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Abstract

Humans require several trace elements as components of the diet. Some of these elements
are required in extremely small quantities (only micrograms per day). On the other hand,
in higher concentrations, some elements may also have deleterious, even lethal, effects.
Metals such as arsenic, chromium (Cr), lead (Pb), and mercury (Hg) are naturally occur‐
ring chemical compounds. The contamination of food with these metals occurs mainly
through human activities, such as farming and industry, or from contamination during
food processing and storage. People can be exposed to these metals by ingesting contami‐
nated food or water, and their accumulation in the body can lead to harmful effects over
time. The main objective of this chapter is to provide a literature review on the various
types of foodborne poisoning caused by the contamination of food with arsenic, Cr, Pb,
and Hg and on food safety issues associated with the presence of these metals in food.
Research findings from various studies carried out to examine the relationship between
metal exposure and the adverse health effects of metals are addressed.

Keywords: Diseases, chemical contamination, metals, food

1. Introduction

Foods can be contaminated with harmful chemicals and microorganisms, which can cause
illness in humans. Chemical contaminants can be classified according to the source of con‐
tamination and the mechanism by which they enter the food product. In the case of metal
residues in food, contamination mostly occurs during food processing and storage [1].

In human nutrition, metals are well recognized by public health agencies, nutritionists, and
researchers from various areas of knowledge. Humans require several metals as components

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



of their diet. Some of the metals are required in extremely small quantities, while some, such
as arsenic, chromium (Cr), lead (Pb), and mercury (Hg), in certain amounts can adversely affect
the nervous system, kidneys, and other vital organs of the body, which can be life threatening
in extreme cases.

In general, sources of contamination are contaminated food and beverages and packaging [1, 2].

Metals can often be inadvertently and unintentionally introduced into food products. If these
contaminants are not detected, they can become a major safety hazard for consumers. Metals
such as arsenic, Cr, Pb, and Hg exist as naturally occurring chemical compounds. These metals
are of particular concern in food because of their toxicity, especially in the case of long-term
(chronic) intake, because they can accumulate in the body and cause organ damage particularly
in susceptible groups, such as children [2].

Arsenic may be present as a contaminant in many foods, such as grains, fruits, and vegetables,
where the metal is present because it is absorbed in the plant through the soil and water, and
also trace amounts of arsenic can enter the food chain through the application of agricultural
chemicals like fertilizers, which may contain arsenic. While most crops do not readily take up
much arsenic from the ground, rice is different because it takes up arsenic from soil and water
more readily than other grains. Also, arsenic exposure occurs through the consumption of
aquatic food, especially shellfish and animals that feed from the bottom of the sea [3].

Cr exposure occurs mainly through the diet. Food crops that are polluted through contami‐
nated soil or water may contain high concentrations of this metal.

Pb is a toxic substance present in the environment in small amounts, and everyone is exposed
to some Pb from daily actions such as inhaling dust, eating food, or drinking water. Tobacco
smoking and the use of leaded petrol in vehicles are reported to be major sources of Pb
exposure, although the Pb content in petrol has dramatically declined over recent decades,
thereby reducing environmental exposure [3].

Hg exposure can occur through dental fillings that contain Hg compounds, occupational
exposure, and herbal medicines. However, to date no studies have been able to show an
association between amalgam fillings and ill health. Most dietary exposure is in the form of
inorganic Hg. However, some fish may bioaccumulate the more toxic organic form, methyl‐
mercury,  in  significant  quantities.  Thus,  diets  rich in fish can be a  cause of  organic  Hg
exposure [3].

Thus, these metallic contaminants have been evaluated by international authorities, and safe
reference values have been established. The maximum concentrations of these contaminants
allowed by legislation are often well below toxicological tolerance levels, because such levels
can often be reasonably achieved by using good food manufacturing practices. Even so, food
contaminant testing is needed to assure the safety and quality of food products. Chemical
analysis can be very useful in the food industry, with the development of new techniques to
accurately and precisely quantify metals present in low concentrations in foods. These data
can be applied in the area of toxicology to prevent diseases through prior diagnosis.
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2. Arsenic

2.1. Chemistry of arsenic

Arsenic is a chemical element found in several oxidation states (+III, +V, 0, and _III) and various
inorganic and organic forms. Arsenic rarely occurs as a pure element. The most common ores
of arsenic are arsenopyrite (FeAsS) and arsenic sulfur compounds [orpiment (As2S3) and
realgar (As4S4)]. The inorganic forms are considered to be of greater toxicity, and the ascending
order of toxicity is elemental arsenic < arsenobetaine < methylated forms < arsenate < arsenite
< arsine [4]. As(III) and As(V) are apparently of comparable bioavailability but differ in terms
of their biochemistry. Preferentially, As(III) binds thiol groups, whereas As(V) does not. So,
the oxidation state of arsenic can affect its toxicity [5, 6].

2.2. Occurrence in the environment

Arsenic compounds are used in glass and semiconductor production, as a preservative for
wood, and as a feed additive to increase weight gain for poultry and swine [7]. Historically,
arsenic compounds were used in agriculture as insecticides or herbicides. Due to its wide‐
spread use, it can contaminate the environment. Environmental pollution by arsenic occurs as
a result of anthropogenic activities and natural phenomena such as volcanic eruptions and soil
erosion [8].

Arsenic can be present as a contaminant in environmental compartments, such as water, soil,
and plants, and ultimately can seriously affect the human health through exposures to these
contaminated compartments. Inorganic arsenic species are the most important chemical forms
of arsenic in natural waters [9].

2.3. Dietary sources of arsenic

Arsenic can be found in fish, shellfish, meat, poultry, dairy products, and cereals. Howev‐
er, in fish and shellfish, organic chemical species are found, and thus the arsenic is less toxic.
Marine  organisms  tend  to  accumulate  more  arsenic  than  those  living  in  freshwater  or
terrestrial environments, which typically have lower arsenic concentrations of around 0.25
mg kg−1 [10–12].

China has established the acceptable level of arsenic in rice as 200 ng g−1, while the Codex
Alimentarius Committee on Contaminants in Food considers levels of 200 and 300 ng g−1 in
polished and raw rice, respectively, to be safe [13]. The Joint FAO/WHO Expert Committee on
Food Additives (JECFA) reports that the provisional tolerable daily intake (PTDI) of inorganic
arsenic is 0.002 mg kg−1 body weight, equivalent to 0.12 mg day−1 for an adult of 60 kg [14].
However, if contamination with arsenic trioxide occurs, it should be noted that the minimum
lethal dose of this compound is 70–180 mg in humans [15]. In general, high levels of arsenic
are found in rice and the concentration can vary from 10 to 510 µg kg−1, when rice is irrigated
with contaminated water, contributing to the daily intake of arsenic [16].
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Due to the toxicity and the many diseases resulting from the ingestion of arsenic, the concen‐
trations of this metalloid and its species in different types of food need to be investigated.
Numerous studies on arsenic levels in food have been conducted, and the results have been
published in journals, newspapers, and other media. Figure 1 shows the number of publica‐
tions per year in the Web of Science on the contamination of food with arsenic, demonstrating
the interest of the scientific community.
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Figure 1. Publications on food contamination with arsenic.

The concentration of arsenic that is safe to human health is under discussion by organizations
such as the World Health Organization (WHO), the Food and Agriculture Organization (FAO),
the US Food and Drug Administration (FDA), the Food Standards Agency (FSA), and the
European Food Safety Authority (EFSA) [17].

The Codex has adopted 0.2 mg kg−1 as the maximum level of arsenic in rice. This committee
has the task of establishing international food safety and quality standards for consumers
worldwide, which are widely used as a basis for national legislation.

To date, the European Union (EU) has not set maximum levels for arsenic in food. However,
for water intended for human consumption, the value is 10 mg L−1 for total arsenic, with no
distinction between the various chemical species of arsenic [18, 19]. Thus, extensive research
should be conducted, aimed at more in-depth studies and attaining greater consistency in the
data for the creation of relevant legislation regarding arsenic in foods [20–23].

2.4. Routes of entry into plants, animals, and humans

The most important route of exposure to arsenic is the ingestion of foods and beverages, which
in most cases are contaminated from the use of irrigation water with a high concentration of
the element. In general, the water is contaminated by dissolved minerals and contains different
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forms of arsenic [24]. Exposure to arsenic occurs via the oral route (ingestion), inhalation,
dermal contact, and the parenteral route [25–27].

Arsenic occurs in both inorganic and organic forms, which exhibit large differences in their
metabolism and toxicity. The high toxicity of arsenic is well known because arsenic compounds
are readily absorbed by either inhalation or ingestion, the extent of absorption being dependent
upon the solubility of the compound.

2.5. Metabolism or transformation in the living system

There is evidence that arsenic has a physiological role related to methionine metabolism [28].
However, the site of action of arsenic remains unknown. Studies with rats fed adequate amino
acid–based diets have shown that arsenic deprivation had little effect on growth in rats.
However, in rats fed suboptimal methionine, arsenic deprivation resulted in a significant
reduction in body weight. It was shown that arsenic deprivation reduces the hepatic concen‐
tration of S-adenosylmethionine, indicating that arsenic maintains the metabolic pool of S-
adenosylmethionine [28].

In addition, arsenic status affects DNA methylation in animal and cell culture models, resulting
in an apparent hypomethylation of DNA [29]. This process is associated with an increased
incidence of cancer. So, there is an amount of dietary arsenic that is harmful or beneficial to
humans [30, 31].

2.6. Biological functions

In body, arsenic is present as arsenite and arsenate. Arsenic species interact strongly with
sulfhydryl groups of organic molecules. It affects several enzymes, causing damage in several
cell systems. Because of their similar properties, arsenate can substitute for phosphate and
other phosphate intermediates in several biochemical reactions. At the cellular level, arsenate
depletes adenosine triphosphate (ATP) in human erythrocytes, interrupting the production of
energy [31, 32].

Although some research has indicated that arsenic is an essential nutrient for rats, chickens,
and pigs, however, no studies have been published in the literature to determine the nutritional
importance of arsenic in humans [32].

2.7. Mechanisms of toxicity of arsenic

The toxicity of arsenic is highly influenced by its oxidation state and solubility, as well as many
other factors [33]. As(III) binds to thiol or sulfhydryl groups on proteins and can inactivate
over 200 enzymes. As(V) can replace phosphate, which is involved in many biochemical
pathways [34].

Mechanism by which arsenic exerts its toxic effect is due its ability to interact with sulfhydryl
groups of proteins and enzymes and to substitute phosphorous in various biochemical
reactions [34].

Potential Exposure and Risk Associated with Metal Contamination in Foods
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In humans, As(III) is methylated to two major metabolites via a non-enzymatic process to
monomethylarsonic acid (MMA), which is further methylated enzymatically to dimethyl
arsenic acid (DMA) before excretion in the urine [34].

Various hypotheses have been proposed to explain the carcinogenicity of inorganic arsenic.
Nevertheless, the molecular mechanisms by which this arsenic induces cancer are still poorly
understood [35, 36].

2.8. Incidence of (acute and chronic) toxicity

Arsenic can cause numerous human health effects. Several epidemiological studies have
reported a strong association between arsenic exposure and increased risks of both carcino‐
genic and systemic health effects [25]. The severity of adverse health effects is related to the
chemical form of arsenic and is also time and dose dependent [26, 37, 38]. Among the notable
effects and diseases are skin lesions, neurotoxicity, cardiovascular diseases, abnormal glucose
metabolism, diabetes, peripheral vascular diseases, coronary heart diseases, myocardial
infarction, stroke, gangrene, kidney failure and liver failure, cancer of the internal organs,
particularly the bladder and lung, skin pigmentation, keratoses, and skin cancer [24, 26, 34–37].

2.9. Comparative analysis of analytical techniques

Several techniques have been used for the detection of arsenic in foods. Among the combined
techniques are the use of chromatography or inductively coupled plasma coupled with mass
spectrometry (MS) [39], mass spectrometry–desorption electrospray ionization (MS-DESI)
spectrometry, inductively coupled plasma–optical emission spectrometry (ICP-OES), and
hydride generation–atomic absorption spectrometry (HG-AAS) [39, 40], which generally allow
the chemical speciation of arsenic and other techniques such as capillary electrophoresis
coupled to inductively coupled plasma and mass spectrometry (CE-ICP-MS) [41]. However,
these techniques are expensive. In this regard, an interesting approach to determining arsenic
species with detection by electrothermal atomic absorption spectrometry after cloud point
extraction (ETAAS/CPE) was developed by Baig et al. [42] and Costa et al. [43].

3. Chromium

3.1. Chemistry of chromium

Cr is a naturally occurring element present in the earth’s crust and is found in two oxidation
states, namely hexavalent chromium (Cr(VI)) and trivalent chromium (Cr(III)). Hexavalent
chromium (Cr(VI)) compounds are, in general, more toxic than Cr(III) compounds. Cr rarely
occurs as a pure element. The most common ore of Cr is ferrochromite [44, 45].

3.2. Occurrence in the environment

Cr is an element available in the environment, found mostly in minerals, rocks, plants, soil,
water, dust, and volcanic gases. Cr can be present as a contaminant in the environment from
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various natural and anthropogenic sources [46]. Cr released into the environment as anthro‐
pogenic activity occurs mainly from metallurgical and chemical industries such as tannery
facilities, chromate production, stainless steel welding, and ferrochrome and chrome pigment
production.

The health hazard associated with exposure to Cr depends on its oxidation state, ranging from
the low toxicity of the Cr(III) form to the high toxicity of the Cr(VI) form [47]. Cr(III) is an
essential trace mineral present in trace amounts in some foods, such as meat, whole grains,
oleaginous plants, and legumes.

3.3. Dietary sources of chromium

Cr(III) is considered to be essential to mammals for the maintenance of glucose, protein, and
lipid metabolism, whereas Cr(VI) is detrimental to human health even at relatively low
concentration levels, because it can be involved in the pathogenesis of some diseases such as
liver, kidney, lung, and gastrointestinal cancers [48–50]. Cr(III) is a stable and biologically
active state of Cr, and it is found in many types of foods, including egg yolk, whole grains,
cereals, coffee, nuts, green beans, broccoli, meat, beer yeast, and drinks produced from grapes.
Cr is also available in many dietary supplements and is responsible for the proper functioning
of the metabolism of carbohydrates and lipids. Table 1 shows the amounts of Cr that can be
found in some foods.

Food Amounts of chromium (μg 100 g−1)

Broccoli 11–22b

Dry garlic 60a

Mashed potato 1.5a

Whole wheat bread 4.4a

Champagne 1.1–3.6c

Red wine 0.7–9.0c

White wine 0.7–4.4c

Green grapes 0.3–2.1c

Red grapes 0.2–6.5c

Apple 0.8a

Grape juice 4.0b

Orange juice 1.0a

aAdapted source by NHI [51].

bAdapted source by Oliveira and Machine [52].

cAdapted source by Cabrera-Vique et al. [53].

Table 1. Quantity of chromium in some foods.
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3.4. Routes of entry into plants, animals, and humans

Cr-containing compounds have been a major concern because of Cr release into the environ‐
ment and the high risk of Cr-induced diseases in industrial workers occupationally exposed
to Cr(VI) [54]. The route of human exposure to Cr is through skin and mainly through
inhalation, and the lung is the target organ [55–57]. Non-occupational exposure occurs through
ingestion of Cr- containing food and water. Cr content in foods varies greatly and depends on
the processing and preparation of foods.

3.5. Metabolism or transformation in the living system

The main path for Cr(III) to get into the organism is through the digestive system. The
mechanism of Cr intestinal absorption is not yet fully known, but it is known that Cr(VI)
compounds are absorbed better than Cr(III) compounds. Absorbed Cr circulates in blood
bound to the β-globulin plasma fraction and is transported to tissues bound to transferrin or
other complexes at the physiological concentration [58]. Cr from blood is relatively quickly
absorbed by bones, accumulating also in the spleen, liver, and kidneys. Cr is excreted especially
by the urinary system.

3.6. Biological functions

Cr plays an important role in carbohydrate, lipid, and glucose metabolism [58–60]. Studies
show evidence that Cr acts as a cofactor for insulin, and therefore, Cr activity in the organism
is parallel to insulin functions. It is assumed that the activity of Cr is mediated by the anabolic
action of insulin. Cr supplementation intensifies amino acid uptake by tissues such as these
the binding of Cr to nucleic acids is stronger than in other metal ions [60]. Cr(III) seems to be
involved in the structure and expression of genetic information in animals. Also, Cr protects
RNA from heat denaturation and, among other functions, promotes the growth of the animals.

3.7. Mechanisms of toxicity of chromium

The toxicity of Cr compounds depends on its oxidation state and solubility [61–63]. Cr(VI)
compounds are more toxic than Cr(III) compounds most likely due to the ease with which
Cr(VI) can pass through cell membranes and its subsequent intracellular reduction to reactive
intermediates [64–66]. As Cr(III) is poorly absorbed by any route, the reduction of Cr(VI) is
considered as being a detoxification process. If Cr(VI) is reduced to Cr(III) extracellularlly, then
Cr(III) is not readily transported into cells, and so toxicity is not observed. Under physiological
conditions, Cr(VI) can be reduced Cr(III) by hydrogen peroxide (H2O2), glutathione (GSH)
reductase, ascorbic acid, and GSH [66, 67].

3.8. Incidence of (acute and chronic) toxicity

Cr is of particular interest because its toxicity is highly dependent upon its chemical forms and
concentration. Cr(VI) shows high toxicity and is related to clinical cases such as nasal irritation
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and ulceration, hypersensitivity reactions, and dermatitis through contact. The lethal dose is
between 50 and 100 mg kg−1, which is much lower than that of Cr(III), with a lethal dose
between 1900 and 3300 mg kg−1 (both cases tested by oral ingestion in rats). Furthermore, Cr(VI)
is classified as carcinogenic because it penetrates the cell membranes of living organisms [59].
Exposure to Cr(VI) can occur mostly through inhalation, skin contact, and ingestion. Cr(VI)
inhalation, for example, besides causing severe irritation of the respiration system, is also
carcinogenic. Although the WHO has established a limit for human consumption of 0.005 mg
kg−1 body weight per day, no scientific studies have proved that Cr ingestion can cause disease.
The potential effects of Cr(VI) vary mainly with the species, the amount absorbed into the
bloodstream, and the route and duration of exposure [68–70]. Thus, Cr(VI) is found in most
lists of high-toxicity elements for which strict control procedures apply. The difficulty in
establishing a recommended dietary allowance (RDA) for Cr is mainly due to the limitations
related to estimating the ingestion levels of this mineral, which range from the absence of data
on the amount of Cr present in foods, due to analytical difficulties given the trace concentra‐
tions, to environmental contamination problems [70].

The ingestion of Cr(VI) is detrimental to human health even at relatively low concentration
levels because it may be involved in the pathogenesis of some diseases, such as liver, kidney,
lung, and gastrointestinal cancers. Following studies, many authors have suggested that
chromium picolinate can cause DNA damage [60, 61], but there is no confirmation of carcino‐
genesis in animals [62]. There are reports of toxicity after supplementation, but the results of
other investigations did not indicate hepatic alterations [64–70]. Based on this impasse, the US
Agency of Toxic Substance and Disease Registration concluded that there is no conclusive
evidence that supplementation causes liver damage, although it does have proven deleterious
effects on the kidneys [67].

3.9. Comparative analysis of analytical techniques

The determination of Cr can be carried out through sensitive techniques that are able to
quantify a few micrograms of this element. One of these techniques is graphite furnace–atomic
absorption (GF-AAS), consolidated after 1981, and is able to detect Cr concentrations of around
0.2 µg kg−1 in food. More sensitive techniques developed later, such as ICP-MS and ICP-OES
[71], are used for the determination of Cr. These techniques quantify only total Cr without
promoting speciation, and separation techniques, such as chromatography, are required.

The official method for the analysis of Cr in food samples is ICP-OES using nitric acid and
hydrogen peroxide to oxidize organic materials in food samples [71]. This technique has high
sensitivity (of the order of 1 ng L−1). However, this equipment is sophisticated and expen‐
sive with high operational costs. An option that combines higher sensitivity and lower cost
is GF-AAS technique. This technique has important advantages such as a reduced amount
of sample and high sensitivity, and the analysis can be carried out with minimal or no sample
preparation [71].
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4. Lead

4.1. Chemistry of lead

Pb is a heavy metal that has malleability, low melting point, low electrical conductivity, and
high corrosion resistance. These properties allow its widespread use in the manufacture of
blades and pipes of high flexibility and resistance in welds and coatings in the automotive
industry; protective plates against ionizing radiation (e.g. X-rays); alloys; coating cables; and
paints, dyes, and plastic additives [72]. Usually, inorganic Pb compounds are found as Pb(II)
and rarely found as a pure element. Its most common mineral is galena or lead sulfide (PbS).
The solubility of Pb compounds is enhanced at lower pH, suggesting that the increased
mobility of the Pb is found in ecosystems under stress acidification [73].

4.2. Occurrence in the environment

Pb is a metal that occurs naturally, making up only about 0.0013% of the earth’s crust. However,
most Pb concentrations that are found in the environment are the result of human activities
such as burning of fossil fuels and mining [74]. Pb can be found in the atmosphere in particulate
form, being deposited in water systems, interfering with the characteristics of the water. In
other cases, this metal may be found complexed with natural organic compounds [75]. In
contact with the ground, Pb can remain for a long time and in various forms (such as insoluble
and soluble complexes and colloids) and absorbed by plants, accumulating in the edible parts,
causing contamination in humans and animals [74–78].

4.3. Dietary sources of lead

The WHO and the Expert Committee on Food Additives—“JECFA” initially established a
provisional tolerable weekly intake (PTWI) for lead of 50 µg kg−1 body weight for adults.
However, after assessing the risk to health, the JECFA later reduced this value to 25 µg kg−1

body weight, equivalent to 3.5 µg kg−1 body weight per day (equal to 1.75 mg week−1 or 1750
µg week−1 for a person weighing 70 kg) [20, 21].

The Expert Committee noted, however, that some foods with high levels of Pb remain
commercially available [22]. A reference value for Pb of 0.01 mg L−1 in drinking water was
established by the WHO. The concentrations in drinking water are typically below 5 µg L−1,
although higher concentrations (above 100 mg L−1) have been reported. The EPA regulations
establish limits in the form of maximum contaminant levels (MCLs), and the value for Pb in
drinking water is 0.015 mg L−1, even though the EPA has also established a goal for zero Pb in
this regard [23].

4.4. Routes of entry into plants, animals, and humans

The main routes of human exposure to Pb are by ingestion (food, water, and soil), inhalation,
and skin [79]. The compounds of tetra-alkyl Pb (Pb tetra acetate, etc.), for example, are rapidly
absorbed through the lungs, gastrointestinal tract, and also the skin. Usually, a high level of
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metal enters the body through the ingestion of contaminated cereals and vegetables [80]. Once
absorbed, inside the body Pb is distributed by the blood reaching the soft tissue and then is
deposited in the bones and other hard body parts. It is slowly excreted in urine and feces [79].

4.5. Metabolism or transformation in the living system

In the human body, Pb is not metabolized, but it forms complexes with macromolecules. Pb
forms complexes (sulfur groups, –SH) through covalent bonds, causing the intoxication of
humans [81]. Pb can disturb the metabolic functions in two ways: (1) it accumulates, thereby
disrupting the function of vital organs and glands such as the heart, brain, kidney, bone, liver,
so on and (2) it moves the vital nutritional minerals from their original location, hindering their
biological function [82].

4.6. Biological functions

Pb is a toxic metal that would not have known beneficial effects to the body, and its accumu‐
lation over time in the bodies of animals and humans can cause severe illness [83].

4.7. Mechanisms of toxicity of lead

One of the main reasons by which Pb exerts toxic effect is its ability to substitute diverse cations
(calcium, zinc, and magnesium) in their binding sites. Pb has a greater affinity than calcium
and zinc ions to protein-binding site because of its larger ionic radius and greater electrone‐
gativity. For example, Pb interacts with oxygen and sulfur binds to sulfhydryl and amide
groups of enzymes, altering their configuration and diminishing their activities, and competes
with calcium in skeletal tissue and to interact with proteins [84].

In the blood, Pb is distributed to the remaining tissues, where it accumulates; the amount of
metal accumulated depends mainly on the vasculature and metabolic characteristics of each
tissue [85]. The half-life of Pb is 35 days in the blood and is about 2 years in the brain, and it
can last for decades in bone.

Many investigators have demonstrated that Pb affects biomolecules and hence physiological
systems. For example, calmodulin is a protein found primarily in the brain and heart. The
binding of calcium ions of this protein allows the binding of this protein to cyclic nucleotide
phosphodiesterase  and  adenylate  cyclase  with  subsequent  activation.  Thus,  this  protein
modulates the levels of AMP and cyclic GMP [86]. Pb is a more potent activator than calcium
for calmodulin. According Kern, Pb modifies several signaling cascades and proteins that
participate in the vesicular cycle [87]. The alterations caused by the abnormal protein opera‐
tion in second messenger systems and exocytic processes greatly contribute to Pb neurotoxici‐
ty [87].

Pb affects various cellular organelles, for example, mitochondria and endoplasmic reticulum,
in different ways. In the mitochondria Pb affects energy metabolism, while in the endoplasmic
reticulum Pb increases the cytoplasmic concentration of calcium with a consequent reduction
in ion concentration inside this organelle. Many signaling pathways that are within the
endoplasmic reticulum are calcium dependent; because the amount is not appropriate, various
processes are impaired. Besides, Pb binds to Ape1 nuclease, whose function is to detect and
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repair DNA damage, inhibiting its operation and allowing the accumulation of mutagenic
damages [85–88].

4.8. Incidence of (acute and chronic) toxicity

Pb is one of the most common environmental contaminants. This element has no known
physiological function in the organism, and its damaging effects can affect almost every organ
and system in the body [89]. The main way in which Pb enters the body is through the
respiratory route (occupational exposure), followed by the digestive route. Organic Pb
compounds can penetrate in the body through skin contact and are rapidly absorbed [90, 91].

Exposure to Pb can result in a wide variety of biological effects, depending on the exposure
level and duration. The major diseases related to Pb contamination are shown in Table 2. Pb
is toxic to various organs and systems, and its effects may vary from enzyme inhibition and
anemia to diseases of the nervous, immune, reproductive, and cardiovascular systems,
impaired kidney function, and even death.

Studies have suggested an association between Pb exposure and lung cancer and, to a lesser
extent, stomach cancer [90]. Pb is hypothesized to be a carcinogen and to enhance the genotoxic
effects of other agents. Renal tumors developed in mice that had received high doses of certain
Pb compounds and various other animal studies have shown increases in the yield or geno‐
toxicity of known carcinogens. The US Environmental Protection Agency has determined that
Pb is a probable human carcinogen [89–91].

Effects on health Site of the body affected Adverse effects

Neurological Central nervous system,
peripheral, and autonomic

Acute and chronic encephalopathy; peripheral
neuropathy

Hematological Blood Anemia

Endocrine Bone tissue and serum Damage to the kidneys and development of cells,
teeth, and bones. Possible damage to the thyroid.

Growth Bone Reduced growth

Reproductive Male and female reproductive
systems

Reduced fertility, high probability of miscarriages

Carcinogenic Kidneys and cells—genomic DNA Carcinogenic to animals and epigenetic
involvement in the expression of the modified gene

Cardiovascular Cardiovascular system Likely increase in blood pressure, cardiac lesions,
and abnormal electrocardiograms

Gastrointestinal Gastrointestinal tract Colic

Hepatic Liver Reduced functional capacity of the cytochrome
P-450 to metabolize drugs

Table 2. Main health effects related to lead contamination [89–91].
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4.9. Comparative analysis of analytical techniques

The determination of traces of Pb in various food samples is of great importance because Pb
is recognized as a cumulative poison in humans and other animals [92]. The determination of
Pb requires procedures that are sufficiently sensitive for detection at the pg L−1 level. Tradi‐
tionally, GF-AAS has been applied in such cases, but the direct determination of Pb in complex
matrices is usually difficult owing to matrix interference and separation procedures often being
required before the sample analysis [93]. The ICP-MS technique is favored because of its low
detection limits [93], although many researchers prefer AAS owing to its simpler and less
expensive instrumentation. Lead hydride generation and its application to spectrometry
analysis have been reviewed by Madrid and Cámara [94]. HG-AAS is a well-developed
technique that can be used for the determination of volatile hydride-forming elements such as
arsenic, selenium, antimony, and others at trace levels [95]. The advantages of HG-AAS over
other atomic absorption spectrometric techniques such as the flame and graphite furnace
methods are increase in atomization efficiency and higher selectivity because the analyte is
removed from the matrix as a volatile compound and detection limits at the pg L−1 level or
lower for the elements cited above. Considering these advantages, this technique could be
applied for the determination of Pb, and it is possible to include this element in multi-element
analysis schemes involving hydride generation.

The generation of Pb hydride was described by Carrijo et al. [96]. In this study, a flow injection–
hydride generation–atomic absorption spectrometry (FI-HG-AAS) system was used for Pb
determination. The main characteristics of the flow injection system, that is, high sampling rate
and good accuracy, precision, and sensitivity, are maintained.

5. Mercury

5.1. Chemistry of mercury

Hg is a metal found in various chemical forms, which can be divided into the following
categories: elemental or metallic Hg, inorganic Hg, mainly in the form of mercuric salts
(HgCl2 and HgS), and mercuric (Hg2Cl2) and organic Hg, for example, methylmercury and
ethylmercury [68, 72].

Metallic mercury (Hg) is in the liquid state at room temperature and easily volatilizes into the
atmosphere forming Hg vapors. Hg is a metal with widespread use, especially the production
of scientific precision instruments, electrical industry, dentistry (production amalgams), the
production of certain types of toys, mining, metal smelting, among others [97].

5.2. Occurrence in the environment

Hg is a metal found naturally in the earth’s crust, occurring in air, soil, and water [98]. It rarely
occurs free in nature and is found mainly in cinnabar ore (HgS). It can be found in metal form,
as salts of Hg or organic Hg compounds. Once released, Hg remains in the environment among
the circulating air, water, sediment, soil, and biota, which assumes various chemical forms.
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Most emission to air occurs in the form of elemental Hg, which is very stable and can remain
in the atmosphere for months or even years, enabling transport over long distances around
the globe [98]. Most of the Hg released by human activities in air is by combustion of fossil
fuels, mining, smelting, and combustion waste [99].

The Hg vapor in the atmosphere can be deposited or is converted into the soluble form,
returning to the earth’s surface in rainwater. From there, two important chemical changes may
occur. The metal can be cast again and return the Hg vapor in the atmosphere or may be
“methylated” by the microorganisms present in the water sediments, turning into methyl‐
mercury [98]. Furthermore, the Hg can also be released directly in the soil or in water by the
application of agricultural fertilizer and disposal of industrial waste water [100].

Atmospheric emissions are the major source of environmental contamination, followed by
water pollution and soil contamination, when there is improper disposal of effluents and
waste [98].

5.3. Dietary sources of mercury

Usually, Hg contamination occurs by the presence of this metal in water, soil, air, or food,
mostly in the form of methylmercury [100, 101]. The most important source of exposure
through diet for the general population is the consumption of fish and other marine organisms.
Hg is concentrated in the tissue of fish, becoming increasingly potent in predatory fish and
mammals that feed on small fish. The larger carnivorous fish have higher concentrations than
smaller ones [99]. The average daily intake of methylmercury (mainly from fish) that can cause
demonstrable effects on the health of sensitive individuals is 300 mg day−1 or 4.3 µg Hg day−1

kg body weight−1 [102].

Industrial products can also be contaminated by Hg during the processing steps. Studies have
shown the contamination of Hg in breast milk (4–15 µg kg−1) [103], in tea (6 ng g−1) [104], and
in products for infant feeding (0.50 µg kg−1) [105].

5.4. Routes of entry into plants, animals, and humans

The absorption of Hg by humans and animals can be by pulmonary route (inhalation), as well
as by gastrointestinal or cutaneous route. In the case of pulmonary route, Hg after inhalation
and the presence in the lung is distributed throughout the body, accumulating in various parts
of body [106–108]. Soluble compounds are absorbed by mucous membranes following vapor
inhalation and by the skin and the sebaceous glands. In the body, organic and inorganic Hg
binds GSH [108]. It acts as inactivator because it readily binds to thiol groups of cellular
enzymes and disrupts its function by inactivating the metabolism. The non-absorbed Hg is
excreted in feces, and absorbed Hg forms are excreted via saliva and skin.

5.5. Metabolism or transformation in the living system

Hg and its organic compounds in low concentrations cause damage to human health. Their
concentrations in surface and ground waters are below 0.5 mg L−1. However, aquatic micro‐
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organisms convert the organic Hg into inorganic Hg compounds, which accumulate in the
food chain. Methylmercury is the most relevant toxicant [109]. The gastrointestinal tract is the
second way (after airway) through which Hg, already now in its organic form, enters the
human body through the consumption of fish, shellfish, and other aquatic organisms.

5.6. Biological functions

Hg has no biological role. All Hg compounds are extremely toxic, particularly methylmer‐
cury [109].

5.7. Mechanisms of toxicity of mercury

The mechanism of toxicity of Hg is based on its chemical activity and biological features. The
main mechanism of toxicity of Hg compounds involves their reactivity with sulfhydryl groups.
Once in the cell, both Hg2+ and MeHg form covalent bonds with cysteine residues of proteins
and deplete cellular antioxidants [110].

5.8. Incidence of (acute and chronic) toxicity

Metallic Hg and its organic compounds in very low concentrations cause damage to human
health (such as neurotoxic, immunotoxic, and teratogenic properties) and can have high
persistence and a high bioconcentration factor (BCF), accumulating in animals, fish, and the
environment. Hg poisoning levels and the main symptoms and diseases related to acute and
chronic poisoning by Hg are shown in Tables 3 and 4, respectively [111].

24-hour urine

0.00–0.01mg Non-toxic

0.02–0.09 mg Danger of poisoning

0.10–0.80 mg Chronic intoxication

Above 1.00 mg Acute intoxication

Above 2.00 mg Subacute poisoning

Table 3. Mercury poisoning levels.

Acute intoxication Chronic intoxication

Dark gray appearance in the mouth and pharynx Digestive disorders

Severe pain Nervous disorders

Vomiting (may even be bloody) Cachexia

Bleeding gums Stomatitis

Metallic taste in the mouth Salivation
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Acute intoxication Chronic intoxication

Burning in the digestive tract Bad breath

Severe or bloody diarrhea Loss of appetite

Inflammation of the mouth (stomatitis) Anemia

Tooth decay and/or loose teeth Hypertension

Glossitis Loosening of the teeth

Swelling of the gum mucosa Central nervous system disorders

Kidney nephrosis Mild kidney disorders

Serious liver problems Possibility of chromosomal alteration

Can even cause sudden death (1 or 2 days) –

Table 4. Main symptoms and diseases related to acute and chronic poisoning by mercury.

5.9. Comparative analysis of analytical techniques

The determination of Hg in food samples is critical to assess the degree of human exposure,
and thus reliable analytical techniques with high sensitivity are required. However, in most
situations, the determination of Hg species is not an easy task due to low concentrations in the
samples and the characteristic volatility [112, 113]. The volatility of Hg requires special
consideration when treating the sample. Food sample preparation using a microwave oven
has been widely employed [114].

In the case of the quantification of methylmercury in fish samples and seafood, depending
on the nature of the sample and the technique used, an additional pre-concentration step is
required.  Hg  determination  has  been  performed  using  cold  vapor  coupled  to  atomic
absorption spectrometry (CV-AAS), cold vapor coupled to atomic fluorescence spectrome‐
try (CV-AFS), inductively coupled plasma optical emission spectrometry (CV-ICP-OES), and
inductively  coupled  plasma  mass  spectrometry  (CV-ICP-MS).  Hyphenated  techniques
involving  gas  or  liquid  chromatography  separations  with  detection  by  element-specific
detectors such as ICP-MS and atomic absorption/emission are the most commonly report‐
ed [114].

6. Conclusions

The information gathered herein highlights the risks associated with arsenic, Cr, Pb, and Hg
contamination in foods. Therefore, measures should be taken to reduce exposure of the general
population to these contaminants to minimize the risk of adverse health effects. The develop‐
ment of simple strategies suitable for obtaining quantitative information regarding some
species of great interest should be encouraged.

In the food industry, analytical chemistry plays an important role, contributing new analytical
procedures and instrumentation. Methods for the determination and monitoring of metals are
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still scarce. However, there are inherent difficulties associated with the types of samples
involved. There are various types of food samples and a great variation in their compositions.
This hinders the application of analytical techniques for the fast and accurate monitoring of
metals in real samples. More sophisticated techniques are of interest in some fields of appli‐
cation, but these techniques have not yet reached the food industry. Thus, chemists need to
direct their attention toward these trends with the aim of narrowing the gap between science
and the food industry. These studies require an interdisciplinary approach to cover the various
aspects involved and could achieve important advances in toxicology, chemistry, and food
science.
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