. However, their role in bone healing is even more
complex and even today we have not yet unraveled their participation completely. Tissue-
resident macrophages have been determined as key players in the orchestration of the recovery
process towards a re-establishment of tissue integrity [108]. It was only in 1992 that it was
recovered that macrophages are capable of a phenotype change from a proinflammatory type
towards a prohealing phenotype [109]. The proinflammatory phenotype is named M1 or
classically activated macrophage, and the second phenotype is termed M2 or alternatively
activated macrophage. Since then, these “M2” macrophages have been associated with the
resolution of wound healing in vivo in chronic leg ulcers [110], atherosclerotic lesions [111],
traumatic spinal cord injury [112] and inflammatory renal disease [113]. It turned out that the
M2 population is more divers and therefore subclassifications have been introduced: M2a
(anti-inflammatory), M2b (immune-regulatory) and M2c (remodeling) [114]. In bone healing,
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the prominent macrophage phenotype during the initial phase is M1. Upon attenuating of the
proinflammatory phase, the macrophage phenotype changes towards the M2 phenotype [77].
In a proof of concept study in mice, we were able to show that an induction of the M2 phenotype
early in the fracture healing cascade can enhance bone healing [77].

2.6.2. Regulatory T cells

The T cell population is highly divers and probably pleiotropic as well as interchangeable.
Among the T cells, there seem to be subpopulations supporting the fracture healing process
and also other subpopulations, which have negative effects on the healing process. CD4+ and
CD8+ T cell subsets have been addressed in this context. CD4+ T cells have been shown to
increase osteogenic differentiation in human mesenchymal stem cell cultures in in vitro assays
using their conditioned medium, whereas this effect was missing when observing CD8+ T cells
[115]. The osteogenic effect of CD4+ T cells was further supported through their positive effects
during wound healing [116], however without a more specific determination of the responsible
CD4+ T cell subset. In later studies, regulatory T cells came more and more into the focus as a
CD4+ T cell subset with positive effects on bone healing. Mice with an increased percentage
of regulatory T cells showed higher bone mass and decreased bone resorption when compared
to wild type mice [117, 118]. Regulatory T cells support osteoblast differentiation and have a
negative impact on osteoclast differentiation and function [119]. In a skull defect model in mice,
it was possible to enhance bone healing through the addition of regulatory T cells in combi‐
nation with applied autologous bone graft [120]. Currently under investigation is the possi‐
bility of a direct interaction of regulatory T cells and bone-forming cells or their progenitor
cells, the mesenchymal stromal/stem cells. This interaction is supported by the fact that
mesenchymal stromal/stem cells, as osteoblast precursors, and regulatory T cells use similar
suppression mechanisms for an immune response [121]. The direct interaction between
regulatory T cells and bone-forming cells as well as mesenchymal stromal/stem cells could
proceed through coordination of the CD39-CD73-(adenosine)-ADOR pathway. This puriner‐
gic signaling would potentiate the differentiation of mesenchymal stromal/stem cells and thus
facilitate bone regeneration [122]. Another direct interaction between osteoblasts and regula‐
tory T cells could be the induction of IDO (indoleamine 2,3-dioxygenase) and HO-1 (heme
oxygenase-1) by regulatory T cells [123] or the fact that regulatory T cells can inhibit CD40L
and thus regulating the RANKL-OPG balance in favor of osteoblast differentiation [124].

2.6.3. T helper 17 cells

The lead cytokine expressed by Th17 (T helper 17) is IL-17. The dual effect of IL-17 on
osteoclasts and osteoblasts has been mentioned before. However, these cells are of interest as
novel therapeutics targeting IL-12, IL-23, IL-17, and IL-17 receptor and which are now used to
successfully treat psoriasis by either repressing Th17 differentiation (IL-12/IL-23) or by directly
targeting IL-17. Psoriasis has two manifestations, one in skin (psoriasis vulgaris) and one in
bone (psoriasis arthritis), and the immune modulatory treatment shows positive results in both
[125]. Th-17 cell differentiation is induced by IL-1β, IL-6 and TGF-β [126, 127], with TGF-β
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being responsible for an increase in responsiveness of Th17 cells to IL-23. IL-23 is necessary
for stabilization, survival and proliferation of Th17 cells [128]. This IL-23/Th17 axis is the target
of the immune modulatory therapies currently introduced. For example, a cytokine
neutralizing antibody against the p40 subunit of IL-23 inhibiting Th17 differentiation and
survival, which in consequence lowers IL-17 concentrations, underwent clinical trials [129,
130].

2.6.4. CD8 + TEMRA cells

A direct crosstalk between activated T cells and bone-forming cells can be assumed during the
healing process. Among these T cells, CD8+ TEMRA cells were confirmed to have a negative effect
on the bone regenerative process. High expression levels of TNF-α and interferon-γ (IFN-γ)
of CD8+ T cells decreased the osteogenic differentiation capacity in vitro [91]. CD8+ TEMRA cells
can be triggered to express these cytokines without antigen-presenting cells and do not
necessarily need costimulatory molecules like CD80/86-CD28 but are activated by bystander
responsiveness [131–133]. These cells accumulate in the fracture hematoma due to their tissue
homing qualities and they occur in higher numbers in patients experiencing a delayed healing
[91]. In the clinical setting, the recognition of a delayed or missing bone healing is so far only
possible when these healing disturbances become visible in X-ray or computed tomography
evaluations of the fractured bone. An early identification of patients at risk of a delayed or
disturbed fracture healing is still missing. CD8+ TEMRA cells could proof to be a marker for
delayed healing risk in patients, since these cells also show elevated values in peripheral blood.
Predicting patients with an extended need for special fracture treatment could thus just be
done by analyzing the CD8+ TEMRA percentage in peripheral blood early on in the healing
process.

2.6.5. Outlook

Not only the interaction of the skeletal and immune system in fracture healing is not well
understood so far, the immune reaction in itself is also still not unraveled. Aside from the
complexity of the cytokine pattern guiding the regenerative process, the plasticity of the
immune cells is still a vast challenge: M1 macrophage phenotype changing towards M2, Th1
changing towards Th2 response, regulatory T cells changing into Th17 cells and vice versa, to
mention only a few aspects that still have to be understood. First approaches have been
successful in influencing the fracture treatment through immune modulation (NSAIDs or IL-23
neutralization antibodies) but the possibilities are far from being exploited. A stratification of
patients can help to decide, which treatment is optimal for which patient, especially with
respect to the current immune status of these patients. With the numbers of delayed healing
fracture patients still vastly unknown and possibly massively underestimated, and the
demographic prognostic of a substantial increase in the elderly population during the next
years, the need for further treatment options is rising together with the necessity of enhanced
basic research in the field of osteoimmunology.
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