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Abstract

In this study, a functionally graded cylindrical specimen was obtained via centrifugal
casting and its fatigue crack behavior was investigated. Aluminum 2014 alloy and SiC
were used as matrix material and ceramic particle, respectively. The distribution of SiC
and the mechanical properties of material through cylinder wall thickness were varied
because of the centrifugal force during centrifugal casting. Variations in microstructure
and hardness were examined. A cylindrical specimen was cut through its thickness in
four sections through vertical slicing. Tensile strength was tested on each section to deter-
mine the mechanical properties that can be varied such as Young’s modulus, tensile
strength, and yielding stress. To investigate the effect of variation in the mechanical prop-
erties and distribution of SiC particles on fatigue crack behavior, fatigue crack growth
tests were applied under tensile cyclic load with stress ratio R = 0.1. The samples were
prepared in three separate groups: central notched, single-edge notched on SiC-rich side,
and single-edge notched on aluminum-rich side. It was found that SiC distribution affect-
ed fatigue crack initiation and propagation. The fatigue life increased up to 350% because
of increasing SiC ratio for central notched specimens. Cracks were started out later on the
single-edge notched SiC-rich side compared to aluminum-rich side whose fatigue life in-
creased up to 500%. In addition, it was found that unreinforced aluminum material’s fati-
gue life was lower than that of reinforced material.

Keywords: Functionally graded material, Aluminum matrix, Franc2D, Crack propaga-
tion, Fatigue

1. Introduction

Material is used to perform a design. The design engineer expects some material properties,
either single or combinations of one or more properties, from materials for engineering design
such as light weight, strength, fatigue strength, high temperature strength, high fracture
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toughness, corrosion resistance, wear resistance, electrical properties, and manufacturability
[1,2]. Although the metallic materials have higher fracture toughness and better thermal shock
resistance than the ceramics, their high temperature resistance is lower than of the ceramics.
Ceramic materials have low density, good high temperature resistance, and good creep
resistance, but their thermal shock resistance is low [2-5]. Man-made polymer materials have
been used for the past 100 years because they are lightweight, cheap, highly resistant to
corrosion, and wear resistant. Also, the production of polymer materials is much easier than
the metallic and ceramic materials. However, their low mechanical strength limits their use in
structural design [2]. Composite materials are obtained by combining ceramic, metallic,
and/or polymer materials. Thus, the designer can benefit from the superior properties of two
different materials simultaneously [2, 4].

Metal matrix composites (MMCs) reinforced with ceramic particles provide the required
material properties in many engineering applications. High strength, high corrosion resist-
ance, and stiffness of MMCs have made them suitable for their use in, particularly, aerospace,
aviation, automobile, and mineral processing industry [6, 7]. Particulate reinforced MMC
materials are cheaper and have higher abrasion resistance and higher temperature stability
than that of materials, and they are being used widely in many areas compared to the contin-
uous fiber reinforced composites [6, 7].

Functionally graded materials (FGMs) can be considered as a subcategory of composite
materials. The microstructure, mechanical, and thermal properties are changed throughout
the thickness or width of the material depending on a function [8-10].

The function type and consequently FGMs’ properties are primarily related to mechanical/
thermal properties and compatibility of matrix and reinforced materials, FGM thickness or
width, and manufacturing method. Function can occur in three different ways depending on
the following factors: exponentially, linearly, and according to the rule of force. The mechan-
ical/thermal properties of material such as Young’s modulus, yielding stress, tensile stress,
fatigue, and thermal/electrical conductivity properties can vary depending on the function
type [4, 8-12].

There are some basic manufacturing methods for graded materials, which include powder
metallurgy, physical vapor deposition (PVD), chemical vapor deposition (CVD), plasma spray,
thermal spray, combustion synthesis (SHS), centrifugal casting, and polymerization [4, 10, 12—
29]. Recently developed methods are also available: modified stir casting, centrifugal sintering,
gradient slurry disintegration and deposition, and powder cold spray before cold isostatic
sintering [30-33].

MMCs reinforced with ceramic particles have been used for a long time because they can be
easily manufactured. MMCs are inexpensive than the other composite types and have
improvable thermal and mechanical properties [7]. When two different types of materials are
combined, it can lead to formation of additional thermal and residual stresses. It is known that
discontinuities and thermal stress can be decreased on ceramic—metal interface using FGMs
[4, 8, 9].
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Crack propagation that causes sudden or stepped fracture occurs when stress concentration
at the tip of crack overcomes strength of material [34]. For a linear elastic material, stress
concentration at the tip can be represented by K;, Ky, and Ky, which are stress intensity factors
in opening, sliding, and tearing conditions, respectively. Critical value of stress intensity factor
Kc must be equal to K; for crack propagation under Mode I load.

There are many analytical and numerical studies on fatigue and fracture mechanics of FGMs
[34-51]. Theoretical crack propagation analyses of FGMs indicate that the crack tip stress is
different from that of the homogeneous material [34, 38—40]. The studies on the subject
demonstrate that grading direction and function affect the crack propagation. It is found that
FGMs have shown better performance at increasing crack growth compared with homogene-
ous materials.

Under asymmetric loadings, the crack propagates perpendicularly to grading direction, which
changes the direction of crack [43]. However, under symmetric loadings, the crack propagates
in parallel to grading direction [42]. Crack propagation experiments in grading materials have
been carried out using the following: direction of crack propagation (in parallel to grading
direction) under different loading cycles (regularly increasing or decreasing loading [53-54],
periodic mechanical loading [50-52], and periodical thermal loading [58-59]). In the experi-
ments where crack propagation was perpendicular to the grading direction, fracture happened
quickly [60-62]. Therefore, the effect of grading on the stress concentration factor could not be
calculated. Compared to homogeneous material, FGMs’ fracture behavior is altered by FGM
composition and properties by four of the following [63]:

1. Variable stress region: Crack direction in FGMs is changed by graded mechanical
properties (Young’s modulus, E, and the Poisson ratio, v), but not in homogeneous
materials. As a result, fracture loads and crack path are affected by grading material
properties.

2. Crack tip toughness: Since the chemical composition of material changes, internal fracture
toughness (K;) becomes a function (K(a)) that changes according to the position of the
grading.

3. Hardening rate of the crack opening: Change in the microstructure and the chemical
composition of graded region changes the characteristics of hardening of the crack
opening too. Crack closure as in homogeneous materials depends on not only being on
the back of the crack but also the position of the cracks in graded region.

4. Residual and thermal stresses: Thermal and residual stresses in FGMs effect fracture
behavior and crack tip stress zone [53-66].

In Equation (1), o;; represents the crack tip stress, K,, (@ =1, II, III) stress intensity factors, 6 the
angle with respect to the plane of the crack, r the distance from crack tip, 6 the Kronecker delta,
o the transverse stress, f i](-“)(Q) angular functions, and 1 [ r the singularity of crack tip stress.

Studies by Delale and Erdogan [35] and Eischen [39] showed that the singularity of crack tip
stress of continuous or partially graded materials is similar to that of homogeneous materials.
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Jin and Noda [41] verified this situation by determining that the angular distribution function
of the elastic and plastic crack tip area (f;(0)) is the same.

o, = £, £(0)+6,6,0, + AN27rwl”) (6) 1)

N27r

Also, the studies conducted by Eischen [39] and Jin and Noda [41] have shown that FGMs
crack tip stress (g;) and displacement (;) (Eq. (2)) are the same form as homogeneous material.

In Equation (2), K, (a =1 II) represents stress intensity factors, r the distance from crack tip, 0

the angle with respect to the plane of the crack, ¢/*(6) angular functions, E, the Young's

tip
modulus at crack tip, and vy, the Poisson ratio at crack tip. These results mean that the stress
intensity factor is a determinative fracture parameter for FGMs just like in homogeneous
material [67]. Similar results have been found for dynamically propagated cracks by Para-
meswaran and Shukla [68].

u~—————=1=—8,"(0) @

Continuous or stepped grading prevents the abnormal stress behavior of cracks when the
interface of two materials is combined [69]. Moreover, Delale and Erdogan [35] found that the
effect of spatial variation of the Poisson ratio on the stress singularity can be neglected.

Fracture behavior depending on orientation in the grading region can be defined by consid-
ering two limit states [63]:

1. Crack propagation is parallel to grading direction: crack does not digress although
effective fracture toughness changes.

2. Crack propagation is perpendicular to grading direction: asymmetric crack tip zone
causes crack to deflect.

In the cracks that are parallel to the direction, stress at the crack tip region becomes symmetric
and it is expected that crack opens toward the grading direction. FGM crack tip stresses in
graded regions are significantly lower than in materials with combinations of two material
properties [37, 70, 71]. Stress intensity factor of FGMs is found to be greater than that of
homogeneous materials. Material grading profile and position of the crack effect stress
intensity factor too. When grading step increases, its value increases [35, 37, 42, 72]. Grading
format also effects the stress intensity factor. If exponential value n is bigger than 1 (1 > 1), the
stress intensity factor is in tendency to decrease compared to n <1 situation [70-72]. Spatial
composition changes, which have an important effect on effective fracture toughness of the
FGM composites, can effect thermal stress distribution throughout its width. Growing fracture
toughness depends on residual stresses partially [53, 64, 73]. As residual stresses change by
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composition of FGM, compressive stresses increase the resistance of crack against growing
fracture [64].

Critical value of stress intensity factor K. must be equal to K for crack propagation under crack

opening mode. In the ongoing process, crack growth rates da/dN in every period can be found
by using Paris Equation (Eq. (3)), where N is the number of cycles to failure, c and m are material
constants [34].

L cAK” 3)

Studies related to FGMs’ fatigue and fatigue fracture behaviors have been conducted using
numerical and analytical methods and new approaches are developed to date. However, there
are hardly enough experimental studies to support this.

In this study, aluminum 2014 matrix reinforced with SiC FGM was manufactured via centri-
fugal casting. The effect of SiC distribution on the mechanical and fatigue fracture properties
was determined and analyzed experimentally.

2. Experimental results and analysis

Two functionally graded aluminum 2014 alloy (1.18% Si, 4.9% Cu, 1.04% Mn, in wt.) matrix
materials reinforced with 20% in wt. and 9 um SiC particles were produced by centrifugal
casting. Density of SiC particles is higher than that of aluminum, 3.2 gr/cm?® and 2.8 gr/cm?,
respectively. As a result of the centrifugal force effect, the distribution of SiC particles was
varied through the wall thickness of the cylinder. More SiC particles were dispersed to the
outer diameter of the FGM cylinder under these circumstances, as expected. By changing
casting wall thicknesses, two cylinders having different mechanical properties were produced.
The specimens were named FGM1 and FGM2, and SiC-rich and aluminum-rich regions were
formed on both of FGM1 and FGM2. FGM1’s wall thickness was higher than FGM2’s. This
result is compatible with the previous studies on the subject [74-83]. Taking into account the
wear, fatigue, and fretting behaviors of FGM from previous studies, an aging process was
performed (solutionizing at 500 °C, followed by water quenching and reheating for aging at
145 °C for 10 h, followed by water cooling) [75, 82, 83].

Tensile tests were performed using specimens sliced through the wall thickness and were
numbered from 1 to 5 for FGM1 and FGM2 according to their position in the cylinder (from
the innermost to the outermost layer). Tensile strength was tested on each section to determine
the mechanical properties that can be varied such as Young’s modulus (E), tensile strength (R),
and yielding stress (R,) (Figures 1-3). Tensile experiments were conducted using video
extensometer at 1 mm/min tensile speed. Obtaining tensile specimens from the cylindrical
FGM is shown in Figure 4.
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Figure 1. Young’s modulus variations of FGM1 and FGM2 [84].
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Figure 2. Yielding stress variations of FGM1 and FGM2.
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Figure 3. Tensile strength variations of FGM1 and FGM2.
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Figure 4. Obtaining tensile test samples from cylindrical FGM.

Due to the higher density of SiC particles (relative to aluminum 2014), many more particles
were dispersed to the outer diameter of FGM cylinder during centrifugal casting. This
produced a gradient in the Young’s modulus, from the inside to the outside layer of cylinder
(Figure 1) [84]. It was observed that SiC distribution under centrifugal force and wall thickness
of cylinders effected Young’s modulus variation. As wall thickness of cylinder decreased, it
was observed that Young’s modulus value (innermost of cylinder) increased from 65 MPa to
84 MPa. Grading functions of FGMs were differed from each other due to the distribution of
SiC. Young’'s modulus values of the outermost region of cylinders were similar (105-106 MPa).
It was observed that wall thickness of FGM and manufacturing process had an impact on the
composition and mechanical properties of FGM.

As mentioned above, FGMs’ properties can vary exponentially, linearly, and according to the
rule of force. In this study, Young’s modulus variation was calculated according to the rule of
force to compare with experimental results using Equations (4) and (5). In these equations,
E(x) represents Young’s modulus at x point, E, base material Young’s modulus, E, reinforcing
material Young’s modulus, ¢ the width/thickness of FGM, x the distance from the starting
point, g(x) the distance function, and p the gradient exponent. The gradient exponent (p) was
calculated using equations as 0.1 and 7 for FGM1 and FGM2, respectively.

g(x)= (fjp @
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E(x)zEl(l—g(x))+E2g(x) %)

Tensile and fatigue crack growth tests were performed with a 5-ton capacity Instron fatigue
servo-hydraulic test device. Two cylindrical specimens were cut through their wall thickness
in four sections via vertical slicing as shown in Figure 4. Tensile tests were carried out to
determine the crack opening properties using video extensometer at 1 mm/min tensile speed.

To investigate the effect of variation in mechanical properties and distribution of SiC particles
on fatigue crack behavior, fatigue crack growth tests were applied under tensile cyclic load
with stress ratio R = 0.1. The samples were prepared according to the ASTM E647 (2011) [85]
in three separate groups: central notched (middle tension, M(T)), single-edge notched (SE(T))
on SiC-rich side, and single-edge notched (SE(T)) on aluminum-rich side (Figure 5). The test
specimens’ dimensions are shown in Figure 6. M(T) and (SE(T)) samples are prepared
according to the ASTM E647 (2011) [85]. Samples were processed by laser cutting method.
According to the ASTM E647 (2011) [85] standard, crack length to be opened must be at least
0.2W; sample length L >0.3. W represents width belonging to the sample. Notch length opened
on M(T) specimens 2a = 13 mm, notch length opened on SE(T) a = 5.5 mm [86]. Both tensile and
fatigue experiments were applied to these samples. Two digital portable microscopes, as
shown in Figure 7, were used to determine the crack beginning from notch tip and propagation
of that crack. Applied maximum load determined with respect of minimum yielding stress
after tensile tests were applied to central and single-edge notched specimens (Eq. (6)).

Single edge notched {SE(‘I‘]} -
on SiC-rich side

Middle tension M(T)
specimens \/

-

"+ Single edge notched
(SE(T)) on aluminum-
rict}sida

Figure 5. Obtaining fatigue crack growth test samples from cylindrical FGM [84].
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Figure 6. Dimension of fatigue crack growth test samples: (a) middle tension M(T)), (b) single-edge notched (SE(T))
[84].

O-max = 0'3Remin (6)

Stress ratio (R) is important for calculations of load increment (AP) and stress concentration
factor increment (AK) for homogeneous material according to the ASTM E647 (2011) (Eq. (7-
9)) [85].

R>0=AP=P_ -P_ @)

R<0=AP=P,_

X

AP | o o 8)
20/ <0.95= AK = — |~ sec—
AV B \2W 2
. o K .
R — min — min — min
max O-max Kmax (9)

For 2a/W <0.95 situation, M(T) specimens were accepted homogeneous and Equations (5) and
(6) were used in calculations. a represents crack half-length. If 2a/W is greater than or equal to
0.95, it is accepted that crack will be instable and then probably fracture will be occur. The
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Figure 7. The digital microscopes used in experiments

stress ratio R = 0.1 and frequency f =5 Hz were selected as fatigue crack growth experiment
parameters. SE(T) specimens’ notch was parallel to the grading direction.

Load-crack tip opening diagrams of M(T) specimens obtained from FGM1 after tensile tests
are shown in Figure 8. Here, 1-4 refer to specimen numbers from innermost (aluminum-rich
side) to outermost (SiC-rich side) regions of cylinder. It can be understood that Al-rich side
fractured at a lower load value. Since SiC rate increased, load carrying capacity of specimens
increased. SiC-rich side fractured at a higher load value than the others.

20
15 ,—’—’_’_,_,—/—’_
—
= 10 -3
a 2
;
5 4

U _'.-J T T T T T
0 0.1 0.2 0.3 04 0.5 0.6

&, mm
Figure 8. Load-crack tip opening diagrams of M(T) specimens obtained from FGM1.

Load-crack tip opening diagrams of SE(T) specimens obtained from FGM?2 after tensile tests
can be seen in Figure 9. The specimen (SE(T)) on SiC-rich side was fractured at a higher load
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than the (SE(T)) on aluminum-rich side specimen. Curves are almost continued in the same
way until opening value is 0.5 mm. However, it is seen that (SE(T)) on aluminum-rich side
specimen fractured when load value is up to 12 kN. On the other hand, (SE(T)) on SiC-rich
side specimen continues to open till an 1.6 mm opening value at 20 kN load.

25
f 15 = SE(T) 0N aluminume-rich side
>
g —SE(T) on SiC-rich side
-5“ 1[] T
©
o
—
5
[] T T T T T T T T 1
0 0.2 04 0.6 0.8 1 1.2 14 1.6 1.8

Crack opening, & (mm)

Figure 9. Load-crack tip opening diagrams of SE(T) specimens obtained from FGM2 [84].

Number of cyclic load-crack propagation diagram of M(T) samples obtained from FGM2 with
stress ratio R = 0.1 condition is shown in Figure 10. Here, 14 refer to specimen numbers from
innermost (aluminum-rich side) to outermost (SiC-rich side) regions of cylinder, and speci-
mens fractured at 12,880, 27,000, 34,000, and 48,000 number of cyclic loads, respectively. It can
be seen that the fatigue life increases to almost 350% because of increase in SiC rate.
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Figure 10. Number of cyclic load-crack propagation diagram of M(T) samples obtained from FGM2: 14 refers to speci-
men numbers from innermost (aluminum-rich side) to outermost (SiC-rich side) [84].
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Number of cyclicload-crack propagation diagram of SE(T) samples obtained from FGM1 (both
of SiC-rich side and aluminum-rich side) with stress ratio R =0.1 is shown in Figure 11. It was
determined that the crack growing rate increased after 14,400 cycles for the aluminum-rich
side SE(T) sample. However, after 28,800 cycles, the crack growing rate increased dramatically
and after 36,850 cycles, sample fractured in a short time. On the other hand, SiC-rich side SE(T)
sample’s crack growth rate was very slow up to 13,000 cycles under the same cyclic load and
after 13,000 cycles, the growth rate increased gradually. Crack growth rate increased dramat-
ically after 190,000 cycles and sample fractured in a short time after 214,000 cycles. Under the
same fatigue load, it was determined that the SiC-rich side SE(T) sample had fatigue life more
than 500% compared to the aluminum-rich side SE(T) sample.

12

—— SE(T) on aluminum -rich side

10
I —m—SE(T) on SiC-rich side

8 —=
¢
4 /4 — -
-
.,_-—‘I'
2 =

— -

0 A a8 u & "B . . .
0 50,000 100,000 150,000 200,000 250,000

Crack growth increment, Aa (mm)

Number of cycles, N

Figure 11. Number of cyclic load-crack propagation diagram of SE(T) samples obtained from FGM1 [84].

Number of cyclic load-crack propagation diagram of SE(T) samples obtained from FGM1 and
FGM2 aluminume-rich side with stress ratio R = 0.1 condition is shown in Figure 12. A sample
belonging to FGM2 displays a quick fracture behavior compared to FGM1. Whereas FGM2
sample fractured at 36,850cycles, FGM1 sample fractured at 238,000 cycles. FGM1’s fatigue life
was increased 1.5-fold compared to FGM2’s fatigue life, which is explained by Young's
modulus variation seen in Figure 1. Graphics show differences in variation of Young's
modulus. SiC distribution in FGM2 increases from the innermost region to the outermost
region till 0.2 times wall thickness, and then the rise slows down. In FGM1’s inner region,
distributions of SiC and in parallel with Young’s modulus are higher than in the FGM2’s. The
Young’'s modulus determined as E = 85 GPa innermost of cylinder wall thickness does not
visually increase by 0.75 times wall thickness.

After the fatigue crack growth experiments finished, c and m, which are material-dependent
coefficients of the Paris-Erdogan equation (Eq. (3)), were found for each FGM2 M(T) specimens.
The crack propagation behavior of the samples, which were from the inner diameter to the
outside diameter of the cylinder numbered from 1 to 4, was observed differently in each of the
samples. Therefore, the ¢ and m coefficients were observed different from each other. The
FGM'’s ¢ and m coefficients are shown in Table 1.
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Figure 12. Number of cyclic load-crack propagation diagram of SE(T) samples obtained from FGM1 and FGM2 alumi-
num-rich side [84].

FRANC2D finite elements program have been developed by the fracture group of Cornell
University [87]. The program is usually used for fracture mechanics and fatigue analysis. In
this study, FRANC2D analysis was done for FGM2 M(T) specimens. The finite element model
can be seen in Figure 13. It was accepted that the M(T) specimen was homogeneous in itself
while modeling in FRANC2D. According to the analysis, obtained results from experimental

and finite element modeling were similar to each other as seen in Figure 14.

1 2 3 4
c 10°® 108 2x107° 6x 107
m 1.3632 1.0801 1.6678 1.2058

Table 1. Calculated c and m coefficients of FGM2 M(T) specimens: 1-4 refer to specimen numbers from innermost
(aluminum-rich side) to outermost (SiC-rich side) regions of cylinder

Figure 13. M(T) specimen modeling using FRANC2D program: (a) model, (b) maximum shear stress at crack tip, (c)
deformation shape.
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Figure 14. FRANC2D and experimental analysis results for M(T) specimens obtained from FGM2.

3. Conclusions

In the literature, studies related to FGM have mostly focused on determining FGMs’ thermal
properties using experimental, analytical, and numerical methods. FGMs’ fatigue and fatigue
fracture behaviors have been tested using numerical and analytical methods and improved
new approaches are developed to date. However, there are hardly enough experimental
studies to support this.

In conjunction with this study, mechanical properties and fatigue crack propagation behavior
were analyzed experimentally. The results can be summarized as follows:

1.

FGMs can be manufactured easily by centrifugal casting. It is possible to obtain FGM
having different properties by changing casting parameters, FGM thickness, and casting
weight from reinforced mixture.

Since SiC density is higher than aluminum, it is dispersed mostly to the outer region of
material because of the centrifugal force during centrifugal casting. Therefore, hardness,
composition, and mechanical properties change throughout the FGM thickness.

Crack propagation behaviors of single-edge notched (SE(T)) on SiC-rich side and single-
edge notched (SE(T)) on aluminum-rich side specimens are different from each other
under the same fatigue load. Fatigue crack propagation both begins later and has long
fatigue life on SiC-rich side.

Each middle tension M(T) specimen obtained by slicing wall thickness as four sections
shows different crack propagation behaviors. As SiC rate increases, crack begins and
propagations are delayed under the same experimental conditions. After all, fatigue life
increases to approximately 350%.
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5. p <1 seems to be more advantageous than p > 1 condition after crack propagation
experiments of FGM when crack propagation starts from single-edge notched (SE(T))
aluminume-rich side considering the gradient exponent.
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