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Abstract

Three  different  Particle  Swarm  Optimization  (PSO)  algorithms—standard  PSO,
stochastic PSO (SPSO) and differential evolution PSO (DEPSO)—are applied to solve
the inverse geometry design problems of radiative enclosures. The design purpose is to
satisfy a uniform distribution of radiative heat flux on the designed surface. The design
surface is discretized into a series of control points, the PSO algorithms are used to
optimize the locations of these points and the Akima cubic interpolation is utilized to
approximate  the  changing  boundary  shape.  The  retrieval  results  show  that  PSO
algorithms can be successfully applied to solve inverse geometry design problems and
SPSO achieves the best  performance on computational  time.  The influences of  the
number of control points and the radiative properties of the media on the retrieval
geometry design results are also investigated.

Keywords: Particle Swarm Optimization algorithm, inverse geometry design, radia‐
tive heat transfer, SPSO, DEPSO

1. Introduction

Radiative heating devices are encountered in various industrial fields,  such as industrial
boilers, spacecraft,  infrared reflecting ovens, metallurgical equipment, and so on and the
design  of  radiative  enclosure  has  a  direct  impact  on  security  issues  [1].  Inverse  design
technique is a new method in recent years, whose solving process is to establish an objective
function according to the design requirements at first, and then optimize the objective function
by some optimization methods, and achieve the pre-specified purpose finally. Inverse design
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technique has the advantages of simple process, short design circle, good optimization results,
etc., and it has got more and more attentions and applications.

Inverse design problems can be divided into two categories according to the design prereq‐
uisites [2]. One is inverse boundary design problems, in which the geometry shape of the
radiative enclosures is fixed and the boundary conditions are need to be deigned [3–6]. The
other is inverse geometry design problems, where the boundary conditions are predetermined
and the geometry shape of the design surface needs to be designed [7, 8]. For the reason that
the geometry shapes of the boundaries of radiative enclosures are different at each iteration
and the grids in the computational domain must be re-meshed in every iterative calculation,
the inverse geometry design of radiative enclosures is the most complex inverse radiative
problem [2, 9].

During the last few decades, some inverse design techniques have been successfully used for
solving inverse geometry design problems. Howell et al. [10, 11] proposed inverse design ideas
and applied inverse Monte Carlo techniques, Tikhonov method, truncated singular value
decomposition (TSVD), Modified TSVD (MTSVD), artificial neural networks (ANN) and
conjugate gradient method (CGM) to solve the inverse design problem of a three-dimensional
industrial furnace, which greatly improved the practical design of thermal and environmental
systems. Franca and Howell [12] studied a transient inverse design problem that finding the
optimal location of a heater on the top surface of a three-dimensional enclosure to produce a
prescribed time-dependent temperature distribution on the bottom surface of the enclosure,
the TSVD method is used to regularize the ill-conditioned system of linear equations the pre-
specified temperature curve is obtained with an error of less than 1.0%. Tan et al. [13] applied
meshless method to solve the coupled conductive and radiative heat transfer problem in
heating devices, in which a series of nodes are used for discretizing the computational domain
to overcome the tedious re-mesh works, and CGM is adopted to optimize the height of the
adiabatic diffuse reflection surfaces and the geometry shape of the heating surface to satisfy
the required total heat flux on the pre-appointed region of the low temperature heated surface.
Sarvari and Mansouri [14] used CGM to minimize the objective function which is expressed
as the sum of square residuals between estimated and desired heat fluxes on the design surface
to satisfy the specified temperature and heat flux distributions. The radiative heat transfer
problem in the two-dimensional irregular enclosure filled with gray participating media with
uniform absorption coefficient is solved by discrete transfer method, the effect of optical depth
and angular refinement on the inverse design results are also investigated.

However, it can be found that most of the above researches about inverse geometry design
problems are solved based on the gradient-based methods. All these methods have the
common disadvantages that the computational process of getting the gradient is complicated
and the retrieval results are strongly depended on the initial guessed values. On the contrast,
intelligent algorithms can abolish the complex calculations about gradient and randomly
generate the potential solutions in the search space to overcome the drawback of depending
on the initial value. In recent years, some intelligent algorithms have been successfully applied
for solving inverse radiative problems, including PSO, genetic algorithm (GA), ant colony
optimization (ACO), difference evolution (DE), fruit fly optimization algorithm (FOA), to
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name a few [15–22]. Compared with conventional techniques, intelligent algorithms can obtain
much more potential solutions at each iteration and all searches are executed in parallel, which
greatly improved the computational efficiency, especially for solving some high dimensional
problems. Intelligent algorithms also have been successfully used to solve inverse design
problems. For example, Moparthi et al. [23] solved the coupled radiative and conductive heat
transfer problem in one-dimensional planar system based on finite volume method (FVM) and
lattice Boltzmann method (LBM) and applied GA to optimize the heater temperature to
produce the desired heat flux and temperature distributions on the design surface. The
retrieval results show that the temperature or heat flux of the heater surface has a significant
effect on the design surface condition, the medium properties and the distance between the
two surfaces. Amiri et al. [24] adopted modified discrete ordinate method to solve the radiative
transfer equation (RTE), the micro genetic algorithm (MGA) is employed to optimize the
objective function which is defined as the sum of the square of the difference between estimated
and desired heat fluxes on the design surfaces. The design purpose is finding the best number
and locations of the discretized heaters to meet the desired temperature and heat flux distri‐
butions on the design surface. Sarvari et al. [25] discretized the design surface into a series of
control points and used B-spline to approximate the geometry shape of the boundary, the MGA
is employed to optimize the locations of the control points to produce a desired heat flux
distribution on the temperature-specified surface. The effects of corresponding parameters on
the inverse design results are also investigated and the angular meshes are recommended as
Nθ × Nφ =10 ×10. In addition, the results indicate that optimizing the weights corresponding
to the control points can improve the quality of designed shape. However, the MGA has the
obvious drawback that the convergence velocity is relatively low.

The PSO algorithm is a kind of biologically inspired algorithm whose search process is similar
to foraging of birds and it was proposed in 1995 by Eberhart and Kennedy [26]. The physical
model of PSO is very simple and the computational program is easy to be implemented, it also
has strong robustness and achieves good performance on computational efficiency and
accuracy. In addition, PSO algorithm can well balance the global and local search of particles,
which enhance the global convergence of the algorithm. Farahmand et al. [27] investigated the
inverse geometry design of two-dimensional radiative enclosures with diffuse gray surfaces
based on the PSO and the retrieval results show that PSO algorithm obtains better performance
in satisfying the design goal based in terms of computational accuracy and CPU time compared
with MGA. However, the standard PSO algorithm also suffers from easily trapping into local
optima in solving high dimensional problems. In order to strengthen the applicability of PSO,
some improvements have been proposed and widely applied, including Stochastic PSO
(SPSO), Differential Evolution PSO (DEPSO), Multi Phase PSO (MPPSO), and so on. However,
to the authors’ best knowledge, there are few reports concerning about the applications of
improved PSO algorithms for solving inverse geometry design problems of radiative enclo‐
sures.

In this chapter, the application of PSO algorithms in solving inverse geometry design problems
of two-dimensional radiative enclosures filled with participating media is investigated. The
design goal is to satisfy a uniform distribution of radiative heat flux on the designed surface.
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The discrete ordinate method (DOM) with a body-fitted coordinate system is used to solve the
RTE. The standard PSO, SPSO and DEPSO algorithms are applied to optimize the locations of
the control points, and Akima cubic interpolation is adopted to obtain the boundary geometry
shape through these points. A typical inverse geometry design test is studied to demonstrate
the good performance of PSO algorithms and the effects of corresponding parameters are also
discussed.

The remainder of this chapter is organized as follows: the theoretical principles of PSO
algorithms are introduced in Section 2. The feasibility of PSO algorithms by four famous
benchmark functions is verified in Section 3. The inverse geometry design of two-dimensional
radiative enclosures and the influences of the number of control points and the radiative
properties of media on the inverse design results are investigated in Section 4. The main
conclusions of the researches in this chapter are summarized in Section 5.

2. Theoretical overview of PSO algorithms

Bird individuals will communicate with each other to share their information about food when
they are foraging, which can help birds find food faster. The advantages of cooperation of bird
swarm are much greater than the disadvantages of competition among bird individuals. Based
on the features of bird foraging behavior, Kennedy and Eberhart proposed PSO algorithm in
1995 [26]. The solving process of PSO algorithm is similar to the foraging behavior of birds,
and the corresponding relationships are shown in Table 1.

Bird foraging behavior PSO algorithm

Foraging domain of bird individual Searching space of each particle

Bird individual Particle

Flight speed of bird Moving speed of particle

Location of bird Location of particle, which represents a solution

of optimization problems

Location of food The best solution of optimization problems

Table 1. Corresponding relationships between bird foraging and PSO algorithm.

There are two dominant parameters in the PSO algorithm, namely, the speed and the location
of particles. The moving speed decides the direction and distance of the particles, and every
location of particles can be considered as the potential a solution of optimization problems.
PSO adopts a combination of local and global searches and shares the evolutionary information
among particle individuals to find the optimal solution.
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2.1. Basic PSO algorithm

At the beginning of the optimization of PSO, every location and velocity of particles are
randomly generated. During each iteration, there will be two extreme values. One is best
location that an individual particle found so far, which is called local best location. Another is
the best location that the whole particle swarm found so far, which is called global best location.
The velocity and location of each particle are stochastically accelerated according to these two
extremes and the evolutionary formula can be expressed as follows [26]

( ) ( ) ( ) ( ) ( ) ( )gi i i i it t c r t t c r t té ù+ = + × × é - ù + × × -ë û ë ûV V P X P X1 1 2 21 (1)

where Vi(t) and Vi(t + 1) represent the velocity of ith particle at iterations t and t+1, respectively,
and Vi ∈ [−Vmax, Vmax]. c1 and c2 are two positive constants called acceleration coefficient. r1
and r2 are two uniform random values in the range of [0, 1]. Pi(t) and Pg(t) indicate the local
best location and global best location, respectively. Xi(t) denotes the location of ith particle,
which is depending on the search experience of ith particle and surrounding particles. The
evolutionary formula of ith particle’s location is defined as [26]

( ) ( ) ( )i i it t t+ = + +X X V1 1 (2)

Figure 1. The evolution of particle’s location.

According to Eq. (1), we can find that the velocity of ith particle consists of three parts: the first
part on the right side is the current velocity of ith particle, which can counterpoise the local
search and the global search; the second part on the right side denotes the influence of the
search memory of ith particle, which makes individual particle has the ability of global search;
the third part on the right side indicates the influence of the cooperation among particles. The
updating process of the ith particle’ location is shown in Figure 1.

Inverse Geometry Design of Radiative Enclosures Using Particle Swarm Optimization Algorithms
http://dx.doi.org/10.5772/62351

47



Figure 2. The flowchart of the basic PSO algorithm.

The main procedure of PSO algorithm for solving optimization problems can be carried out
according to the following steps:

Step 1: Initialization: Randomly initialize the location and the velocities of particle of every
particle in the searching space, input the number of particle swarm, the maximum iteration
numbers tmax and the stop criterion ε, etc. Set the current iteration as t=1.

Step 2: Fitness evaluation: Evaluate each particle’s fitness according to its location and
determine the local best location Pi(t) and global best location Pg(t).
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Step 3: Updating: Update the velocity and the location of each particle according to Eqs. (1)
and (2), respectively. Calculate the new objective function value of each particle and update
the local and global best locations Pi(t) and Pg(t).

Step 4: Comparison: Compare the objective function value of each newly obtained particle
with the corresponding values at the last iteration. If the new objective function value is better
than the one in the last generation, then the new location and velocity of this particle is updated.
Otherwise, the new location is abandoned.

Step 5: Repeating: Check whether one of the following two stop criterion is reached: (1) the
objective function value is less than the value of ε, and (2) the iteration number reaches the
maximum iteration number. If so, go to the next step; otherwise, go to Step 3.

Step 6: Update of iteration number: Update the number of iteration from t to t+1.

Step 7: Termination of iteration: Output the global best optima and its corresponding results
of optimization problems and then stop the calculation.

The flowchart of the basic PSO algorithm is shown in Figure 2.

However, there are some obvious shortcomings in the basic PSO algorithm, such as slow
convergence, easy to fall into local optimum, and even the velocities tend to be infinity in some
occasions. Thus, many modifications have been proposed to overcome these drawbacks.

2.2. Standard PSO algorithm

There are two important capabilities in PSO algorithm, namely exploration and exploitation
of particles. Exploration is the phenomenon that particles leave the original orbit and search
for new space. Exploitation is the phenomenon that particles look for better locations along
the original track. In order to better take advantage of these two search way, Shi and Eberhart
put forward the standard PSO algorithm on the basis of basic PSO in 1998 [28], in which an
inertia weight coefficient w is introduced to control the impact of the current velocity on the
next velocity. The velocity formula of ith particle can be expressed as [28]

( ) ( ) ( ) ( ) ( ) ( )gi i i i it w t c r t t c r t té ù+ = × + × × é - ù + × × -ë û ë ûV V P X P X1 1 2 21 (3)

where w is the inertia weight coefficient, which can directly affect the balance between the
global and local exploration abilities. At the initial stage of the search process, a big inertia
weight coefficient is recommended to improve the global exploration ability in the relatively
large space; whereas the inertia weight should be reduced with the iteration number increases
to strengthen the local exploitation ability. It is worth pointing that a linearly decreasing inertia
weight coefficient can successfully prevent particles from oscillating near the global best
location [29]. Therefore, the inertia weight coefficient can be defined as
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( )max max min
max

tw w w w
t

= - × - (4)

Comparing Eq. (1) with Eq. (3) we can find that basic PSO algorithm is a special circumstance
of standard PSO algorithm that inertia weight is set as w=1. The searching efficiency is
significantly improved by introducing inertia weight w. However, the proportional relation of
particle velocities at every generation is not all the same, and the standard PSO algorithm can’t
be successfully applied for solving some complicated optimization problems. For breaking
through the limitation of PSO, many modified techniques have been developed out and widely
applied in engineering fields.

2.3. Stochastic PSO algorithm

In order to overcome the drawback that PSO algorithm converges too early and make sure to
reach the goal of global convergence, Zeng and Cui proposed SPSO algorithm in 2004 [30, 31],
in which a stopped changing particle is utilized to improve the global searching ability of
particle swarms.

In SPSO algorithm, the inertia weight coefficient is set as w=0. Hence, the velocity of ith particle
at t+1 iteration is determined by three parameters of t iteration, namely Xi(t), Pi(t) and Pg(t).
The new velocity of ith particle can be expressed as [30]

( ) ( ) ( ) ( ) ( )gi i i it c r t t c r t té ù+ = × × é - ù + × × -ë û ë ûV P X P X1 1 2 21 (5)

According to Eq. (5), it can be found that the local searching ability of SPSO is increased
compared with standard PSO. However, the global searching ability is reduced significantly.
In order to further strengthen the global searches of SPSO, the algorithm randomly generates
a particle in the searching space whose location is Xj(t + 1), and other particles’ locations are
updated based on the Eq. (5). The whole amending process can be expressed by the following
equations

( )
( ) ( )

( ) ( ) ( )
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LL

1

1
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1
(6)

After above updates, the following criterions are executed:

(1) If Pg = Pj, which demonstrates that the random location Xj is the global best location. In this
situation the jth particle will not be updated on the basis of Eq. (5) and the algorithm will
randomly generate a location Xj in the searching space at the next iteration. At the same time,
the velocities and locations of other particles are updated according to Eqs. (5) and (2) after Pg

and Pj are updated, respectively.
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(2) If Pg ≠ Pj and Pg has not been updated, which indicates that there is no better global best
location found, compared with the last iteration, then all the particles’ the velocities and
locations are updated based on the Eqs. (5) and (2), respectively.

(3) If Pg ≠ Pj and Pg has been updated, which demonstrates that there is a location of kth particle
(k ≠ j) meets the requirement Xk (t + 1)=Pk =Pg , namely the local best location of kth particle is
the global best location and it is better than the global best location at the last iteration. In this
situation, the kth particle stops evolving and it is used for storing global optima. Other particles’
velocities and locations of other particles are updated according to Eqs. (5) and (2) after Pg and
Pj are updated, respectively.

Through the above analysis we can find that there is at least one particle’s location reaches the
global best location at a particular iteration, which indicates that at least one particle is
randomly generated at each iteration. Therefore, SPSO algorithm has been proved with strong
global search ability.

2.4. Differential evolution PSO algorithm

Differential Evolution (DE) algorithm adopts simple differential operation among potential
solutions to produce new candidate solution, which is a parallel, direct and stochastic search‐
ing technique. It was first proposed for solving Chebyshev polynomials and global optimiza‐
tion problems over continuous spaces by Storn and Price in 1995 [32]. Taking a cue from DE,
the mutation operation is introduced into PSO algorithm to overcome the drawback of
trapping in local optima, which is called DEPSO.

In DEPSO algorithm, the differential evolution operator is introduced to increase the diversity
of particle swarms which is defined as

( ) ( )r rt tb c é ù= -ë ûX X
1 2 (7)

where χ is the differential mutation operator which controls the magnification of differential
variation Xr1(t)−Xr2(t) and it is usually set as a constant in the interval [0, 2]. r1 and r2 are two
integers which are randomly chosen in the interval [1, M] and they are not equal to the index
i. Hence, the location evolution of ith particle can be expressed as

( ) ( ) ( ) ( )mini i it t t C Fb+ = + + -X X V1 (8)

where C represents a preset constant value which satisfies C ≤ Fmin, Fmin indicates the minimum
objective function value at the current iteration. The differential evolution term can force the
particle to change if only C ≠ Fmin, which can effectively prevent PSO algorithm from falling
into local optima.

However, the location obtained by mutation operation maybe a worse result which will cause
a bad influence on the search of other particles. In order to make sure the rapidity and stability
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of DEPSO algorithm, the following judgment should be executed before the location is
updated:

(1) If the fitness value of the new location is better than the fitness value of the earlier location,
which demonstrates the mutation is successful. Then the location of ith particle is updated
according to Eq. (8).

(2) If the new fitness value is worse than before, which indicates this mutation is failed. Then
the location of ith particle is updated according to Eq. (2) and the mutation operation of ith
will continue at the next iteration until the mutation is successful.

In addition, there is a significant difference between DEPSO and basic PSO that the velocities
of particles are not limited in the searching process, which can increase the convergence rate.

3. Simulation test of PSO algorithms

In order to test the performance of the above PSO algorithms, four benchmark optimization
functions are used for verification whose details are shown in Table 2. The parameters in PSO
algorithms are set as follows: the number of particle swarm population is set as M =50, the
maximum velocity is set as Vmax =3.0, the inertia weight coefficient is chose according to Eq.
(4). The acceleration constants are set as c1 =1.2 and c2 =0.8 in SPSO and DEPSO algorithms,
whereas c1 =2.0 and c2 =2.0 in standard PSO algorithm, respectively. The objective functions are
set as the same as the test functions and the iteration stops upon the fitness value reaches the
maximum iteration number tmax=1000 or the objective function value is less than 10-30. The test
results of the four functions with dimension n=2 are shown in Figure 3. Table 3 lists the average
objective function values and the corresponding mean squared errors for these four benchmark
functions with 1000 independent runs. As shown, both the SPSO and DEPSO algorithms
achieve better performance than the standard PSO algorithm in terms of computational
accuracy.
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( ) 2
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1
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i
i

f x x
=
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i i
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= - +å
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n

i i i
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( )

( )
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1 2
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+ -
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Table 2. Details of four benchmark functions.
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Figure 3. The images of (a) Sphere function, (b) Rastrigin function, (c) Rosenbrock function and (d) Schaffer function
with dimension n=2.

Function Dimension PSO SPSO DEPSO

Sphere 10 5.94×10-28±3.46×10-27 8.33×10-31±1.67×10-31 8.25×10-31±1.91×10-31

20 2.82×10-13±7.76×10-13 4.80×10-17±3.63×10-16 2.98×10-25±1.54×10-24

30 5.27×10-8±8.6910-8 1.23×10-6±3.97×10-6 7.30×10-15±2.34×10-14

Rastrigin 10 4.82×10-28±1.82×10-27 8.35×10-31±1.62×10-31 6.87×10-31±2.16×10-31

20 2.68×10-13±5.52×10-13 7.22×10-17±9.23×10-16 2.03×10-25±1.46×10-24

30 5.39×10-8±7.56×10-8 1.48×10-6±4.34×10-6 7.08×10-15±6.66×10-14

Rosenbrock 3 3.36×10-8±8.39×10-8 3.53×10-17±1.06×10-16 2.95×10-16±9.21×10-16

5 5.62×10-2±6.02×10-2 4.12×10-2±1.99×10-2 1.37×10-2±2.85×10-2

10 3.18×100±1.56×100 4.62×100±3.45×100 5.78×100±2.61×100

Schaffer 2 5.11×10-2±5.61×10-2 9.87×10-4±2.92×10-3 4.66×10-4±2.60×10-3

Table 3. The retrieval results of three test functions with 1000 independent runs.
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4. Inverse geometry design of two-dimensional radiative enclosures

4.1. Description of the inverse geometry design problem

Considering a radiative equilibrium problem in two-dimensional irregular enclosures filled
with participating media whose schematic diagram is shown in Figure 4. The curve EF
represents the design surface and the design purpose is to produce a uniform distribution of
radiative heat flux on the design surface. The bottom surface AD is the heating surface which
can considered as the radiative heat source and its temperature is fixed as TS. The two side
surfaces AB and CD are cold with temperatures of 0K.

Figure 4. Physical model of inverse geometry design.

In order to optimize the geometry shape of the design surface to meet the specified require‐
ment, the objective function (being equal to the fitness function in PSO algorithms) is defined
as the square residuals between the estimated and average dimensionless radiative heat flux
values which can be expressed as

( )obj w avi

N

i

F Q Q
=

= -å
2

1
(9)

where N is the number of the computational node on the design surface, and Qwi and Qav are
the dimensionless radiative heat flux of the ith node and average value on the design surface,
respectively. The iteration stop criterion of PSO is defined as

objF e< (10)

where ε is a small positive value. The smaller the value of ε is, the better the homogenization
degree will be.
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To evaluate the optimization results, the relative error is defined as

w av
rel

av

%i
Q Q
Q

e
-

= ´100 (11)

4.2. Akima cubic interpolation

The design surface is discretized into a series of control points, and Akima cubic interpolation
is used to approximate the geometry shape of the surface in optimization process. Akima
interpolation is formulated by a cubic polynomial between two control points. First, the
prerequisite is introduced as [33]
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(12)

where gk is the slope of the curve at the position xk, which can be defined as [33]
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(13)

and the function lk can be expressed as [33]

lk =
yk +1 − yk
xk +1 − xk

(14)

At the endpoints, the value of the function lk can be defined as [33]

-

- - + -

ì = - = -ï
í = - = -ïî

0 1 2 1 0 0

1 2 1 1

2 , 2
2 , 2

d d d d d dN N N N N N

l l l l l l at the left endpoint
l l l l l l at the right endpoint (15)

If the above equations are satisfied, then the cubic polynomial in the subinterval [xk , xk+1] can
be determined as [33]
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= + - + - + -2 3
1 2 3 4( ) ( ) ( ) ( )k k kY x C C x x C x x C x x (16)

where C1, C2, C3, and C4 are polynomial coefficients, which can be calculated as [33]
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(x, y) (x1, y1) (x2, y2) (x3, y3) (x4, y4) (x5, y5) (x6, y6)

Case 1 (0.0, 1.0) (0.2, 1.2) (0.4, 1.5) (0.6, 1.5) (0.8, 1.2) (1.0, 1.0)

Case 2 (0.0, 1.0) (0.2, 1.5) (0.4, 1.3) (0.6, 1.3) (0.8, 1.5) (1.0, 1.0)

Case 3 (0.0, 1.0) (0.28, 1.2) (0.41, 1.4) (0.67, 1.1) (0.88, 1.3) (1.0, 1.0)

Table 4. Coordinates of control points of three test cases.

Figure 5. Curve fitting results by means of Akima cubic interpolation.

In order to test the performance of the Akima cubic interpolation, three interpolation cases are
applied, in which six specified points are used as control points whose coordinates are shown
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in Table 4. The curves in Figure 5 indicate the Akima cubic interpolation can successfully
applied for geometry shape fitting.

4.3. Discrete ordinate method with a body-fitted coordinate

The boundary shape changes with the optimization of the design surface and the computa‐
tional domain must be re-meshed, which greatly increase the solving difficulty of the inverse
geometry design problems. In addition, the forward radiative heat transfer problem cannot be
precisely solved by the normal numerical method. For the purpose of fitting the irregular
boundary shape, the DOM with a body-fitted coordinate system is adopted to solve the RTE.
For the participating media, the forward can be written as [34]

( )
p

k
b k

p
¶

= - + + F W
¶ òs

e a b 4

ˆ( , ) ˆ ˆ ˆ ˆ( , ) ( ) ( ) ,
4 i i i

I s I s I s I d
s
s s s s s (18)

which is an integro-differential type, where I is the function of position s and direction ŝ. βe,
κa, and κs are the extinction, absorption, and scattering coefficients of media, respectively. The
Φ(ŝi, ŝ) is the scattering phase function between incoming direction ŝi and scattering direction
ŝ, which can be defined as Φ =1.0 + a cos (ŝi ⋅ŝ). The coefficient “a” are different for different
scattering characteristics of media and values are a=0, a=1 and a=-1 for the isotropic scattering,
the forward scattering and the backward scattering of media. The forward radiative heat
transfer problem in the irregular enclosures is solved by using the computationally feasible
DOM with a body-fitted coordinate system in this research. The 2D RTE discretized by the
DOM can be expressed as [34, 35]
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where αm and βm are the direction cosines of the discrete direction m. s refers to the spatial
position, w is the quadrature weight. The radiative boundary condition can be directly imposed
as follows [34]
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where εw is the emissivity of boundaries, Ib,w is radiative intensity of blackbody boundaries,
nw represents the unit normal vector on the boundary, and s denotes the direction of radiative
transfer.

The Jacobian matrix is used for coordinate transformation to solve the radiative heat transfer
in irregular enclosures
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The spatially discretized RTE with a body-fitted coordinate system can be expressed as
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where P represents the central node of the control volume. The subscripts e, w, n, and s
represent the eastern, western, northern and southern boundaries around P, respectively.

The step scheme is applied to solve the above equations, and Eq. (22) can be expressed as

= + + + +m m m m m m m m m m m
P P E E W W N N S S Pa I a I a I a I a I b (23)

where the subscripts E, W, N, and S represent the central node of eastern, western, northern,
and southern control volumes around control volume P, and
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Eq. (24) can be expressed in matrix form
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A =BY (25)

where A represents the five-diagonal non-symmetric coefficient matrix, Ψ represents the
vector that consists of the variables Im at grid nodes, and B represents the vector that consists
of the variables bm on the right side of Eq. (23). The conjugate gradients stabilized (CGSTAB)
method is adopted to solve the final discretized RTE because of its stability and fast conver‐
gence rate [35].

Figure 6. The schematic diagram of grids in computational domains.

Figure 7. The dimensionless radiative heat flux distribution on the bottom boundary for different absorption coeffi‐
cients.

Consider a non-radiative equilibrium problem in the two-dimensional irregular enclosure
filled with participating media. The four boundaries are cold surfaces whose temperature is
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0K and all the boundaries are assumed as blockbody. The temperature of media is set as Tg,
which can be considered as the heat source. The computational grids are meshed as 10 × 10
and the schematic in the computational domain is shown in Figure 6. The radiative heat
transfer problem for different absorption coefficients in the radiative enclosure is solved by
the body-fitted DOM and the retrieval results are compared with the results obtained by FVM
in Ref. [36] which is shown in Figure 7. The curves show that the retrieval results achieve good
agreements with FVM, which verified the accuracy and reliability of the computational
program for solving radiative problems in irregular enclosures.

4.4. Inverse design results and discussions

The inverse geometry design model in Section 4.1 is considered and the standard PSO
algorithm is abbreviated as PSO if there is no special instruction. The initial shape of the
enclosure is rectangular, whose size is set as L x × L y =1.0×1.0 m. The absorption and scattering
coefficients of media are set as κa =2.0 m-1 and κs =0.5 m-1, respectively. The parameters in the
PSO algorithms are set as the same as the ones in test cases of Section 3. The stopping criteria
are set as follows: (1) the objective function value is less than 10-7, (2) the iteration times reach
a maximum of 1000 and (3) the fitness value remains unchanged in consequent 100 iterations.
The initial and final geometry shape of the design surfaces and their dimensionless radiative
heat flux distributions are shown in Figure 8(a) and 8(b), respectively. The curves demonstrate
that a uniform distribution of radiative heat flux on the design surface is obtained by means
of PSO algorithms. Figure 8(c) shows the relative error distributions of the dimensionless
radiative heat flux on the design surface. The average relative errors are 0.0310%, 0.0234% and
0.0279%, and the maximum relative errors are 0.0728%, 0.0540% and 0.0807% for PSO, SPSO
and DEPSO algorithms, respectively. Overall, the retrieved results clearly reveal that the
specified requirement of producing a uniform radiative heat flux distribution on the design
surface can be obtained by PSO algorithm.
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Figure 8. (a) Initial and final geometry shape of the design surface, (b) dimensionless radiative heat flux distribution on
the design surface, and (c) relative error distributions of dimensionless radiative heat flux on the design surface, of a
two-dimensional radiative enclosure.

Algorithms CPU
time (s)

Fitness values Average relative
error (%)

Maximum relative
error (%)

PSO 40037 7.28×10-8 0.0313 0.0737

SPSO 31572 4.05×10-8 0.0244 0.0518

DEPSO 36944 5.62×10-8 0.0275 0.0669

Table 5. Comparison of inverse design results by PSO, SPSO and DEPSO algorithms.
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In view of the random characteristic of intelligent algorithms, all the tests are repeated 50 trials
to compare the performance of PSO algorithms. Table 5 shows the comparison of the results
obtained by PSO, SPSO and DEPSO algorithms. It can be found that all the PSO algorithms
have reached the special design requirement and both SPSO and DEPSO achieve better
performance than the initial PSO in terms of computational accuracy and efficiency.

Figure 9. (a) Geometry shape of the design surface and (b) dimensionless radiative heat flux distribution on the design
surface by means of SPSO algorithm for different numbers of control points.

In order to enhance the computational efficiency of inverse geometry design problems, the
effects of corresponding parameters are investigated in this study. For the fact that the design
surface is discretized into a series of control points in the inverse design process, the number
of control point has a direct impact on the inverse geometry design results. The radiative
physical parameters of media are kept as the same as the above typical example and the
numbers of control point are set as Nd=1, 3, 5, and 7, respectively. The SPSO algorithm is
adopted as the inverse design method and the initial and optimized geometry shape and
dimensionless radiative heat flux on the design surface are shown in Figure 9, respectively.
The curves show that the special design requirement is satisfied under the conditions that Nd=3,
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5 and 7, whereas the homogenization degree is relatively poor in the case that Nd=1. Table 6
lists the iteration numbers, fitness values and relatives errors for different numbers of control
point. It can be found that both the iteration number and the relative error are smallest when
Nd=3, which is because too many control points will decrease the sensitivity of radiative heat
flux to the shape changing of design surface and one control point cannot provide enough
necessary information for the geometry shape of the boundary [2, 9].

Control point
numbers

Iteration
numbers

Fitness values Average relative
error (%)

Maximum relative
error (%)

1 164 3.89×10-8 0.2711 0.5597

3 19 5.36×10-8 0.0280 0.0796

5 26 6.72×10-8 0.0309 0.0875

7 37 7.63×10-8 0.0321 0.1024

Table 6. Comparison of inverse design results for different number of control points.

Figure 10. Geometry shape of the design surface for different extinction coefficients of media.

Figure 11. Geometry shape of the design surface for different scattering albedo of media.
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The physical properties of the media have an important influence on the energy transfer and
then affect the optimization results of radiative enclosures. The effects of the extinction
coefficient and the scattering albedo on the inverse design results are studied here. The
scattering albedo of media is fixed as ω =0.5, the extinction coefficients are set as β =1.0, 3.0 and
5.0, respectively. The initial guessed and final optimized geometry shapes of the design surface
are shown in Figure 10. It can be seen that three PSO algorithms achieve similar boundaries
and the geometry shapes are significantly different for different extinction coefficients. The
extinction coefficient of media is fixed as β =3.0, the scattering albedos are set as ω =0.1, 0.5 and
0.9, respectively. The optimized geometry shapes of the design surface by means of SPSO are
shown in Figure 11. It can be seen that the designed boundaries are very close to each other
for different scattering albedos. Tables 7 and 8 list the detailed inverse design results for
different extinction coefficients and scattering albedos, respectively. As shown, both the
optimized geometry the retrieval results for different extinction coefficients are significantly
different, and both the height of the final designed surface and the dimensionless radiative
heat flux decrease with the extinction coefficient increases. However, the retrieval results for
different scattering albedo are close. Therefore, the scattering albedo of the media has little
influence on the inverse geometry design results when the extinction coefficient is determined.

Algorithm Extinction

coefficient

Fitness

values

Dimensionless

radiative heat flux

Average relative

error (%)

Maximum

relative error (%)

PSO βe =1.0 8.22×10-8 0.2333 0.0329 0.0895

βe =3.0 7.19×10-8 0.1137 0.0496 0.0736

βe =5.0 3.94×10-8 0.0735 0.0460 0.1297

SPSO βe =1.0 7.61×10-8 0.2334 0.0295 0.0816

βe =3.0 5.63×10-8 0.1136 0.0398 0.0723

βe =5.0 2.42×10-8 0.0734 0.0301 0.0909

DEPSO βe =1.0 5.07×10-8 0.2334 0.0230 0.0849

βe =3.0 4.16×10-8 0.1136 0.0351 0.0706

βe =5.0 2.85×10-8 0.0734 0.0307 0.0889

Table 7. Inverse geometry design results for different extinction coefficients.
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Algorithm Scattering
albedo

Fitness
values

Dimensionless
radiative heat flux

Average relative
error (%)

Maximum
relative error (%)

PSO ω =0.1 7.93×10-8 0.1137 0.0459 0.0867

ω =0.5 7.19×10-8 0.1137 0.0496 0.0736

ω =0.9 7.23×10-8 0.1136 0.0355 0.636

SPSO ω =0.1 3.02×10-8 0.1136 0.0297 0.0804

ω =0.5 5.63×10-8 0.1136 0.0398 0.0723

ω =0.9 4.49×10-8 0.1136 0.0322 0.0665

DEPSO ω =0.1 5.07×10-8 0.1136 0.0352 0.0349

ω =0.5 4.16×10-8 0.1136 0.0351 0.0706

ω =0.9 3.49×10-8 0.1136 0.0358 0.0710

Table 8. Inverse geometry design results for different scattering albedo of media.

The scattering of media will affect the original transfer direction of radiative heat or energy,
so the scattering characteristic of media also has influence on the inverse geometry design of
radiative enclosures. The extinction coefficient and scattering albedo of the media are set as
β =3.0 and ω =0.5, respectively. The initial and final geometry shapes of the design surface by
using SPSO algorithm for three kinds of scattering characteristics of media are shown in
Figure 12. It can be found that the optimal geometry shapes of the design surface are close.
Table 9 plots the inverse geometry design results for different scattering characteristics. As
shown, the values of dimensionless radiative heat flux on the design surface and relative errors
are significantly different. Therefore, the scattering characteristics of media mainly affect the
radiative heat flux on the boundaries and have no obvious effect on the final geometry shape
of inverse radiative design problems.

Figure 12. Geometry shape of the design surface scattering characteristics of media.
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Algorithm Scattering

characteristic

Fitness

values

Dimensionless

radiative heat flux

Average relative

error (%)

Maximum

relative error (%)

PSO a = 1 8.66×10-8 0.1297 0.0354 0.0828

a = 0 9.04×10-8 0.1136 0.0403 0.0776

a = − 1 7.21×10-8 0.1006 0.0385 0.0941

SPSO a = 1 7.57×10-8 0.1297 0.0328 0.0982

a = 0 8.16×10-8 0.1136 0.0463 0.0825

a = − 1 1.60×10-8 0.1007 0.0195 0.0629

DEPSO a = 1 5.53×10-8 0.1297 0.0378 0.0797

a = 0 6.94×10-8 0.1136 0.0426 0.0735

a = − 1 5.71×10-8 0.1007 0.0413 0.0882

Table 9. Inverse geometry design results for different scattering characteristics of media.

5. Conclusions

In this chapter, the basic theoretical principles of PSO algorithm is introduced in detail and
three kinds of PSO algorithms—standard PSO, SPSO and DEPSO—are applied for solving the
inverse geometry design problem of a two-dimensional radiative enclosure filled with
participating media. The design purpose is to produce a uniform distribution of radiative heat
flux on the designed surface. The design surface is discretized into a series of control points
and the Akima cubic interpolation is used to approximate the geometry shape of the boundary.
The radiative heat transfer problem in the irregular enclosures is solved by the DOM with a
body-fitted coordinate system. The pre-required radiative heat flux distribution is satisfied by
optimizing the positions of control points based on the PSO algorithms. The retrieval results
show that PSO algorithms can be successfully applied to solve inverse geometry design
problems and SPSO achieves the best performance on computational time. Meanwhile, the
scattering albedo and scattering characteristics of media have little effect on the geometry
shape of the design surface. To improve the computational efficiency, the number of control
points is recommended as Nd=3.
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