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Coagulation describes the process by which particles that are suspended in a fluid come into
contact and coalesce or adhere to one another. Particles interact because of Brownian (thermal)
motion, hydrodynamics, and/or gravitational, Van der Waals, Coulomb, or other forces.
During this work, only coagulation due to Brownian motion is considered as this is the
dominant mechanism for particle interactions in aerosols. Coagulation due to Brownian
motion has been extensively studied and expressions for the rate of coagulation are well
known. Furthermore, these expressions have been validated experimentally. [64]

During the development of these expressions it is assumed that upon collision, particles stick
together and form a third single spherical particle whose volume is equal to the sum of the
original two, i.e., the assumptions are:

• Spherical particles. This assumption implies that the rate of sintering or coalescence is
instantaneous compared to the rate of collision. This is a good assumption for very small
particles, as shown in Appendix B.

• Accommodation or sticking coefficient of unity. Although little is known quantitatively
about the accommodation coefficient of aerosol particles, their low kinetic energies make
bounce-off unlikely.

The rate of collision (Zij) between particles of size υi and υj is given by Zij = βij ni nj, where ni is
the number of particles of size υi-1 < υ < υi per unit volume, and βij is the collision frequency
function. Table 1 gives expression for βij in the free molecular regime (FMR) and in the
continuum regime (CR), when coagulation is due to Brownian motion.

For a monodisperse aerosol with N particles per unit volume, the collision frequency simplifies
to Z = ΒN2/2. Then, the characteristic time for coagulation τcoll = N/Z = 2/βN, where τcoll is the
average elapsed time between successive collisions for a particle of size υ. It can also be
interpreted as the time required to halve the particle concentration of an initially monodisperse
aerosol by coagulation, or the time to double the volume of the particles. Table 1 shows
expressions for τcoll.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



The theory of coagulation is essentially a scheme for keeping account of particle collision as a
function of particle size. The rate of formation of particles of size k by collision of particles of
size i and j is given by ½ Σ i+j = k Zij, where the notation i+j = k indicates that the summation is
taken over those collisions for which υk = υi+υj. The factor 1/2 is introduced because each
collision is counted twice in the summation. The rate of loss of particles of size k by collision
with all other particles is Σ j Zkj. Hence, the net rate of generation of particles of size k is given
by the expression:
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which is the dynamic equation for the discrete size spectrum when only coagulation is
important. The solution of Equation (1) depends on the form of βij, which is determined by the
kinetics of particle collision. In this chapter, the Monte Carlo method developed to solve
Equation (1) is described. Initially, a general description of the Monte Carlo technique is
presented and then the method is applied to solve the coagulation equation. Later, the model
is validated by comparing results with analytical and numerical solutions and experimental
observations.

1. Monte Carlo simulation

The Monte Carlo technique is a method of statistically sampling events to determine the
average behavior of a system. [65] The name Monte Carlo was first applied to a class of
mathematical methods by scientists working on the development of nuclear weapons in Los
Alamos in the 1940s. The essence of those methods was the invention of games of chance whose
behavior and outcome were used to study statistical and deterministic phenomena. Since then,
the term Monte Carlo has been employed to describe a wide range of procedures involving
the notion of sampling.

Historically, the first example of a computation by a Monte Carlo method was reported by
Buffon in 1777, who described an unexpected method to calculate the value of π. [66] With the
increasing availability of very high speed general-purpose computers, many problems have
become treatable and the Monte Carlo method has increased in popularity. The technique has
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Table 1. Expressions for the collision frequency function in the free molecular regime (FMR) and continuum regime
(CR). [64]
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been applied in many disciplines to simulate very diverse systems. The greatest successes of
the Monte Carlo method have arisen in areas where the problem itself consists of some random
process. It has been applied to simulate problems like chemical kinetics, diffusion, radiation,
turbulence, and air pollution.

The solutions obtained through a Monte Carlo simulation are statistical in nature and subject
to the laws of chance. This aspect is a drawback, but not a serious one. Convenience, ease,
directness, and expressiveness of the method are important assets. Other general features of
the method are:

• Cyclic nature of the programming

• Necessity of performing a large series of computations of a uniform type

• Use of a comparatively small amount of memory for storage of intermediate results

• Smoothing of errors

A distinction is sometimes made between direct simulation and Monte Carlo simulation. In this
view, the direct simulation is a rather direct transcription into computing terms of a natural
stochastic process. Monte Carlo simulation, by contrast, is the solution by probabilistic methods
of nonprobabilistic problems. The distinction is somewhat useful but often impossible to
maintain.

The direct simulation replaces the mathematical analysis by a computational algorithm in which
the approximations due to the requirements of the mathematical analysis can be avoided. The
study of dynamics of gases composed of hard spheres is the classical example. With the direct
simulation, the trajectories of molecules are followed by numerically solving the classical
equation of motion to predict the location of the particles at successive short intervals of time.
At each interval, the system is examined to discover whether collisions have occurred. After
every collision, a suitable set of new velocities is given to the particles involved, and the process
continues. The changes in velocity distribution, for example are followed by recording the
velocity of every particle through many cycles. This application is typical of many in the
molecular sciences in that the individual processes (in this case collision) may be quite well
understood, but the bulk or average properties cannot be readily related to these events.

With the Monte Carlo simulation, the physical problem is replaced by an artificial, probabilistic
one. The solution of chemical reaction equations [67] can be used as an illustrative example.
In this case, a reactive molecule is represented in the computer by the digit l. Reaction is
indicated by replacing 1’s by 0’s. To start the reaction, the different storage portions repre‐
senting each type of molecule are filled with 1’s according to their initial concentration. At each
step, a random number is generated for each type of molecule being considered. In a second-
order reaction, for example, if the numbers 75 and 85 are generated, the 75th molecule type A
reacts with the 85th molecule type B by replacing the 1’s in each location by 0’s. If one or both
locations already contain 0’s, no reaction occurs. Higher-order reactions, competing reactions,
and sequential reactions have been simulated through this technique as well.

Monte Carlo Simulation of Coagulating Aerosols
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1.1. Monte Carlo simulation of aerosol processes

The Monte Carlo method has also been used in the study of aerosol dynamics. Kaplan et al.
[68] studied the agglomeration of chain-like combustion aerosols due to Brownian motion.
They used the so-called ising or lattice model, which has been extensively used in polymer
science. This model is a self-avoiding random walk on a lattice, where the state of a particular
point in the system depends on the states of its nearest neighbors.

The basic algorithm is as follows: At the beginning of each simulation, monodisperse or
lognormally distributed clusters are randomly distributed on the comers of a 2D or 3D lattice.
During each time step, each cluster moves at random toward any of the 4 (2D) or 6 (3D) possible
directions on the lattice. The probability of movement of a given cluster is dependent upon
cluster size as predicted by the diffusion theory; smaller clusters have a proportionately higher
probability of diffusion compared to large ones. The probabilities of movement are scaled by
assuming the probability of movement of a single mer at, for example, 2000 K to be l. Clusters
located on adjacent nodes have a probability of collision that is dependent upon the form of
the collision frequency function. At the end of each time step, after each particle has been
displaced, and all possible collisions have been checked, the particle size distribution is
updated, and the simulation continues until the required time duration is reached. This model
accounts only for coagulation, assumes cluster–cluster collisions to be irreversible, and
neglects sintering.

Akhtar et al. [69]advanced this work and performed a Monte Carlo simulation of the gas-phase
coagulation and sintering of nanosized particles. Particle coagulation and growth were
simulated on a 500 x 500 square lattice with periodic boundary conditions to reduce edge
effects. During the sintering routine, a particle on any of the perimeter sites of the aggregate
is picked at random and allowed to move to any neighboring unoccupied perimeter site on
the same aggregate. The probability of acceptance of such movement is determined by the total
potential of the new configuration. Configurations with lower total potential are more likely
to be accepted. The number of times that a particle is selected (i.e., number of sintering steps)
per coagulating step are determined by the ratio of sintering to growth rates.

This method has been successful in providing insight in the formation of agglomerates.
However, the possibility of extending it to include coagulation and condensation processes is
limited by the weakness of the method in computing the physical time, [69] which is critical
in the case of processes occurring at two different timescales like the case of the encapsulation
process where coagulation and condensation occurs simultaneously but at different rates.

Instead, coagulation can be simulated through a more straightforward and physical Monte
Carlo approach developed by Husar, [55] based on the work of Schaad [67] and Sutherland.
[70] In these approaches, position and velocity space are omitted and only collisions are
simulated, not in the physical sense but as a transition in a Markov chain. The following section
illustrates the concept of Markov chains, and the use of it to simulate coagulation processes.

1.2. The Markov process

A Markov process is a chain of events occurring in sequence with the condition that the
probability of each subsequent event in the chain is not influenced by prior events. [71] The

Montecarlo Simulation of Two Component Aerosol Processes50



usual example is a drunk gentleman who begins a walk through a strange city. At each street
comer that he reaches, he continues his walk by choosing completely at random one of the
streets leading from the intersection. The history of this random walk is then a Markov chain,
because his decision at any point is not influenced by where he has been.

Defining Si = {x1, x2,...,xp} as the set of variables that fully describe the state of a system at time
ti, a Markov chain is defined as the finite set of states M{S1, S2,...,Sn} through which the system
evolves. At each of the discrete sequences of time ti, the state Si determines a set of conditional
probabilities qi1, qi2,..., qim, where qij is the probability that the system which is in state Si, will
be in state Si+1 =Sij at the (i +l)th time. In other words, qij is the probability of the transitions
 Si →Sij. It is important to note that the probability of the transition depends only upon the
current state Si and is not affected by the previous history of the system. This is the characteristic
Markovian property of a process. The state Sf is said to be absorbing if the system remains in
this state with probability one. A state Si is linked with the state Sj if there is a nonzero
probability that the system reaches the state Sj in a finite number of steps. A Markov chain is
terminating if each of the states Si is linked to an absorbing state Sf.

In the example of the drunk gentleman in the strange city, the state or position of the gentleman
is described by his {x, y} coordinate in the city at every discrete time. The collection of comers
where he has been defines the Markov chain. Because of the randomness of his choice at each
intersection, the transition probability at each comer is qij = q = l/4. However, if his choice were
determined by his “feeling” of safety, affected for example by the luminosity of the street, or
the number of people on the street, the transition probabilities would be different at each state
(corner), i.e., qij ≠ qij+1 ≠ qmn, but his choice would be still unaffected by the places where he has
been.

Because of the nature of the problem, it might be possible to simulate a sample walk by playing
a roulette wheel with 100 sections. Before every spin, the roulette wheel is divided in 4 sectors,
each corresponding to a possible direction, such that each sector has a number of uniformly
spaced sections proportional to the sense of safety that the drunk gentleman feels in that
specific direction. Starting at a given position, the gentleman’s most likely path and most likely
position after certain time could be found by simulating a large number of histories, i.e., by
running through the process many times. Another example of a Markov process is the
coagulation of particles in aerosols.

2. Coagulation as a Markov process

Consider the evolution of an aerosol consisting initially of 5 particles of the same size (singlets).
lf the number of singlets in the system at time ti is denoted by ni1, the number of doublets
(particles made of two singlets) by ni2, and so on, the state of the aerosol at the ith time step
(collision) is defined by the set Si = {ni1, ni2,...,nis}. Imposing the condition of irreversible
collisions, the transition from the. initial state S1 = {5,0,0,0,0} to the final state S7 = {0,0,0,0,l} may
proceed along any of the paths shown below.
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Figure 1. Coagulation as a Markov process. Possible path for the evolution of an aerosol consisting initially of 5 parti‐
cles of the same size. (From Reference 55).

Every state Si defines a set of possible types of collisions, each with a probability that is
completely uninfluenced by the history of the aerosol. Therefore, the evolution of the aerosol
is properly defined as a Markov process.

At time t1, only collisions among singlets are possible. Then q11 = 0 for j ≠ 1. Therefore, the
aerosol evolves to the state S2= {3, 1, 0, 0, 0}. At time t2, collisions type 1 (among singlets) and
type 2 (singles with doublets) will happen with probability q21 and q22, respectively. In general,
at time ti a collision type j (particles made of p-singlets with particles made of q-singlets) will
occur with probability qij. The transition probability qij is proportional to the collision frequency
Zpq = βpq nip niq. With the restriction:

1ij
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then, the transition probability is given by:
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The objective of the Markov-Monte Carlo (Markov-MC) technique is to determine the most
likely state at a given time ti by simulating the transitions S1 Si, using random or statistical
sampling of transitions. At every transition, the sampling of transitions can be done by, for
example, aligning the collision probabilities qij on a 0–1 interval in an arbitrary order and then
generating a random number Rn such that 0 < Rn < l. Rn identifies uniquely the types of collisions
that have occurred, and consequently, the types of transitions that have happened.
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Figure 2. Arbitrary aligning of the transition probabilities in a starting line 0–1 such that a random number will identi‐
fy uniquely the types of collisions that have happened. (From Reference 55)

Physically, the Markov-MC model simulates particle coagulation by reproducing the follow‐
ing algorithm. Time is divided into time steps. During each time step, the occurrence of every
collision is registered and classified according to its type. When the information is normalized
by Z, the total number of collisions that have occurred, it provides the probability of occurrence
of each type of collision at the given time. This sampling process is Monte Carlo simulated by
aligning the probabilities on a O–1 line and generating Z random numbers, each one identi‐
fying a type of collision. In other words, by generating Z random numbers and correlating that
number to the type of collision being statistically chosen, the collisions that have occurred
during the time step are reproduced. Assuming that the time step is short enough, the change
in the particle size distribution due to the occurrence of the Z collisions is negligible, and the
change can be implemented at the end of the time step with minor error. By decreasing the
time step, the error decreases. In the limit, the time step is chosen such that the particle size
distribution is updated after every collision.

2.1. Computation of time

Computation of the physical time elapsed between events (i.e., the time step) has been a serious
drawback of different Monte Carlo approaches. Most of the past studies have been performed
where quantification of time can be avoided. However, when coagulation and condensation
occur simultaneously, computation of time is a critical issue.

Schaad [67] proposed to use well-known solutions to calibrate the model with respect to time
and then use those settings for the particular case of interest. Using the same approach, Kaplan
and Gentry, [68] working with a Monte Carlo simulation to study agglomeration of nonspher‐
ical chainlike agglomerates in combustion-generated.aerosols, choose the quantity (No/N-1) as
a measure by which to represent the rate of cluster growth, since coagulation theory for
constant collision frequency functions predicts that this quantity is directly proportional to
time. Clearly, these approaches offer reasonable approximations but are not exact.

With the Markov-chain version of the Monte Carlo technique (i.e., the Markov-MC method),
the average time between events is computed through the collision frequency function Zij.
Here, an event is defined as a collision among particles of any type. In a unit time and unit
volume, there are Z11 collisions among partic1es of size 1 and 1 occurring simultaneously with
Zij collisions among particles of size i and j. In total, there are Z = ΣΣ Zij collisions per unit time
and per unit volume.

This implies that in a unit volume, on average there is one collision every 1/Z unit times. Then
the average elapsed time between events is given by: [55]
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If it were desired to simulate the process more rigorously the time increment should be selected
from a Poisson distribution with the mean corresponding to Equation (4).

The coagulation equation is a time-dependent mass conservation expression for aerosols. Then
a numerical solution of this nonlinear integro differential equation can be obtained by updating
the particle size distribution function after every Markov-MC simulated collision and by
computing the elapsed time through Equation (4). The implementation of this method on a
computer code is straightforward. The following section discusses the specific computational
aspects involved during its implementation.

3. Description of the code

3.1. Discretization of the particle size range

The Markov-MC algorithm starts by dividing into m arbitrary sections the range of particle
sizes. A 1D vector (R) is used to store this information. The finest grid can be obtained with
dicrete sectionalizations where section i corresponds to the size of a particle made of i mers. This
type of sectionalization is appropriate for the study of the early stages of evolution of, for
example, monodisperse aerosols. However, when the evolution of the aerosol is being watched
for long periods of time, a sectionalization with a fine grid at smaller sizes together with a
coarse gird at larger sizes is more appropriate. This can be done by using a logarithmic
sectionalization (i α log Ri). Some authors also use a geometric sectionalization, where the size of
a section i corresponds to a particle with double the mass of the previous section. In other
situations, the use of a simple linear grid is very convenient. Table 2 shows expressions for the
different types of sectionalization.

Type of Sectionalization Expression

Discrete Ri = i 1/3R1

Logarithmic Ri =101/ pR1

Geometric Ri =2(i−1) / R1
3

Linear Ri =(1 + i / p)R1

p parameter to adjust the number of section used according to the range covered

Ri size of the elemental mer, or minimum particle size

Table 2. Expressions for the different types of sectionalization.
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Figure 3. Types of sectionalization used in the Markov-MC model.

3.2. The concept of parcels

In actual combustion aerosols the particle concentration is typically greater than l x l0 [18]
particles/m3. To directly simulate that many collisions would be impracticable, even with
advanced supercomputers. To address this issue the concept of parcel was developed. A parcel
is defined as a bundle of ñ identical particles, i.e., a bundle of particles having the same
physicochemical characteristics (size, morphology, and chemical composition). Then, instead
of simulating collisions among single particles, collisions among parcels are simulated.
Consequently, at every step ñ collisions of the same type are Markov-MC simulated. For a
given total number of particles per unit volume {N), the scale factor (f=N/ñ) determines the
total number of parcels available during the simulation and thus the statistics of the simulation
itself. Greater accuracy is obtained with greater statistics and the statistics of the simulation
increases with ñ. Physically, this approach is similar to simulate the process in smaller volumes.
By simulating coagulation in, for example, 1 cm3 instead of 1 m3, the number of collisions that
need to be simulated reduces by 106, and the process is still accurately simulated.

3.3. Particle Concentration

Employing the concept of parcels, the discrete version of the particle size distribution (ni) is
stored in a 1D vector (array). ni is the number of particles per unit volume of size:

1i i iR r R +< £ (5)

where the actual particle size r¡ is given by:
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and Mi is the total mass of the particles in section i. Notice that by using Equation (6), it has
been assumed that all the particles within the section have the same size. Also notice that by
allowing the size of the particles within a section to dynamically assume their mass mean value,
instead of assuming that it remains constant, the total mass of the aerosol is conserved during
the simulation of the evolution of the aerosol.

3.4. Aligning of the transition probabilities

In the Markov-MC method, the sampling of transitions between states is done by aligning the
collision probabilities qij’s on a 0-1 interval in an arbitrary order. The imp1ementation of this
step is critical because in addition to align the transition probabi1ities, it should provide an
easy and quick way to relate every transition probability qij with the respective type of collision
(i-j).

A 1D vector P was used to store the transition probabi1ities qij’s and a scheme consisting of a
coarse followed by a fine search was adopted to relate qij to the type of collision that qij

represents. qij is defined as the probability of occurrence of a collision between partic1es of size
ri and rj. We let ri ≤ rj and define the probability P vector as:

1+= +å
m

i i ij
i

P P q (7)

where ∑ qij is the probability that a collision invo1ving a particle of size ri, with another particle
of the same or larger size occurs. Pi is the cumulative probability. A random number Rn between
O and 1 will identify the collision that has occurred and a search process involving at most m
steps (the coarse search) will identify i as the smaller particle invo1ved in the collision. In the
fine search, j, the second particle, will be identified through Equation (7) by so1ving for qij. This
second search requires another m operation at most. In contrast, a plain algorithm where every
qij is considered will require up to m2 operations instead of 2m operations required by the
present scheme. A more efficient alternative is desirable since most of the computational time
is spent performing this step.

3.5. General algorithm

The overall algorithm to perform the Markov-MC simulation is described in the flow chart
shown in Figure 4. Initially, the type of discretization, the starting particle size distribution
ni and the stopping condition (e.g., time for simulation) are specified as inputs to the program.
Then, the computation of the collision coefficient βij for all the possible types of collisions is
performed. This information is stored in an m x m matrix where m is the number of sections
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used. Here it is assumed that the collision coefficient is constant within every section, which
is a good assumption even with a very coarse sectionalization. This step needs to be performed
only once during the entire simulation. Then a loop involving four steps is formed. In the first
step, the transition probabilities are calculated and sorted in an array of size m representing
the probability vector (P). In the second, the time step is calculated according to Equation (4).
In the third step, a random number (Rn) is generated, the corresponding location on P is
accessed, and the respective type of collision (i, j) is identified. During the fourth and last step,
the particle size distribution function is updated, which involves the withdrawal of one particle
from section i and j, and the addition of the new particle to the proper section (k), where υ1+υj

= υk. In the actual code, a utility subroutine to check for mass conservation is used from time
to time to search for possible computational errors. These steps are repeated until the stopping
condition is reached.

Figure 4. Flow chart illustrating the algorithm for the Monte Carlo simulation of coagulation processes.

4. Validation

Being a probabilistic approach, the calculation of the absolute accuracy of the Markov-MC
method is generally impossible. However, its validity can be judged by, for example, com‐
paring results with those obtained by other methods or a model problem whose solution is
known accurately. Consequently, in this section the evolution of an initially monodisperse
aerosol, with collision frequency function independent of particle size (βij = β), is Markov-MC
simulated and compared to the corresponding analytical solution to test the accuracy of the
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method. Later, the restriction β = constant will be removed, and the Markov-MC results will
be compared with other numerical results and experimental observations.

4.1. Evolution of an initially monodisperse aerosol with β = constant

4.1.1. The Smoluchowski’s solution

One of the few analytical solutions to the GDE can be obtained for the case of aerosols subjected
to the following restrictions:

• Continuum regime

• Collision frequency function β independent of particle size

• Initially monodisperse size distribution

With these assumptions and setting ri = rj, the collision frequency function reduces to:

8
3µij o
KTkb = = (8)

Substituting this expression into Equation (1), the coagulation equation reduces to:
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Summing over all values of k:
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Integrating once,
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where No is the initial total number of particle per unit vo1ume, and τcoll is the characteristic
coagulation time given by:

3µ2
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Physically, the characteristic time for coagulation is the time needed for an initial monodisperse
aerosol to reduce the total particle concentration to half of its initial value. To obtain an
expression for ni we proceed inductively, i.e., first an expression for n1 is obtained, then this
result is used to obtain an expression for n2, and so on. Doing so, the general solution for the
concentration of particles of size ri is:
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(13)

Evolution of an initially monodisperse aerosol with constant collision frequency function were
Markov-MC simulated. Results are shown in Figure 5 along with the analytical solution for N,
n1/No, n2/No, and n3/No.The agreement is excellent, demonstrating the validity of the Markov-
MC model and the timescaling.

Figure 5. Markov-MC simulation of the evolution of an initially monodisperse aerosol with collision frequency func‐
tion β independent of particle size. Good agreement between Markov-MC simulation results and the analytical solu‐
tion are obtained.

Figure 6 shows the error in the total number of particles per unit volume at different stages of
the evolution. The error in all cases is below 1% for t/τcoll<10, showing a good agreement
between the analytical solution and the Markov-MC simulation. The error arises from the
computation of the time steps through Equation (4). This error can be minimized up to any
degree by increasing the statistics of the simulation, i.e., by increasing the number of parcels
ñ available during the simulation. However, simulations with higher ñ’s use greater amount
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of computational resources. Figure 6 illustrates the effect of ñ on the error. It shows that the
error is cumulative and increases exponentially with evolution.

The increase in error with time results because with every event (collision), the number of
parcels available for simulation decreases by one. Consequently, the statistics of the simulation
decreases with the number of events performed and, thus, the error in the computation of the
time steps increases. The cumulative error in time can be maintained below a certain level
without increasing the use of computational resources by dividing the entire simulation into
several sequential runs. A run is stopped before the cumulative error in time is excessive.
Before the next subsequent run, the number of parcels in each section is multiplied by 1O and
the scale factor f is divided by 10, so that the total number of particles is conserved and the
statistics of the simulation is increased. This practice allows the evolution of the aerosol to be
carried out over very long periods of time, while minimizing the error in the computation of
time and minimizing the use of computational resources.

To determine the appropriate initial number of parcel ñ to use during every run, several
Markov MC simulations were conducted varying ñ. A balance between high statistics and use
of computational resources was sought. Table 3 and Figure 6 show the results obtained. The
values on Table 3 were obtained running the code on Charney, a NASA-Cray J932 machine,
able to operate at 4.0 gigaflops. Flops is the number of floating point operations performed per
second and a floating point operation is defined as any operation that manipulates numbers
expressed in floating point notation. [72]

f
Number of Starting

Parcel ñ
System CPU [s] User CPU [s]

1x10 [12] 1x106 1.4954 447.1

1x10 [13] 1x105 0.3904 260.9

1x10 [14] 1x104 0.2713 6.8

1x10 [15] 1x103 0.2224 3.2

Table 3. Simulation of the evolution of an initially monodisperse aerosol with No=1x10 [18] particles/m3.

In Table 3, the Central Processing Unit (CPU) time is the amount of system time required to
run the job, i.e., the number of seconds devoted to system operations required for the program.
The user CPU time is the amount of time that the program requires of the CPU.

Figure 6 and Table 3 show that working with Charney, the balance between accuracy and use
of computational resources is obtained by starting with 1 x 106 parcels and increasing the
resolution every 0.9 x l06 events. However, the required number of starting parcels depends
on the machine used and the number of sections actively being used. For example, early stages
of the evolution of the monodisperse aerosol require less computational operations than a fully
developed one, since at the early stages most of the sections are empty, and the number of
operations per event is proportional to the number of sections being actively used. On the other
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hand, working with slower machines, resolution needs to be sacrificed to obtain results within
a reasonable amount of time. For example, to obtain results within an hour, the number of
starting parcels need to be reduced to l x l05 for Megalon, a local UNIX machine, while for a PC
110 MHz, the number of starting parcels need to be reduced to l x l04.

4.1.2. Effect of the types of sectionalization and random number sequence

Several runs were made to observe the effect of different types of sectionalization on the
Markov MC results. For the same conditions, discrete, geometric, linear, and logarithmic
sectionalization was used. In all the cases, the results were the same. The possibility of using
different types of sectionalization according to the problem being analyzed constitutes another
advantage of the Markov-MC method over similar codes like the sectional method, which was
designed to work on a logarithm type of sectionalization. A similar type of test was performed
to see the effect of the number of sections being used on the evolution of a coagulating aerosol.

The evolution of an initially normal distributed aerosol was observed using a logarithmic type
of sectionalization. Several runs were made, varying the number of section per decade being
used. Figure 7.a shows the results obtained. This figure shows that the number of sections per
decade can be reduced up to 18 and the evolution of the aerosol as predicted by the Markov-
MC model is basically the same.

Similarly, the effect of the random number sequence being used was studied. C++, as any other
programming language, provides a standard library function to generate pseudo random
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(a)  (b) 
Figure 4-6. (a) Error of the Markov-MC method in computing the total number of particles per 

unit volume at different stages of the evolution of an initially monodisperse aerosol with 

constant collision frequency function β. (b) Comparative error in the evolution of an initially 

normal distributed aerosol as function of the initial number of parcels ñ used. 
 
 
 
Figure 4-6 and Table 4-3 show that working with Charney, the balance between accuracy and 

use of computational resources is obtained by starting with 1 x 106 parcels and increasing the 
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for a PC  110  MHz,  the number of starting parcels need to be reduced to l x l04. 

Figure 6. (a) Error of the Markov-MC method in computing the total number of particles per unit volume at different
stages of the evolution of an initially monodisperse aerosol with constant collision frequency function β. (b) Compara‐
tive error in the evolution of an initially normal distributed aerosol as function of the initial number of parcels ñ used.
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numbers with a uniform distribution. The sequence of random numbers produced by this
function is determined by a seed number. Varying this seed number, different sequences can
be obtained. Figure 7.b shows the Markov-MC results obtained for the evolution of an aerosol
for three different random number sequences. Figure 7.b shows that the Markov-MC results
are independent of the sequence of random numbers used.

 

 
23  

by  this  function  is determined  by a seed number. Varying this seed number, different 

sequences can be obtained. Figure 4-7.b  shows  the Markov-MC  results  obtained for  the 

evolution  of an  aerosol for three different  random  number  sequences.  Figure 4-7.b   

shows that the Markov-MC   results are independent of the sequence of random numbers 

used. 

 

 

 

 

 

 

 

(a)  (b) 
 

Figure 4-7. (a) Size distribution at an arbitrary time for an initially normal distributed aerosol as 

predicted by the Markov-MC model using a logarithmic type of sectionalization with different 

numbers of sections per decade. (b) Size distribution at t/τcoll = 45.3 (τcoll = 49µs) for an initially 

monodisperse aerosol (No = 4.6 x 1019 particles/m3, r1 = 1nm) as predicted by Markov-MC 

method using three different random number sequences (seeds). 

Figure 7. (a) Size distribution at an arbitrary time for an initially normal distributed aerosol as predicted by the Mar‐
kov-MC model using a logarithmic type of sectionalization with different numbers of sections per decade. (b) Size dis‐
tribution at t/τcoll = 45.3 (τcoll = 49µs) for an initially monodisperse aerosol (No = 4.6 x 10 [19] particles/m3, r1 = 1nm) as
predicted by Markov-MC method using three different random number sequences (seeds).

4.2. Comparison with numerical and experimental results

In general, the collision frequency function β is not a constant but depends on the sizes of the
colliding particles and the nature of the aerosol. Under these conditions, there is not an exact
analytical solution to the coagulation equation. Many numerical and experimental works have
been performed to describe the behavior of coagulating aerosols. The main results are
summarized here.

Later, the Markov-MC results obtained for an atmospheric aerosol with β(r) are qualitatively
compared with these numerical and experimental results.

Friedlander et al. [52] stated that the particle size distribution in a coagulating aerosol ap‐
proaches an asymptotic self-preserving form after long periods of time, and appears to be
independent of the initial size distribution. The self-preserving distribution for the case of β =
constant is exponential in form, whereas the self-preserving distribution for Brownian
coagulation appears to be lognormal. Thus, for Brownian coagulating aerosols, the state of the
aerosol at any time could be characterized by only two parameters, the mean particle size and
the geometric standard deviation σg.
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The theory was later supported by Hidy [73] who through numerical experiments concluded
that the self-preserving form develops after about 3 dimensionless coagulation times (3τcoll)
and that the shape of the asymptotic distribution varies with the Knudsen number (Kn) but
not with the initial conditions. Later, Lee et al. [74] assumed a lognormal type of self-preserving
distribution and found an approximate analytical solution for the coagulation equation by
using the method of moments. The solution predicts an asymptotic value of σg = 1.38 in the
free molecular regime. The solution also estimates the time to reach the asymptotic distribution
in the range from 0 to 473τcoll depending on the initial conditions.

Matsoukas and Friedlander, [75] studying the dynamics of the formation of metal oxides (MgO
and ZnO) in a flat flame where salts of magnesium and zinc were introduced in the form of a
dry aerosol, measured the particle size distribution of samples collected at different heights
above the flame. They observed that the distribution collapses into a single curve when plotted
in normalized form and concluded that the normalized distribution is, to a good approxima‐
tion, lognormal with a geometric standard deviation σg ≅  1.4. Similarly, Megaridis, [76]
studying the morphology of the soot formed in a coannular ethane diffusion flame, obtained
a value for σg = 1.39–1.46. Akhtar et al., [77] studying formation of TiO2 by gas-phase synthesis,
observed that the mean particle size evolves logarithmically while the geometric standard
deviation moves very quickly toward σg ≅  1.4.

To validate the Markov-MC method, results for a coagulating atmospheric aerosol (i.e., water
in air at room temperature) with β(r) were obtained and compared with these numerical and
experimental results. Initially, the aerosol consists of No = l x l0 [18] water particles/m3 of l nm
in radii.

Figure 8 shows the evolution of the aerosol as predicted by the Markov-MC method. The
results are presented in terms of nondimensional particle size distribution (ni/N) as a function
of the nondimensional time (t/τcoll). The characteristic time for collision at the initial conditions
is used to nondimensionalize time. Figure 8 shows that the particle size distribution gradually
broadens out with time and evolves toward a self-preserving distribution that seems to be
lognormal.

Figure 8. Size distribution of an initially monodisperse aerosol (No = 1 x 10 [18] particles/m3, r1 = 1 nm, τcoll = 2.25 ms) as
predicted by the Markov-MC method. The aerosol approaches a lognormal distribution after ≅  τcoll.
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To determine the type of self-preserving distribution predicted by the Markov-MC method,
the obtained Markov-MC distributions were fitted with different exponential distribution
functions. The goodness-of-fit was evaluated by the chi-square test, [64, 78] and it was found
that among the exponential distributions, the lognormal distribution function produced the
best fit to the data. The mean particle size rm and the geometric standard deviation σg of the
lognormal distribution were evaluated and Figure 9 shows the values of rm and σg obtained as
a function of time. This figure shows that the mean size r evolves logarithmically and the
geometric standard deviation σg moves very quickly toward σg ≅  1.45, in agreement with other
numerical and experimental observations.

Figure 9. Evolution of the mean particle size rm and the geometric standard deviation σg of the particle size distribution
as predicted by the Markov-MC method, assuming that the distributions are lognormal.

5. Overview

A Monte Carlo method has been developed to simulate particle collisions in aerosols. Colli‐
sions are simulated as transitions in a Markov chain. The Markov-Monte Carlo (Markov-MC)
method has been validated by comparing results with analytical and numerical results and
with experimental observations. The method can handle any number of sections and any type
of sectionalization. Conditions to obtain good accuracy with minimum use of computational
resources were determined. The convenience, ease, directness, and expressiveness are some
of the advantages of the method. However, the unique advantages of the Markov-MC method
appear when condensation processes are added into the model. This is the subject of the next
chapter.
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