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Abstract

Apatite is the most abundant phosphate mineral which include more than 95% of al
phosphorus in the Earth´s crust. The seventh chapter of this book provides brief
description of sedimentary and igneous phosphate rocks and introduces basic ideas for
characterization and classification of phosphate rocks. The chapter continues with
description of biogenic apatites, description of phosphate rocks deposits and introdu‐
ces other sources of phosphorus. Furthermore, geological role of apatite, cycle of
phosphorus, weathering of apatite, fission track analysis and extraterrestrial apatites
were described. The last section is dedicated to structure and properties important of
non-apatitic phosphate minerals, such as atuanite, crandallite, lazulite, millisite,
monazite, tobernite, xenotime etc.

Keywords: Apatite, Phosphate Rock, Biogenic Apatites, Fission Track, Extraterrestrial
Epatite, Non-Apatitic Phosphate Minerals

Apatite [Ca5(PO4,CO3)3(OH,F,Cl)] is the most abundant phosphate mineral, which accounts for
more than 95% of all phosphorus in the Earth’s crust and is found as an accessory mineral in
most rock types1 on the Earth’s surface, primarily because it is stable in a wide variety of geological
conditions  and  over  a  range  of  different  geological  processes  [1],[2],[3],[4],[5],[6],[7],[8].
According to the list of symbols for rock- and ore-forming minerals, the abbreviated symbol
used for apatite is Ap [9].

However,  exploitable deposits  of  apatite  are mainly found in igneous rocks and also in
sedimentary and metamorphic rocks. The former comprises the stratiform phosphorite deposits
in shelf-type shale-carbonate sequences, which contain high phosphorus ores of microcrystal‐

1 A rock may be best defined as any mineral or aggregate of minerals that forms an essential part of the Earth [10]. Apatite
is found in all classes of rock: igneous, metamorphic and sedimentary [2]. Also, much of phosphorus in coal is present in
the form of apatite [7]. Phosphorus is the 10th most abundant element on Earth, with an average crustal abundance of 0.1%
[8].

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



line CO2-rich fluorapatite (francolite) and cryptocrystalline collophane. The igneous deposits
comprise fluorapatite ores, which mostly accommodate carbonatites and other types of alkaline
intrusions. The magmatic ores are generally of lower grade but give higher-quality beneficia‐
tion products with low contents of unwanted contaminants (Cd, Pb, As, U, Th, Mg and Al) [11],
[12].

The beneficiation products of apatite ores as a commodity are traded as phosphate rock. It is
the only significant global resource of phosphorus used dominantly in the manufacturing of
nitrogen-phosphorus-potassium (NPK) fertilizers for food-crop nutrition and in the produc‐
tion of animal feed supplements. Only 10 – 15% of the world’s production of phosphate rock
has other applications (e.g. pharmaceuticals, ceramics, textiles and explosives) and repre‐
sents an important alternative source of rare-earth elements (REE) [12],[13]. The REE con‐
tents in apatites are useful in paleoceanographic studies to identify the seawater masses and
circulation patterns or to quantify the redox state of the ocean [14].

The composition of phosphate rocks varies from one deposit to another. Therefore, phos‐
phate rocks from different sources may be expected to behave differently in beneficiation and
acidulation processes. Phosphate rocks are primarily composed of the apatite group in
association with a wide assortment of accessory minerals, mainly fluorides, carbonates, clays,
quartz, silicates and metal oxides [13],[15],[16].

Si, Ca, Fe and Al are the most common companion elements in phosphate rocks, with the
median abundances of 53.3 wt.%, 30.0 wt.%, 13.6 wt.% and 8.0 wt.%, respectively, compared

Fig. 1. The average distribution of trace elements in phosphate rock [17].
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with P2O5. In some low-grade phosphate rock mines, the content of Fe and Al is even higher
than that of P2O5, and it is usual that the P2O5 content in phosphate rock is less than the Si and
Ca content. In addition, some elements that are very rare in the Earth’s crust are found to be
relatively abundant (Fig. 1) in phosphate rocks [17].

7.1. Characterization and classification of phosphate rocks

When rock contains phosphate components between 5 and 50% (by volume), then it is
phosphatic, and the name of the main lithology is used as a suffix (phosphatic limestone,
phosphatic claystone, etc.). In addition, the dominant textural form of the phosphate compo‐
nents in a phosphorite can be used in defining the rock name (e.g. peloidal2) (phosphorite,
coprolitic phosphorite, etc.) [10],[18].

There are two main kinds of phosphate rocks deposits in the world [10],[20],[21],[22],[17],[23]:

1. Sedimentary phosphate rocks: marine phosphate deposit, metamorphic deposit,
biogenic deposit (bird and bat guano accumulation) and phosphate deposit as the result
of weathering. The sedimentary deposits contain the varieties of carbonate-fluorapatite
that are collectively called as francolite (Section 2.6). The most common non-phosphatic
accessory minerals associated with sedimentary phosphate rocks are quartz, clay and
carbonates (calcite and dolomite). Phosphate rocks of high concentration of phosphates
(10 – 15% of P2O5) are called phosphorites.

2. Igneous phosphate rocks: apatite is a common accessory mineral occurring in practical‐
ly all types of igneous rocks (acid, basic or ultrabasic).

Depending on their origin (igneous or sedimentary), phosphate rocks have widely varying
mineralogical, textural and chemical characteristics [23]. The locations of the major phos‐
phate rocks deposit and producers are shown in Fig. 2 [20],[24].

Sedimentary phosphate deposits are exploited to produce about 80% of the total world
production of phosphate rocks. Igneous phosphate deposits are often associated with
carbonatites3 and/or alkalic (silica-deficient) intrusions. Igneous phosphate rock concentrates
are produced from the deposits mainly exploited in Russia, the Republic of South Africa, Brazil,
Finland and Zimbabwe. Igneous phosphate ores are often low in grade (less than 5% P2O5) but
can be upgraded to high-grade products (from about 35% to over 40% P2O5) [22],[23].

The atom ratio of P:N = 1:15(16) in the oceans is not greatly different from that found in living
organisms. The availability of soluble phosphate from weathering of apatite-containing rocks
may initially has been the rate-determining factor in early live development. In most ecolog‐

2 Peloid is a comprehensive descriptive term for polygenetic grains composed of micro- and polycrystalline carbonate.
The term was proposed in order to replace the widely used name “pellet,” which for many authors had become a synonym
for pelletal coprolites (fossilized faces). Peloids differ from ooids and oncoids by the absence of centrosymmetric or radial
internal structures [19].
3 Igneous rocks (intrusive or extrusive) that contain carbonates in the amount higher than 50%.
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ical systems, the phosphate content is the limiting factor for growth. Nearly all igneous rocks
contain some phosphate, even if it is only ~0.1% (0.2% P2O5 on average in lithosphere), with
nearly all of it in the form of apatite. Sedimentary rocks generally contain rather less (~0.1%
P2O5 on average). Sedimentary phosphorite is believed to originate from widely dispersed
apatite mainly in igneous rocks [25].

7.1.1. Sedimentary phosphate rocks

Most marine sediments and rocks contain less than 0.3% of P2O5. However, periodically
through geological time, phosphorites (with the content of P2O5 of 5% or greater) formed on
the seafloor in response to specialized oceanic conditions and accumulated in sufficient
concentrations to produce major deposits of regional extent4 [26].

Marine phosphate formation and deposition represent the periods of low rates of sedimenta‐
tion in combination with large supplies of nutrients. Phosphorus is then concentrated by
various mechanisms, possibly bacterial (refer to discussion of Fig. 7), at either the sediment-
water interface or within interstitial pore waters. This process leads to primary formation and
growth of phosphate grains, which remain where they were formed or are transported as
clastic particles within the environment of formation. During subsequent periods of time, some
primary phosphate grains may be physically reworked into another sediment unit in re‐
sponse to either changing or different environmental processes [26].

Fig. 2. The distribution of the world’s phosphate resources [20].

4 Most of the world’s phosphate production comes from marine phosphorites [27].
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Fig. 3. Stratigraphic distribution of phosphorites based on 1982 production data (a) and distribution of major Protero‐
zoic-Cambrian phosphorites (b) [28].

The stratigraphic distribution5 [29] of phosphorites [28] is shown in Fig. 3(a). The major
discoveries in Proterozoic and Cambrian rocks were not made until late 1930s, initially in the
USSR (Kazakhstan), Poland, Korea, China and northern Vietnam. Early discoveries were made
in the course of regional geological mapping and exploration for metal deposits, but later
deposits were found mainly using more direct exploration techniques. It is possible that the
greatest global phosphogenic episode in geological history took place in Late Proterozoic and
Cambrian. While pelletal phosphorites are common in most Cambrian deposits, the Protero‐
zoic age phosphorites contain mudstone (Fig. 3(b), microphosphorite) and stromatolitic
phosphorite6 [28],[30].

Some phosphates were formed during all major sea-level transgressions during 67 million
years of Cenozoic history; however, some periods were more important than others with
respect to producing large volumes of phosphorites and preserving them in the geologic
column. During the Paleocene and Eocene, several major episodes of phosphogenesis occurred
within the major episodes of phosphogenesis in the major east-west ocean, which included
Tethys [31],7 producing extensive amounts of phosphorites throughout the Middle East,
Mediterranean and northern South American regions. By the Neogene, this circum-global
ocean had been destroyed by the plate tectonic processes, and the north-south Pacific and

5 Since the Earth is stratified, in a broad sense, all rocks and classes of rocks (sedimentary, igneous and metamorphic) fall
within the scope of stratigraphy and stratigraphic classification. Rocks can be classified according to lithology, fossil
content, magnetic polarity, electrical properties, seismic response, chemical or mineralogical composition, etc. Rocks can
be also classified according to time of their origin or environment of genesis. Rock bodies can be classified into many
different categories of stratigraphic classification, including lithostratigraphic units (1), biostratigraphic units (2),
chronostratigraphic units (3), unconformity-bounded units (4) and magnetostratigraphic units (5). Please see work [29]
for further details.
6 Phosphate occurs as concentrated in stromatolite columns, laminar algal (stromatolitic) phosphorite, reworked
fragments of stromatolites forming silicified conglomeratic or brecciated phosphorite, massive-bedded phosphorite with
sandy and clayey laminate and disseminate pellets and nodules in dolomite [30].
7 The Tethys Ocean divided the continental masses into northern and southern groups. It merged at both ends with the
Panthalassa or proto-Pacific Ocean. The remnants of Tethys are now located within Alpine mountain belts from the
Caribbean in the west to recent collision zone between Australia and Eurasia in the east and within still-growing Central
Atlantic Ocean between Africa and North America [31].
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Atlantic oceans dominated global circulation patterns. Upper Cenozoic phosphogenesis
(Table 1) occurred along the north-south ocean-ways, which now contain modern continen‐
tal margins. On the basis of the extent of known phosphate deposits, the Miocene was by far
the most important episode of phosphate formation in Upper Cenozoic [26].

Geological period Age Duration

Phanerozoic (541 ma to present)
Cenozoic (66 ma to present)

Quaternary
258 ma to present

Holocene
0.0117 ma to present

<3 ma 10 ta

Pleistocene
2.58 – 0.0117 ma

Neogene
23.03 – 2.58 ma

Pliocene
5.333 – 2.58 ma

5 – 4 ma 1 ma

Miocene
23.03 – 5.333 ma

19 – 13 ma 6 ma

Paleogene
66 – 23.03 ma

Oligocene
33.9 – 23.03 ma

29 – 25 ma 4 ma

ma – million years ago, ta – thousand years

Table 1. Formation of phosphorites during Upper Cenozoic phosphogenesis [26].

Phosphorites and phosphatic sediments are known on the floor of the Pacific, Indian and
Atlantic oceans. They occur in a number of inshore areas (the shelves and upper part of the
continental slopes) and in pelagic zones, chiefly on seamounts. Most of the shelf phosphor‐
ites are localized in four very large oceanic phosphorite provinces [32],[26],[33]:

a. East Atlantic: Portugal, northwest Africa throughout South Africa and Agulhas Bank;

b. West Atlantic: North Carolina throughout Florida, Cuba, Venezuela and Argentina;

c. East Pacific: California throughout Baja California, Mexico and Peru throughout Chile;

d. West Pacific: Sakalin Island, Sea of Japan, Indonesia, Chathman Rise east of New Zealand
and East Australian shelf.

Sedimentary rocks with the content of 18 – 20 wt.% of P2O5 are termed as phosphorites. The
main phosphate mineral in phosphorites is carbonate-fluorapatite (CAF, francolite): Ca10−a−b

−cNaaMgb(PO4)6−x(CO3)x−y−z(CO3,F)y(SO4)zF2, where x = y + a + 2c and c denotes the number of
Ca vacancies, present as grain or mud. Most phosphorites are of marine origin [34],[35],[36].
Phosphorites on the sea floor occur in two types of environments on [37]:

i. Continental margins in association with terrigenous;

ii. Submerged mountains in association with calcareous and volcanogenic rocks.
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Phosphorites consist mainly of phosphate cement enveloping small grains of phosphatic and
non-phosphatic materials. Phosphate in the cavities of foraminifera is purer than that
enveloping the grains [37].

The largest phosphorite-bearing regions are situated along the west coasts of Africa and
America, at the east coast of the USA, off New Zealand and in the central part of the north‐
ern Pacific. The phosphatic matter of phosphorites consists of carbonate-fluorapatite and is
intermixed with variable amounts of terrigenous, biogenic and diagenetic non-phosphatic
components, which are the cause of a wide range of fluctuations in their chemical composi‐
tions. The age of sea-floor phosphorites varies from Cretaceous to Recent. Recent phosphor‐
ites are localized in the south west of Africa and at Peru-Chile shelves, which are the areas
influenced by strong upwelling of nutrient-rich waters (Fig. 4(a)), resulting in high biologi‐
cal productivity, intensive biogenic sedimentation and diagenetic redistribution of geochem‐
ically active, mobile, organic-derived phosphorus in sediments. This phosphorus is accreted
in the form of initially soft and friable nodules undergoing gradual lithification [27],[37].

Pronounced climatic, biological and geologic effects accompany upwelling, especially where
it is produced by the divergence in coastal areas (Fig. 4(b)). The presence of cold waters along
the coasts produces the coastal fogs and humid-air deserts, such as those of northern Chile and
southwest Africa. The nutrient-rich waters that lie alongside these deserts are the lushest
gardens of the sea, as the upwelling cold waters there support tremendous quantities of
organisms. Most of large accumulations of guano (Section 7.2.2) are formed by the seafowl
colonies feeding in these waters, and it is the extremely dry climate created by upwelling that
makes the preservation of guano possible [27].

Sedimentary deposits usually contain varieties of carbonate-fluorapatite called francolite
(described in Section 2.6). Francolite is defined as apatite that contains significant amount of

Fig. 4. The surface currents in an idealized ocean, showing the areas of ascending nutrient-rich water (a) and the distri‐
bution of upwelling water and related phenomena in modern oceans (b) [27].
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CO2 with less than 1% of fluorine. Apatite associated with igneous source rocks may be of
primary magmatic, hydrothermal or secondary origin. Primary apatite from igneous sources
may be of fluorapatite, hydroxylapatite or chlorapatite varieties. Pure apatites from igneous
deposits contain slightly over 42% of P2O5 [23].

Since a wide range of very different particles and processes of formation complicates the simple
classification of phosphorites, there is not any unified phosphorite classification8 [18],[36],[38].
The proposed classification schemes for phosphorites describe their constituent particles, such
as pelletal phosphorite. Nonetheless, the descriptor pelletal indicates nothing more than
rounded phosphate particles of any origin. A widely recognized distinction in phosphorites
is based on the grain size and holds specifically among phosphorites where the phosphate
particles are of sand- or coarse silt-size and those that are of clay- and fine silt-size [28]. The
phosphorites can be classified as follows [37]:

1. Non-conglomeratic (also termed as nodular) phosphorites: consist of phosphatized
limestones and gluconate-quartz sandstones. Two varieties of nodular phosphorites can
be recognized:

a. Ferruginized with glazed surface. The cement of ferruginized phosphorites is much
richer in finely dispersed goethite than that of non-ferruginized phosphorites.
Furthermore, ferruginized phosphorites do not contain the fragments of macrofauna.

b. Non-ferruginized with rough surface. In non-ferruginized phosphorites, the cement
is micrite-collophane and its color varies form yellow (collophane, described in
Section 2.6) to gray (micrite9 [19]). The chambers of foraminifera are filled with
phosphate-carbonate cement, less often with glauconite or goethite (FeO(OH) [33]).

Some nodules of phosphatized limestone are coated with a discontinuous layer of
secondary phosphate with the thickness up to 1 cm.

2. Conglomeratic phosphorites consist of pebbles of phosphatized limestone (up to 50% of
the rock) held together by the cement similar in composition to the phosphatized
glauconite-quartz sandstones described above. In many samples of this type, two or three
conglomerate layers are clearly visible, differing in size of pebbles and in content of
glauconite. The bedding planes separating the layers with denser or less dense packing
of grains are also distinguished in the cement. The surface of these planes is glazed and
brown due to higher content of iron hydroxides and organic matter. Upon impact, the
rock breaks along the planes. In addition, irregular microerosion surfaces are observed in

8 The nature and origin of phosphorites have been a matter of much speculation since they were first discovered more
than 150 years ago [38], and there is not any commonly accepted nomenclature [39].
9 Micrite (the abbreviation for microcrystalline calcite) is characterized by crypto- to microcrystalline crystal texture. As
the synonym of micrite, the names as lime mud, lime ooze, lime mudstone, calcimudstone and calcilutite are also used.
The original definition sets a grain-size limit to < 4 μm, but current terminology distinguishes between minimicrite (<1
μm), micrite I (1 – 4 μm) and micrite II (4 – 30 μm). Furthermore, primary micrites (orthomicrites and nannoagorites),
secondary micrites and pseudomicrites are recognized. Orthomicrites consist of subhedral polygonal calcite grains
meeting at the interfaces. Nannoagorites are composed of calcareous pelagic biota. Secondary and pseudo micrites result
from the diagenetic processes [19].
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the conglomeratic phosphorites, which run across the grains of glauconite, shells and
bedding planes [33].

The investigation of the microstructure of phosphorites by electron microscopy enables to
recognize the following varieties [33]:

i. Gel-like, phosphatized diatomaceous oozes, analogous (except phosphate content)
to the enclosing diatomaceous oozes.

ii. Microgranular, forming solid masses and globules from 1 to 3 mm in diameter. The
rough surface of phosphate is caused by the fact that it consists of granules less
than 0.1 mm in size.

iii. Fibrous, constituting inner parts of globules.

iv. Ultramicrocrystalline phosphate, forming a “jacket” on the surface of globules of
amorphous phosphate. The size of crystal of apatite is 0.1 – 0.3 μm.

v. Microcrystalline phosphate, consisting of crystal of 1 – 3 μm in size. Euhedral crystals
are often formed in the cavities within the carbonate grains.

vi. Multiphase microgranular cement consisting of carbonate, phosphate, quartz and
layered silicates.

With regard to their texture and petrographic character, phosphorites can be classified
according to the predominant size of the phosphorite component into four types [40]:

a. Microgranular (oolitic microgranular) phosphorites, conditionally including aphanite:
0.01 – 0.1 mm;

b. Granular phosphorites: 0.1 – 1 mm;

c. Nodular phosphorites: 1 – 5 mm;

d. Shelly phosphorites: 5 – 100 mm.

Although the types are named on the structural basis, the phosphate grains do not always have
the dimensions given above. At the same time, the classified types fairly differ in many
features, such as the association with various geological formations, the phosphate mineralo‐
gy and the stratigraphic sequence, thus being of lithologic character [40].

Most attempts to classify the phosphorite rocks adopt and modify the classification scheme
for carbonates [36]. In 1962, DUNHAM [41] published the classification scheme for limestone.
This scheme for carbonate rocks was modified for non-genetic classification of phosphorites
(Fig. 5) [28].
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Fig. 5. The classification scheme of carbonate rocks modified for phosphorites [28].

The macroscopic classification scheme for phosphate sediments suggested by RIGGS [42] is
shown in Fig. 6(a). The ancient deposits are better characterized via the scheme in Fig. 6(b),
which was proposed by KASTERN and GARRISON [43]. In this model, three types of phosphates
were recognized [39],[43]:

i. F-phosphates are friable, light-colored micronodules and peloids of carbonate-
fluorapatite (CFAP); they were formed by the precipitation of CFAP in laminated
diatom muds deposited within the oxygen-minimum zone.

ii. Phosphatic sands, termed as P-phosphates, consist of phosphatic peloids, coated
grains and fish debris, often having an admixture of fine siliciclastic grains. These
sands occur in thin layers and burrowed beds up to 2 m thick.

iii. Dark and dense phosphates, herein called D-phosphates, are the most abundant.
They occur as nodules, gravels and hard grounds. These phosphates were formed
through complicated cycles of CFAP precipitation during early diagenesis, erosion
and exhumation and reburial and rephosphatization processes associated with
changing energy conditions, which may reflect the effects of changes in the sea level.

CFAP cements in P- and D-phosphates are often replaced microbial structures, but our data
do not reveal whether this microbial involvement was passive or active. F-phosphates are most
common in deeper water, outer-shelf/upper-slope sites, whereas D- and P-phosphates tend to
predominate at shallower shelf sites more subjected to episodic high-energy conditions,
especially during the low stands of sea level. This concept reveals the paleoenvironmental and
time relationships of various phosphate sediments [39],[43].
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Fig. 6. The classification scheme of phosphorites proposed by RIGGS (a) and GARRISON and KASTNER [ 43 ].

Phosphorites can be formed in nature authigenically or diagenically. In authigenesis,
phosphorite forms as a result of the reaction of soluble phosphate with calcium ions forming
corresponding insoluble phosphate compound. The role of microbes in these processes may
be one or more of the following [44]:

a. Making reactive phosphate available;

b. Making reactive calcium available;

c. Generating or maintaining the pH and redox conditions, which favor the precipitation of
phosphate.
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The models of authigenic phosphorite genesis (Fig. 7) assume the occurrence of mineraliza‐
tion of organic phosphorus in biologically productive waters, such as at ocean margins, that
is, at shallow depths on continental slopes, shelf areas or plateaus [44].

Here, detrital accumulations may be mineralized at the sediment-water interface and in
interstitial pore waters, liberating phosphate, some of which may then interact chemically with
calcium in seawater to form phosphorite grains. These grains may be subsequently redistrib‐
uted within the sediments units. The dissolution of fish debris (bones) is also considered an
important source of phosphate in authigenic phosphorite genesis. The upwelling probably
also plays an important role in many cases of authigenic formation of phosphorite. During
non-upwelling period in winter, the phosphate-sequestering bacteria of oxidative genera
Pseudomonas and Acinetobacter become dominant in the water column. Fermentative Vibrios
and Enterobacteriaceae are dominant during upwelling in summer. It was suggested that
Pseudomonas and Acinetobacter, which sequester phosphate as polyphosphate under aerobic
conditions and hydrolyze polyphosphate under anaerobic conditions to obtain the energy of
maintenance and to sequester volatile fatty acid from polyhydroxybutyrate formation,

Fig. 7. The schematic presentation of formation of phosphorite in marine environment [44].
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contribute to the phosphorite formation. Locally elevated, excreted orthophosphate becomes
available for the precipitation as phosphorite by reacting with seawater calcium [44].

Authigenic phosphorite formation at some eastern continental margins, where upwelling, if
occurred at all, was a weak and intermittent process that may have been formed more directly
as a result of intracellular bacterial phosphate accumulation, which became transformed into
carbonate-fluorapatite upon the death of cells accumulated in sediments in areas where the
sedimentation rate was very low [44].

The model of diagenetic formation of phosphorite generally assumes the exchange of
phosphate for carbonate in accretions that have the form of calcite and aragonite. The role of
bacteria in this process is to mobilize phosphate by mineralizing detrital organic matter. The
demonstration of this process in marine and freshwater environment under laboratory
conditions leads to the hypothesis that the diagenesis of calcite to form apatite explains the
origin of some deposits in the North Atlantic. The phosphorite deposits of Baja California and
in the core of eastern Pacific Ocean seem to have formed as a result of partial diagenesis [44].

7.1.2. Igneous rocks

Apatites of igneous origin include hydrothermal veins and disseminated replacements,
marginal differentiations near the boundaries of intrusions and pegmatites, but the largest
deposits are intrusive masses or sheets associated with carbonatite, nepheline-syenite and
other alkalic rocks [27]. Igneous rocks are classified on the basis of their [21],[45]:

1. Color index: means the volume percentage of dark-colored mineral and divides the rocks
to leucocratic (color index varies from 0 to 30%), mesocratic (from 30 to 60%) and
melanocratic (from 60 to 100%).

2. Texture: coarse-grained rocks, which crystallize at depth, are termed as plutonic rocks
(as the rate of crystallization is slow, such rocks are holocrystalline10). Fine-grained rocks
containing minerals embedded in glassy matrix11 (often devitrified) are named as volcanic
or effusive rocks. The crystallization of volcanic rocks takes place on the surface and is
associated with rapid cooling and loss of volatile constituents of the lava. Their texture is
therefore vesicular [46]12 (vesicle-rich) and hypocrystalline.13

Rocks that crystallize partly at depth and partly near the surface are called hypabyssal 14

(subvolcanic). The term porphyry is also related to hypabyssal rocks, which are charac‐
terized by one or more than one minerals present as phenocrysts in fine-grained ground‐
mass.

10 The name for fully (100%) crystallized igneous rock [45].
11 The matrix is defined as interstitial material between larger (skeletal) grains [46].
12 The texture is characterized by many cavities (vesicles), which were formed by bubbles of volatile gasses during the
decrease of pressure at extrusion of magma to the surface. Lava solidifies before bubbles of gases can escape to the
atmosphere [46].
13 The name for igneous rocks where the ratio of crystals to glassy phase is higher than 3:5. Rocks containing higher
amount of glass are termed as hypohyaline or holohyaline [45].
14 Denotes the intrusions of magma at shallow depths in the crust, often directly related to overlying volcanic edifices [45].
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3. Chemistry and mineralogy: the rocks comprising more than 90 vol.% of ferromagnesi‐
an minerals, such as olivine, pyroxene, amphibole and biotite, are called ultramafic
(ultrabasic) rocks. The rocks composed from essentially one or more ferromagnesian
minerals are termed as mafic 15 (basic) rocks. In mafelsic rocks, the mafic and felsic
minerals are present in approximately equal amounts. Felsic rocks 16 contain predomi‐
nantly light-colored minerals, such as quartz, feldspar, feldspathoid and muscovite.

An acidic rock contains > 60% SiO2, whereas a basic rock is characterized by silica content
ranging from 44 to 52% of SiO2. Many of ultramafic rocks are ultrabasic with the content
of silica < 44%, but such ultramafic rocks as pyroxenites and amphibolites are not
ultrabasic, but they are rather basic [21].

Igneous rocks are formed by the solidification of silicate melt from high temperatures. Since
the sequence of crystallization follows the liquidus-solidus phase relationships, the minerals
of low content will normally crystallize the least, but diorite and granodiorite melts may have
enough phosphorus present for the FAP phase field to intersect the liquidus and to allow early
formation of fluorapatite. Later-crystallizing phases should form in the interstices between
early-crystallizing phases of alkali-rich igneous rocks and should form an immiscible phos‐
phate-rich liquid phase, which leads to large late-stage segregations of FAP, some of which
are associated with magnetite [47].

Where the content of phosphorus is very low, phosphorus may remain in the fluid phase, and
apatite will form during the time at which the rock re-reacts with this fluid. This reaction is
termed as pneumatolitic, and formed crystals will be small and often euhedral (with crystal
facets). They may be included inside preexisting mineral grains. This situation is often
encountered in granites and other related siliceous igneous rocks. The concentration of apatite
minerals in igneous rocks is rarely sufficient to yield the source for mining the deposits for the
phosphorus content [47].

7.1.3. Biogenic apatites

The biogenic (endogenous) mineral deposits form in surface environments as the transforma‐
tion of primary organic aggregates or as a result of biochemical processes. Since the organ‐
ism produces many of the same substances that form inorganically in rocks, the biogenic
minerals are not minerals in the conventional sense1. Biogenic minerals originate from living
organisms or with their assistance (Table 2). These compounds are crystallized within living
organisms as a result of cell activity and are surrounded by organic matter. Classical exam‐
ples are the bones of vertebrates. The bones and teeth consist of fine fibers or platy crystals
(Section 10.9.2) of a mineral closely related to carbonate-hydroxylapatite (Section 4.6). These
crystals are suspended in organic collagen. The crystals of apatite, which often do not exceed 10
nm in length, comprise up to 70% of weight of dried bone. The proteins make up the remain‐
ing 30% [48].

15 Term mafic is the abbreviation of names of elements magnesium and iron (Latin word ferrum) [45].
16 Term felsic is the abbreviator of names of minerals feldspar and silica [45].
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Composition Plant or animal examples

Silica (opal, chalcedony, quartz) Radiolaria, siliceous sponges, diatomic algae

CarbonateCalcite Archeocyatha, foraminifera, stromatoporoids, carbonate sponges,
echinoderms, brachiopods, belemnites, ostracods, coccolithophora,
cyanophycerae, purple algae, some mollusk shells, eggshells or birds and
reptiles

Calcite crystals Eyes of trilobites and brittle star

Aragonite Corals, shells of mollusks and cephalopods

Aragonite transforming to
calcite

Corals, bryozoa, gastropods, pelecypods

PhosphateApatite Bones, teeth, scales of vertebrates, brachiopods

Barite, gypsum Ear stones of animals

Struvite Kidney and gall stones

Oxalates Whewellite, weddellite Kidney and gall stones

Phosphate-bearing carbonates Brachiopods

Magnetite In brain tissue of birds and insects (carrier pigeons, bees, etc.), bacteria
(Magnetospirillum magnetotacticum). Magnetite is used for navigation and
orientation.

Fe-hydroxides Shells of diatoms, pediculates of Protozoa

Table 2. Mineralogical composition of solid plant and animal tissues [48].

In addition to the occurrence within the bones and teeth of vertebrates, mineral-organic
aggregates are also found in mollusk shells, solid tissues of foraminifera corals, trilobites and
other arthropods, echinoderms, some algae, etc. Some other biogenic processes involve
bacteria. Large deposits of native sulfur, manganese oxides and hydroxides and iron are
attributed to bacterial activity. Bacterial activity is also involved in the weathering processes
of sulfide oxidation and transformation of kaolinite into bauxites [48].

Biogenic apatite is one of the most promising authigenic phases in this respect, as it is present
in most siliciclastic deposits and is strongly enriched in a large suite of trace elements.
Biogenic (fish teeth and bones) and diagenetic apatites are essential repositories of sedimen‐
tary phosphorus. They occasionally form huge deposits, as in West Africa, which are active‐
ly mined to provide agricultural fertilizers. Some of these deposits, found in particular in the
Late Precambrian of China, after chemical precipitates seem to be associated with the episodes
of global glaciation. In low-temperature waters, phosphates form numerous complexes. The
concentration of phosphorus in sea and river water is limited by very low solubility of apatite.
Phosphate radicals often attach to the surface of iron oxyhydroxide colloids when they
precipitate in estuaries [49].
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7.1.4. Genetic classification of phosphate rocks

The genetic classification proposed by EGOROV [50] includes three types of apatite ores
according to the mineral assemblages [6],[51],[52],[53],[54],[55]:

i. Silicate-apatite (ijolite17): ijolite is a medium- to coarse-grained equigranular rock
composed of nephelite and aegirite-augite, or other pyroxene, in nearly equal
proportions. There are varieties richer in nephelite, approaching the composition of
urtite.18 Nephelite is an equant anhedrons, pyroxene forms euhedral crystals with
zonal structure and margin of more sodic pyroxenes than that in the center, which is
commonly titaniferous. Some varieties contain titaniferous melanite and iivaarite.
Apatite is a prominent constituent and titanate is generally present in small amounts.

ii. Silicate-magnetite-apatite (phoscorite): phoscorites19 are spatially and temporally
associated with carbonatites, often forming multiphase phoscorite-carbonatite
series [56]. The term “phoscorite” was originally used to describe the magnetite-
olivine-apatite rock with a carbonate core by RUSSELL et al [57],[58],[59].

iii. Carbonate-apatite (carbonatite): the crystalline products of low-volume and high-
temperature carbonate melts that have been evolving from the upper mantle (Fig. 8)
for at least the past 2 Ga. Many are associated with crustal complexes of alkali-rich
silicate rocks from which they may have evolved by liquid immiscibility.

Fig. 8. The location of upper mantle on the cross-section of the Earth, core and mantle drawn to scale [44] (a). Ternary
equilibrium phase diagram of the apatite bearing ijolite-urtite rock (b) approximated by the system NaAlSiO4-CaMg‐
Si2O6-Ca5(PO4)3F [6]: olivine (Ol), melilite (Me), silicophosphate (Sph), apatite (Ap) and immiscibility field (L1+L2).

17 Ijolite, theralite and teschenite belong to phanerites (prelenic rocks characterized by equal or nearly equal amounts of
femic components) [55].
18 Urtite is medium-grained and light gray rock composed of about 70% nephelite, 25% aegirite or aegirite-augite [55].
19 In the work [58], the name camaforite, i.e. Russian neologism [59], denotes the calcite-magnetite-forsterite assemblage,
used as a synonym with phoscorite.
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The endogenous apatite deposits can be classified20 into the following types [60],[61]:

1. Crystallized and concentrated in the late magmatic stage, which can be further divid‐
ed to (a) apatite-magnetite deposits (e.g. Kiruna deposit in Sweden) and (b) nepheline-
apatite (e.g. Khibiny in Kola Peninsula in Russia).

2. Skarns (e.g. Ontario and Quebec in Canada).

3. Carbonatites (e.g. Sukulu in Uganda and Dorowa in Zimbabwe).

4. Hypothermal veins with phlogopite (e.g. Kaceres in Spain).

5. Mesothermal type (e.g. Toledo in Spain).

6. Metamorphosed sedimentary phosphates (e.g. Southern Peribaikalia, the Aldan massif
in Russia (regional-metamorphosed subtype) and Karatau in Russia (contact-metamor‐
phosis subtype)).

7. Sedimentary phosphates, which yield 85% of the world production, form in the sea by
biochemical processes, in either:

• Geosynclinal sea: e.g. in the Late Cretaceous and in Paleogene on the shelf of the Tethys
geosyncline with the deposits in Morocco (Khouribga and Youssoufia), Algeria (Djebel
Onk, El Kouit), Tunis (Gafsa), of the Permian geosyncline of the Rocky Mountains, with
the deposits in the Phosphoria Formation in Idaho, Wyoming, Utah and Montana
(USA), of the Caledonian geosyncline Karatau (Russia), large deposits are in the Upper
Cretaceous in Kazakhstan, in the neighborhood of Aktyubinsk.

• Epicontinental sea: e.g. in the Cenomanian of the south Russian digression and in the
Jurassic of the Moscow region, at the margin of the African Shield in the Eocene complex
near Hahotoe (Togo) and Taiba (Senegal), in the upper Cretaceous of Egypt [60].

7.2 Phosphate rock reserves

The Earth’s crust contains about 0.27% of P2O5. About 200 minerals are known, which
contain 1% or more P2O5. Minable concentrations of phosphate, containing from 5 to 35% of
P2O5, are formed in all phases of the phosphate cycle (Section 7.3.1). The primary deposits
include igneous apatites, sedimentary phosphorites and guano. The secondary deposits form
from each of these as the result of weathering. Apatite is the principal primary mineral, but a
number of others (Section 7.5) are common in the deposits formed during weathering of
phosphate rocks and guano, e.g. brushite (CaHPO4·2H2O), monetite (CaHPO4), whitlockite
(β-Ca3(PO4)2), crandallite (CaAl3(PO4)2(OH)5·H2O), wavellite (Al3(OH)3(PO4)2·5H2O), tarana‐
kite (K2Al6(PO4)6(OH)2·18H2O), millisite (Na,K)CaAl6(PO4)4(OH)9·3H2O), variscite
(AlPO4·2H2O) and strengite (FePO4·2H2O) [27].

20 The classification according to DYBKOV and KARYAKIN.

Phosphate Rocks
http://dx.doi.org/10.5772/62214

351



7.2.1. Phosphate rock deposits

In general, phosphate rock reserves are non-metallic ores21 that can be economically pro‐
duced at the present time using existing technology. Phosphate rock resources include reserves
and any other materials of interest that are not reserves. A reserve base is a portion of the
resource from which future reserves may be developed. The classification applying to
phosphate rocks include [23].

• Resource is defined as a concentration of naturally occurring phosphate material in such a
form or amount for which the economic extraction of a product is currently or potentially
feasible. The resources are divided into many categories depending on the amount of
pertinent information available to define the amount of material potentially available and
if it is economic, marginally economic or sub-economic to exploit these resources.

• Reserve base is the part of an identified resource that meets the minimum criteria related
to current mining and production practices including grade, quality, thickness and depth.

• Reserves are the part of the reserve base that can be economically extracted or produced at
the time of the determination. They may be termed as marginal, inferred or inferred
marginal reserves. This does not signify that the extraction facilities are in place or func‐
tional.

• The grades of apatite deposits from the economic point of view are introduced in Table 3.
The locations of the world’s phosphate deposits are shown in Fig. 9 and the average content
of P2O5 is listed in Table 4.

The most known Miocene phosphate deposits (Table 1) are in North Carolina, Florida,
Venezuela, California, Baja California and Peru. In several cases, these emerged deposits are
only the up dip limit of a larger Miocene section that extends seaward beyond the coastal plain
and constitute large portions of the upper sediment regime that built the modern continen‐
tal shelves [26].

Grade P2O5 [wt.%] BLP [%] Location

1Economic 20 40.70 Florida and Moroccan sedimentary phosphorites, Kola
and Palabora crystalline igneous apatites

2Sub-economic 5 – 20 10.93 – 40.70 Western USA phosphoria, Russia nepheline-apatites

3Non-economic 1 – 5 2.19 – 10.93 Low-grade ores, phosphatic limestones

4Non-phosphatic 0.1 – 1.0 0.22 – 2.19 Widely distributed apatite in almost all igneous rocks

Table 3. Grades of apatite deposits [25].

21 Ores of economic value can be classified as metallic or non-metallic according to the use of the mineral. Certain minerals
may be mined and processed for more than one purpose. In one category, the mineral may be metal and non-metallic
ore, e.g. bauxite used for the production of aluminum and ceramics, respectively [62].
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Fig. 9. The overview of the world’s phosphate deposits (a) [20] and the location of the major phosphate rock-producing
areas of some known deposits (b) [26],[63].

Locally, these Miocene sediments are exposed on the seafloor; however, generally, they are
buried below thin covers of Plio-Pleistocene and Holocene surface sediments. Thus, there is
high potential for discovering new phosphate deposits within the Miocene sediments on the
world’s continental shelves, because [26]:

a. Phosphate genesis is known to occur throughout the shelf in upper slope environments.

b. Thicker and more extensive sequences of Miocene sediments occur on the shelves than
on adjacent coastal plains.

c. The shallow subsurface Neogene geology of most of the world’s shelves is poorly known.
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Source % Source % Source %

Fluorapatite 42 Tunisia (sedimentary) 28 Basic slag 10 – 20

Kola (igneous) 40 West USA (phosphoria) 18 – 30 Bone meal 20

Nauru (phosphorite) 39 Queensland 16 – 30 Guano 12 – 15

Florida (sedimentary) 35 Venezuela 20 California (seabed) 30

Kazakhstan 23 China (Yunnan) 32 – 36 Australia (Queensland) 24

Morocco (sedimentary) 35 Kola (nepheline) 12 – 20 — —

Table 4. Grades of apatite deposits [25].

Two important sediment relationships were developed concerning reworked phosphate in
surficial sediments on the North Carolina continental shelf [26],[63]:

i. The distribution of phosphate in surface sediments closely reflects the distribution
within underlying Miocene sediments units.

ii. The process of reworking significantly dilutes the concentration of phosphate in the
surficial sediments.
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Fig. 10. The history of the discovery of the world’s phosphate resources [22].

These relationships were also recognized on the shelves of northwest and southwest Africa
and could represent important exploration tools for richer Tertiary22 phosphorites occurring
within the shallow subsurface on many continental shelves in the world [26].

22 The term Tertiary (geologic period from 66 to 2.58 ma) is no longer recognized by the International Commission on
Stratigraphy.
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The deposits of apatite of igneous origin occur as intrusive masses or sheets, as hydrother‐
mal veins or disseminated replacements, as marginal differentiations along or near the
boundaries of intrusions or as pegmatites. Intrusive masses are the largest of these deposits.
They are commonly associated with alkalic igneous rock complexes, many of which such as
those in Africa, Brazil and Sweden are associated with the rift valley structures. Carbonatite,
ijolite, nepheline-syenite and pyroxenite are common members of the rock assemblage. Many
of these complexes have a ring like structure, with carbonatite as the central core [27].

Phosphate deposits have been discovered within the past 100 years at the rate far greater than
the rate of consumption (Fig. 10). Since new phosphate deposits are expected to be discov‐
ered in the future, the oil exploration programs have probed most of the coastal sedimentary
basins of the world during the past 20 – 30 years, and any large-scale discoveries of phos‐
phate rock would probably have occurred in conjunction with these activities [22].

7.2.2. Other sources of phosphorus

Other important commercial sources of phosphorus (Table 4) include [25]:

i. Guano [25],[27],[64],[65],[66]: natural deposit (accumulation) formed from decay‐
ing bones and excreta from fish-eating birds.23 Fresh seafowl droppings contain
about 22% N and 4% P2O5. Bat guanos are the most abundant in the cave areas of
temperate and tropical regions. Although many bat guano deposits were found and
mined, most of them are measured in hundreds or thousands of tons, and only
sporadic production is obtained from them now. Seafowl deposits are mainly
confined to islands and coastal regions at low latitudes. The largest lie along the west
coasts of lower California, South America and Africa and on islands near the
equatorial currents.

It was known that bird dung was utilized by the Carthaginians as early as 200 BC in
order to improve crop yields. The content of P2O5 in guano can vary in dependence
on the age of the deposit,24 the local climate and the bird kind. Guano deposits are
found in Chile, Peru, Mexico, Seychelles, Philippines, the Arabian Gulf and else‐
where, but they account for less than 2% of the world’s phosphate production.

Guano is used almost exclusively as fertilizers. The Nauru and Christmas Island
phosphorite deposits may be guano in origin, but they are of very limited extent. It

23 It is estimated that marine birds may take out as much as 5.1010 g of phosphorus from the ocean each year [67]. The
Spanish name “guano” has an origin in Quechua word “huanu” (i.e. dung).
Guano is composed of bird droppings, and although birds existed as early as the mid-Mesozoic, their major development
did not occur until the Cenozoic era, probably in the Eocene period. It follows that some seamount deposits are too old
to have originated from bird droppings [64].
Most of large accumulations of guano are formed on the surface by seafowl, but smaller quantities are formed by bats
and to a lesser extent by other cave-dwelling mammals and birds [27].
24 Recent guano contains 10 – 12% of P2O5, but leached guano contains 20 – 32%. The mineralogy of guano is complex.
Slightly decomposed deposits contain soluble ammonium and alkali oxalates, sulfates and nitrates and a variety of
magnesium and ammonium-magnesium phosphates. Deeply decomposed guano consists chiefly of calcium phosphates
(for example, monetite or whitlockite) [27].
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is believed that rainwater can carry soluble phosphate from guano and trickle over
rocks, where phosphate interacts to form phosphatic layers, e.g. phosphatized coral
rock. Bird guano, mainly from Peru, achieved the greatest importance in about the
middle of the 19th century, shortly before the phosphate rock industry began to
establish itself.

ii. Basic slag [25]: is a minor source of phosphorus. This waste is the product from blast
furnaces operating on iron ores with significant content of phosphorus. Basic slag
contains tetracalcium phosphate (Ca3(PO4)2·CaO) and silicocarnotite
(Ca3(PO4)2·Ca2SiO4), which are applied directly as fertilizers. Recorded world
production is mainly from France, Germany and Luxembourg.

iii. Meat and bone meal (MBM) or bone ash [25],[68]: as an animal byproduct, MBM
contains not only substantial amounts of phosphorus in soluble organic form but also
calcium and microelements. Ground (bone meal) or calcined and ground (bone ash)
bones were recognized as a source of phosphorus at an early date.

Other important commercial sources of phosphorus are casein and lecithin. Casein is ob‐
tained from bovine milk. Lecithin was extracted from soy bean oil [25].

7.2.3. Phosphorite weathering derivates

Weathering (Section 7.3.2) leads to the formation of enriched residual and replacing depos‐
its from phosphatic deposits not otherwise minable. The Tennessee “brown rock” phosphate
deposits consist of nowadays residuum developed through the decomposition of phosphatic
limestones of Ordovician age. The “river pebble” deposits prominent in early history of
phosphate mining in Florida and South Carolina are mostly placers formed by alluvial
concentration of phosphatic pebbles eroded from the phosphatic formations of adjacent
terrain [27].

The Tennessee “white rock” and Florida “hard rock” deposits were formed by the redeposi‐
tion of phosphate derived from the decomposition of apatite under more advanced weather‐
ing. The same decomposition-phosphatization process accounts for the formation of calcium
aluminum phosphate and aluminum phosphate in the “leached zone” of the Bone Valley field
and deeply weathered Cretaceous and Eocene deposits of west Africa [27].

7.3. Geological role of apatite

As was described above, the number of different elements can substitute into the structure of
apatite,25 and this mineral can contain a number of trace elements by the substitution in both
anion and cation sites. This means that apatite can be used as an indicator of planetary halogen
compositions. The quantitative ion microprobe measurements of apatite from lunar basalts
showed that portions of the lunar mantle and/or crust are richer in volatile species than
previously thought [4].

25 The tools based on the isotope composition of apatite were already described in Section 6.5.
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Apatite was also used to determine the characteristics of metamorphic fluids within the mantle.
For example, O’REILLY and GRIFFIN [69] and DOUCE et al [70] classified apatite within Phanero‐
zoic mantle material into two geochemically distinct types:

1. Apatite A: is inferred to result from the metasomatism by CO2- and H2O-rich fluids
derived from a primitive mantle source region;

2. Apatite B: compositions are consistent with the crystallization from magmas within the
carbonate-silicate compositional spectrum.

This classification is based on halogen content, presence or absence of structural CO2, Sr and
trace elements (especially U, Th and light rare-earth) and association with either metasomat‐
ized mantle wall-rock peridotites (Apatite A) or high-pressure magmatic crystallization
products (Apatite B) [4],[69],[70].

In addition, apatite can be used as a probe to determine the petrogenetic evolution of gran‐
ites, and significant amounts of research were devoted to the use of apatite in granitic rocks to
distinguish between S- and I-type granites [4],[71].

The chemical composition of apatite is also a useful guideline for the petrogenetic and
metallogenic history of magmas for the following reasons [4]:

• Apatite Eu and Ce anomalies provide the evidence of the redox state of the magmas that
formed the host granitic rocks, with Eu enrichment and Ce depletion being indicative of
oxidized magma and Eu depletion and Ce enrichment being indicative of reduced magma.

• Apatite 87Sr/86Sr ratios reflect the Sr isotopic composition of the host granitic rocks.

• Apatite F and Cl concentrations can reflect the enrichment or depletion of halogens within
the host granitoids, with apatite associated with slab dehydration containing more Cl and
less F, whereas apatites related to magmas formed by partial melting of the crust contain
less Cl and more F.

In recent sedimentary systems, the major phosphorus deposition occurs within upwelling
zones at continental margins. Upwelling of deep ocean waters rich in phosphorus triggers high
biological production in the photic zone and eventually high concentration of phosphorus in
organic-rich sediments, as in recent Namibian and Peruan shelves [72],[73], [74],[75].

7.3.1. Cycle of phosphorus

In the Earth’s crust, phosphorus takes the second place after carbon, and in comparison with
all known elements, it takes about 12th place in natural abundance [25]. The phosphorus cycle
is quite different from the nitrogen and sulfur cycles in which phosphorus is present in only
one oxidation state and it forms no gases stable in biosphere or atmosphere. Also, in contrast
to nitrogen and sulfur, substantial proportions of phosphorus in soil appear in inorganic
form [76],[77].

About 10 Mt of phosphorus are released by weathering of apatite annually. In soil, monoba‐
sic (H2PO4 −) and dibasic (HPO4 2−) phosphates are generally available to plants. Phosphates
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are precipitated by calcium in alkaline soils and most of phosphate is adsorbed on alumi‐
num and iron oxides in acidic soils. Phosphates are most readily available in slightly acidic to
neutral soil. Much of such phosphorus in surface soils appears in organic matter. This
phosphorus is used repeatedly by recycling in plants and organisms that decompose the plant
detritus. Little amount of phosphorus is lost by leaching through soils, but the erosion losses
of soil particles and the plant detritus carried off to aquatic systems may be substantial [76].

Fig. 11. Major natural cycle of phosphorus (a) and the contribution of the man to the cycle (b) [78].

The availability of phosphorus is a major factor limiting the biomass production in both
terrestrial and aquatic ecosystems. Mycorrhizas are efficient scavengers of phosphorus for
plants growing in soils with limited availability of this element. The phosphorus fertilization
in agricultural lands can have detrimental effect, as it increases phosphate amounts in the
runoff soil resulting in the accumulation of phosphate in aquatic plants and algal growth. If
the decomposers of plants and algae use practically all oxygen from water, the habitat becomes
unsuitable for fish and other aquatic animals. The process of abundant nutrient-induced
biomass production in lakes and rivers and its decay to deplete the water oxygen is called the
eutrophication [25],[76],[78].

Despite the advantage for which phosphorus is used, it is doubtful that man has significant
contribution to the Earth’s cycle of phosphorus (Fig. 11). The 2·109 tons of mined phosphate
rock is less than 0.15% of known reserves of phosphorus ore and less than 1·10−5% of the Earth’s
cycle of phosphorus [78].

At least 100 millions years before humankind exerted any influence on the cycles of phospho‐
rus, the pattern had already been established (Fig. 12). Phosphorus was continuously leached
from igneous rocks as the rocks were weathered to sedimentary deposits and this released
phosphorus flowed to the seas, which had long since become saturated with phosphorus. Each
new addition causes a similar quantity of phosphorus to precipitate as sediment. If the
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precipitate formed when an island sea had invaded a land area, the new sediment became
landlocked. The new landlocked sedimentary deposits are more easily leached than igneous
rocks from which they are derived. When the seas recede sufficiently to expose the new
sediments to the greater solvent action of fresh water, the sediments begin to weather and the
cycle is complete. Best estimates of the cycle time of phosphorus in the oceans today are in the
range of 50,000 years. This is a short period compared to 3·109 years, which were required for
the saturation of oceans for the first time [78].

Fig. 13. Natural and artificial cycles of phosphorus [25].
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Fig. 12. The establishment of the Earth’s cycle pattern of phosphorus [78].

Phosphate Rocks
http://dx.doi.org/10.5772/62214

359



Recently, man has only a slightly stronger influence on the total amount of the Earth’s
phosphorus than his prehistoric ancestors. If man made a significant alteration in the cycles of
phosphorus, it had an impact on the cycles of fresh surface waters. The detergent phos‐
phates have been blamed for degrading freshwater lakes and there is no doubt that several
lakes have been overabundant with phosphates and sewage. Sewage treatment will alleviate
most of the problems associated with point-source loading of lakes [78].

The overall natural and artificial cycles involving phosphorus are introduced in Fig. 13.

7.3.2. Weathering of apatite

Weathering and leaching processes from millions of years ago led to the transfer of phos‐
phate to rivers and oceans where it was concentrated in shells, bones and marine organism
that were deposited on the sea floor. Subsequent uplift and other geological movements led
to these accumulations becoming dry land deposits [25],[78].

Generally, weathering of apatite occurs synergistically through biotic and abiotic processes
and leads to the release of mineral phosphate. Inorganic phosphate cannot be assimilated by
plants, but it can be converted to the bioavailable form orthophosphate (HPO4 2−, H2PO4 −) by
some species of phosphate-solubilizing fungi and bacteria. The main mechanism underlying
the microbial phosphate solubilization is the secretion of organic acids that, by changing the
soil pH and acting as chelators, may induce the dissolution of phosphorus from minerals and
its release into the pore water of soils [79],[80]. The dissolution of apatite is described in
Section 3.4.

Apatite represents an important source of inorganic P for natural ecosystems and may favor
the establishment of microbial communities able to exploit it [79]. The microorganisms can
cause the fixation or immobilization of phosphate, either by promoting the formation of
inorganic precipitates or by the assimilation of phosphate into organic cell constituents on
intracellular polyphosphate granules. Insoluble forms of inorganic phosphorus, e.g. calcium,
aluminum and iron phosphates, may be solubilized through the microbial action. The
mechanisms by which the microbes accomplish this solubilization vary [44]:

i. The first mechanism may be the production of inorganic or organic acids that attack
the insoluble phosphates.

ii. The second mechanism may be the production of chelators such as gluconate and 2-
ketogluconate, citrate, oxalate and lactate. All these chelators can complex the cation
portion of insoluble phosphate salts and thus force their dissociation.

iii. The third mechanism of phosphate solubilization may be the reduction of iron in
ferric phosphate, e.g. strengite (Fe3+PO4·2H2O [81]), to ferrous iron by enzymes and
metabolic products of nitrate reducers such as Pseudomonas fluorescens and Alcali‐
genes spp. in sediments.

iv. The fourth mechanism is the production of hydrogen sulfide (H2S), which can react
with iron phosphate and precipitate it as iron sulfide, thereby mobilizing phos‐
phate, as in the reaction [44]:
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The phosphate-solubilizing ability is a feature of many free-living and plant-symbiotic
bacterial taxa, such as [79]:

• Pseudomonas [82]: the genus Pseudomonas sensu stricto comprises many species character‐
ized by their metabolic diversity and by a wide range of niches that they can colonize.

• Rhizobium [83]: specific group of bacteria that have the capability of symbiotic nitrogen
fixation.

• Burkholderia [84]: aerobic, non-spore-forming bacteria. Burkholderia is very versatile and
occupies a wide range of ecological niches.

Microbial rock weathering is common in all climate zones and usually acts very slowly [80].

7.3.3. Fission track and apatite fission-track analysis

The fission-track (FT) dating is a radiometric dating method26 based on the analysis of radiation
damage trails (fission tracks) in uranium-bearing, non-conductive minerals and glasses. It is
routinely applied to the minerals apatite, zircon and titanite. Fission tracks are produced
continuously through geological time as a result of spontaneous fission track of 238U atoms27

that undergo spontaneous fission.28 The atom splits into two parts that move rapidly in opposite
directions, creating a long thin region of damage. The submicroscopic features with an initial
width of approximately 10 nm and the length of up to 20 μm can be revealed by chemical
etching.29 Crucially, fission tracks are semi-stable features that can self-repair (shorten and
eventually disappear) by the process known as annealing at a rate that is a function of both
time and temperature. The extent of any track shortening (exposure to elevated tempera‐
tures) in a sample can be quantified by examining the distribution of fission-track lengths [6],
[85],[86],[87],[88].

This unique sensitivity of the apatite fission-track system is now of considerable economic
importance due to the coincidence between the temperature range over which annealing
occurs and that over which liquid hydrocarbons are generated. Other applications include the
determination of timing of emplacement and the thermal history of ore deposits. There is

26 Radiometric dating techniques are, in general, complementary to one another, and each method produces an age with
the special meaning, such as the last outgassing, the last melting accompanied by mixing with isotopically separate
material and the last heating to remove the track. Fission-track dating is conceptually the simplest of several dating
techniques that provide absolute measures of time from slow but statistically steady decay of radioactive nuclides [86].
27 Most radiometric dating processes are based on the statistical regularity of the decay of one parent radionuclide into a
daughter nuclide, for example, 40K into 40Ar, 87Rb into 87 Sr or 238U ,235U and 232Th into 206 Pb, 207Pb and 208Pb, respectively.
The age of sample can be then determined by measuring relative abundance of parent and daughter in any pair. The
major isotope of uranium (238U) decays at a spontaneous rate of ~10−16 per year [86].
28 Fission track can also be created artificially (induced track) by irradiating the mineral specimen with thermal neutrons
in a nuclear [88].
29 The mineral grain is ground and polished to expose a flat surface inside the crystal. It is then immersed in a chemical
etchant that preferentially attacks the regions of damage, widening them and making them visible under optical
microscope. The track appears in the apatite torch readily in 20 to 30 s when immersed in diluted nitric acid [88].
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abundant literature on both fission-track dating and its use in evaluating the tectonic and
thermal history of rocks [6],[89],[90],[91].

Apatite is the most frequently used material for fission-track dating [92]. Apatite fission-
track (AFT) analysis serves as a thermochronological tool to investigate the low-temperature
thermal history of rocks below ~120°C [93],[94]. The estimates of closure temperatures for
fission-track retention in apatite are usually in the range from 75 to 120°C at cooling rates
between 1 and 100°C/m.y. [6].

Thermochronology may be described as the quantitative study of the thermal histories of rocks
using temperature-sensitive radiometric dating methods such as 40Ar/39Ar and K-Ar, fission
track and (U-Th)/He. Among these different methods, apatite fission track and apatite (U-Th-
Sm)/He (AHe) are now, perhaps, the most widely used thermochronometers, as they are the
most sensitive to low temperatures (typically between 40 and 125°C for the durations of heating
and cooling in the extent of 106 years). They are ideal for investigating the tectonic and climate-
driven surficial interactions that take place within the top few (<5 km) kilometers of the Earth’s
crust. These processes govern the landscape evolution, influence the climate and generate the
natural resources essential to the well-being of mankind [85],[95].

7.3.4. Extraterrestrial apatite

On Earth, magmatic volatiles (i.e. H2O, F, Cl, C-species and S-species) play an important role
in the physicochemical processes that control thermal stabilities of minerals and melts, in
magma eruptive processes and in the transportation of economically important metals. On the
Moon, magmatic volatiles in igneous systems are poorly understood, and the magmatic
volatile inventory of lunar interior, aside from being very low, is not well constrained.
Although the Moon is a volatile-depleted planetary body, there is evidence indicating that
magmatic volatiles have played a role in igneous processes on the Moon. Specifically,
magmatic volatiles were implicated as the propellants that drove fire-fountain eruptions,
which produced the pyroclastic glass deposits encountered at the Apollo 15 and 17 sites [96].
That is supported by recent discoveries of water-rich apatite from lunar mare basalts [97],[98].

Apatite was found in a large number of samples of igneous lunar rocks, although it typically
occurred in only trace amounts and is typically reported as coexisting with REE-merrillite
[(Mg,Fe)2REE2Ca16P14O56], and those two minerals make up the primary mineralogical budget
for P on the Moon [96]. Merrillite, also known as the mineral whitlockite (or more precious
and dehydrogenated whitlockite) [99], is one of the main phosphate minerals, along with
apatite, which occur in lunar rocks, in Martian meteorites and in many other groups of
meteorites. Significant structural differences between terrestrial whitlockite and lunar (and
meteoritic) varieties require the use of “merrillite” name for the H-free extraterrestrial material,
and the systematic enrichment of REE in lunar merrillite requires the use of “REE-merrillite”.
Lunar merrillite, ideally (Mg,Fe2+,Mn2+)2[Ca18−x(Y,REE)x] (Na2−x)(P,Si)14O56, contains high
concentrations of Y + REE [100],[101].
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Fig. 14. The structure of lunar merrillite (a) [102] and terrestrial whitlockite (b).

Lunar merrillite (Fig. 14(a), trigonal, the space group R3C with the cell parameters a = 10.2909
Å, c = 36.8746 Å, c:a = 3.5832 and V = 3381.93 Å3) and terrestrial whitlockite (Fig. 14(b), trigonal,
the space group R3C with the cell parameters a = 10.3300 Å, c = 37.1030 Å, c:a = 3.5918 and V =
3428.79 Å3) have largely similar atomic arrangements, but the phases differ due to the presence
or absence of hydrogen. In whitlockite, H is an essential element and allows the charge balance.
Hydrogen is incorporated into the whitlockite atomic arrangement by disordering one of the
phosphate tetrahedra and forming the PO3(OH) group. Lunar merrillite is devoid of hydro‐
gen; thus, no disordered tetrahedral groups exist. The charge balance for the substituents Y
and REE (for Ca) is maintained by Si4+ ↔ P5+ tetrahedral substitution and □ ↔ Na+ substitu‐
tion at Na site [99],[102].

A number of sources potentially contributed to the overall inventory of lunar water, includ‐
ing primary indigenous water acquired during lunar accretion, late addition of water through
asteroidal and cometary impacts and solar wind implanting H into lunar soils. The average
D/H ratios of apatite in norite (Apollo sample 78235) and in the granite clast (14303) are
consistent with the estimates for the H isotopic composition of recent bulk-Earth and terres‐
trial mantle. By contrast, the average H isotopic composition of apatites in norite 77215 is lower.
The content of water in norite parental melts provides strong evidence that the magmas
involved in secondary crust production on the Moon were hydrated, in agreement with recent
findings of water in lunar ferroan anorthosites. Water they contain, locked in the crystalline
structure of apatite, is characterized by an H isotopic composition similar to that on Earth and
in some carbonaceous chondrites [103].

Apatite preserves a record of halogen and water fugacities that existed during the waning
stages of crystallization of planetary magmas, when they became saturated in phosphates. The
thermodynamic formalism based on apatite-merrillite equilibria that makes it possible to
compare the relative values of halogen and water fugacities in Martian, lunar and terrestrial
basalts, accounting for possible differences in pressure, temperature and oxygen fugacities
among the planets, was described by DOUCE and RODEN [104].

They showed that planetary bodies have distinctive ratios among volatile fugacities at apatite
saturation and that these fugacities are, in some cases, related in a consistent way to volatile
fugacities in the mantle magma sources. Their analysis shows that the Martian mantle parental
to basaltic SNC meteorites was dry and poor in both fluorine and chlorine compared to the
terrestrial mantle. Limited data available from Mars show no secular variations in mantle
halogen and water fugacities from ~4 Ga to ~180 Ma. Water and halogens found in recent
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Martian surface rocks have thus resided in the planet’s surficial systems since at least 4 Ga and
may have been degassed from the planet’s interior during the primordial crust-forming event.
In comparison to the Earth and Mars, the Moon, and possibly the eucrite parent body too,
appear to be strongly depleted not only in H2O but also in Cl2 relative to H2O. The chlorine
depletion is the strongest in mare basalts, perhaps reflecting an eruptive process characteris‐
tic with large-scale lunar magmatism [104].

Mars does not recycle crustal materials via the plate tectonics. For this reason, the magmatic
water reservoir of the Martian mantle has not been affected by the surface processes, and the
deuterium/hydrogen (D/H) ratio of this water should represent the original primordial
Martian value. Following this logic, hydrous primary igneous minerals on the Martian surface
should also carry this primordial D/H ratio, assuming no assimilation of Martian atmospher‐
ic water during the crystallization and no major hydrogen fractionation during the melt
degassing. Hydrous primary igneous minerals, such as apatite and amphibole, are present in
Martian meteorites here on Earth. Provided these minerals have not been affected by terres‐
trial weathering, Martian atmospheric water or shock processes after the crystallization, they
should contain a good approximation of the primordial Martian D/H ratio. As Nakhla was
seen to fall on the Egyptian desert in 1911, the terrestrial contamination is minimized in this
meteorite. The nakhlites are also among the least shocked Martian meteorites. Therefore,
apatite within Nakhla could contain primordial Martian hydrogen isotope ratios. The similar
D/H ratios indicate that the Earth and Mars, and possibly the other terrestrial planets, accreted
water from the same source [105].

Vesta, as the second most massive asteroid, has long been perceived as anhydrous. Recent
studies suggesting the presence of hydrated minerals and past subsurface water have
challenged this long-standing perception. The volatile components indicate the presence of
apatite in eucrites. Eucritic apatite is fluorine rich with minor chlorine and hydroxyl (calcu‐
lated by difference) [106],[107],[108].

7.4. The future of phosphate rocks

The biochemist and sci-fi author IZAAK ASIMOV said [60]: “In the future coal will be probably
substituted by nuclear energy, wood by plastics, meat by yeast and suspecting solitude by
friendship, but there is no substitute for phosphorus.”

The search for phosphate rock deposits became a global effort in the 20th century as the
demand for phosphate rocks increased. The development of deposits further intensified in
the 1950s and 1960s. The world production reached its peak in 1987 – 1988 and then again in
2008 with over 160 million metric tons (mmt) of the product. Phosphate rock mining has
evolved over time, and worldwide, it relies on high volume and advanced technology using
mainly open-pit mining methods and advanced transportation systems to move hundreds of
millions of tons of overburden to produce hundreds of millions of tons of ore, which are
beneficiated to produce approximately 160 mmt of phosphate rock concentrate per year. The
concentrate of suitable grade and chemical quality is then used to produce phosphoric acid,
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the basis of many fertilizer and non-fertilizer products [23]. The world phosphate produc‐
tion rate since 1850 according to JASINSKI [109] and ABOUZEID et al [20] is shown in Fig. 15.

The estimates of the world’s phosphate reserves and availability of exploitable deposits vary
greatly and the assessments of how long it will take until these reserves are exhausted vary
also considerably. Furthermore, it is commonly recognized that the high-quality reserves are
being depleted expeditiously and that the prevailing management of phosphate, a finite non-
renewable source, is not fully in accordance with the principles of sustainability. The deple‐
tion of current economically exploitable reserves is estimated to be completed in some 60 to
130 years. Using the median reserve estimates and under reasonable predictions, it appears
that phosphate reserves would last for at least 100+ years [20].
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Fig. 15. World phosphate production rate [20].

Preliminary estimates of phosphate rock reserves range from 15,000 mmt to over 1,000,000
mmt, while the estimates of phosphate rock resources range from about 91,000 mmt to over
1,000,000 mmt. Using available literature, the reserves of various countries were assessed in
the terms of reserves of concentrate. The IFDC30 estimate of worldwide reserve is approxi‐
mately 60,000 mmt of concentrate. Based on the data gathered, collated and analyzed for the
IFDC report, there is no indication that a “peak phosphorus” event will occur in 20 – 25 years.
Based on the data reviewed, and assuming current rates of production, phosphate rock
concentrate reserves to produce fertilizers will be available for the next 300 – 400 years [23].

Phosphate rock prices will increase when the demand approaches the limits of supply. When
the phosphate rock prices increase, some resources will become reserves, marginal mining

30 International Fertilizer Development Center.
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projects will become viable and the production will be stimulated. In the future, fuel and fuel-
related transportation costs may become even more important components in the world
phosphate rock production scenario. The political disruption is always an unknown factor,
and it can profoundly influence the supply and demand for fertilizer raw materials on a
worldwide basis [22].

7.5. Non-apatitic phosphate minerals

Apart from those in the supergroup of apatite minerals, the well-known phosphate minerals
include [25]:

1. Autunite [110],[111]: is orthorhombic mineral (space group I4/MMM) of the composition
of (Ca[(UO2)(PO4)]2(H2O)11, Fig. 16), which crystallizes in the space group Pnma with the
cell parameters: a = 14.0135 Å, b = 20.7121 Å, c = 6.9959 Å, V = 2030.55 Å3 and Z = 4. It
belongs to the most abundant and widely distributed uranyl phosphate minerals. The
structure contains the well-known autunite-type sheet with the composition [(UO2)(PO4)]
− resulting from the sharing of equatorial vertices of uranyl square bipyramids with
phosphate tetrahedra. Calcium atom in the interlayer is coordinated by seven H2O groups
and two longer distances to uranyl apical O atoms. Two symmetrically independent H2O
groups are held in the structure only by hydrogen bonding. The bond-length-constrain‐
ed refinement provides a crystal-chemically reasonable description of the hydrogen
bonding.

Fig. 16. The examples of forms and the structure of mineral atunite [110] viewed along the b-axis.

The mineral was named by HENRY J. BROOKE and WILLIAM H. MILLER in 1854 after the typical
locality at Saint Symphorien, Autun District, Saône-et-Loire, France. Autunite dehy‐
drates rapidly in air (except for high relative humidity) to tetragonal meta-autunite (P4/
NMM, a = 6.96 Å, c = 8.40 Å and c:a = 1.21) [112]. The loss of O12 and O13 from autunite
results in the formula Ca[(UO2)(PO4)]2(H2O)7 (Fig. 17) [110].
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Fig. 17. The examples of forms and the structure of mineral meta-atunite [112] viewed along the b-axis.

2. Crandallite [113]: CaAl3(OH)6[PO3(O1/2(OH)1/2]2, has hexagonal structure (a = 7.005 Å and
c = 16.192 Å), which is analogous with alunite. The structure of mineral (Fig. 18) con‐
sists of corner-sharing Al octahedra, which are linked into trigonal and hexagonal rings
to form the sheets perpendicular to the c-axis. Ca ions, surrounded by 12 oxygen and
hydroxyl ions, lie in large cavities between the sheets. Each phosphate tetrahedron shares
three corners with three Al octahedra from a trigonal ring in the sheet. The unshared
corner is turned away from the trigonal hole towards the adjacent sheet to which it is
hydrogen bonded. The mineral “deltaite” was found to be identical to crandallite, within
the accuracy of the structural results.

Fig. 18. The structure of mineral crandallite [113] viewed along the c-axis.

3. Lazulite [114],[115]: monoclinic mineral of the composition of MgAl2(PO4)2(OH)2, which
crystallizes in the P21/C space group and has the cell parameters: a = 7.16 Å, b = 7.26 Å and
c = 7.24 Å and β = 120.67°. The mineral is the magnesium analogue of scorzalite
(Fe2+Al2(PO4)2(OH)2). Named in 1795 by MARTEN H. KLAPROTH from the Arabic word
meaning “heaven,” in allusion to its color.
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Fig. 19. The form and the structure of lazulite [114] viewed along the c-axis.

4. Millisite [116]: tetragonal mineral of the composition of NaCaAl6(PO4)4(OH)9·3H2O (the
space group P41212, a = 7.00 Å and c = 18.99Å, a:c = 1:2.713 and Z = 2), which was named
in 1942 by ESPER SIGNIUS LARSEN III in the honor of MR. F.T. MILLIS of Lehi, Utah, who had
collected the first specimens.

5. Monazite [117],[118]: is natural light rare-earth element phosphate that generally contains
large amounts of uranium and thorium. The monazite-type compounds (AXO4, Fig. 21)
form an extended family that is described in this review in the terms of field of stability
versus composition. They crystallize in a monoclinic lattice with the space group P21/N (Z
= 4).

Fig. 20. The structure of monazite-(Ce): a = 6.7902 Å, b = 7.0203 Å, c = 6.4674 Å and β = 103.38° (a) and
monazite-(Sm) (b): a = 6.6818 Å, b = 6.8877 Å, c = 6.3653 Å and β = 103.386° (b) [118] viewed along the b-axis.

Monazite (Fig. 20) and xenotime dimorphs31 [119] are the most ubiquitous rare-earth (REE)
minerals. Monazite incorporates preferentially larger, light rare-earth elements (LREEs,
here, La-Gd), whereas xenotime tends to incorporate smaller, heavy rare-earth elements
(HREEs, here, Tb-Lu, and Y).

31 One chemical compound is capable of crystallizing in two different systems, e.g. CaCO3 can occur as calcite or aragonite
[119].
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6. Tobernite [120],[121]: tetragonal torbernite (P4/NNC, a = 7.0267 Å, c = 20.8070 Å, c:a = 2.9611,
Cu[(UO2)(PO4)]2(H2O)12, Fig. 22(a)) and zeunerite (Cu[(UO2)(AsO4)]2(H2O)12, Fig. 22(b)),
as well as metatorbernite (Cu[(UO2)(PO4)]2(H2O)8) and metazeunerite (Cu[(UO2)
(AsO4)]2(H2O)8), belong to the autunite and meta-autunite groups, respectively, which

Fig. 21. The classification diagram of AXO4-type compounds. The monazite stability domain is colored by
gray [117].

Fig. 22. The structure of tobernite and isostructural zeunerite [120] viewed along the c-axis.
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make up together approximately 40 mineral species of hydrated uranyl phosphates and
arsenates. The structures, compositions and stabilities of minerals of the autunite and
meta-autunite groups are of high interest because of their environmental significance.
They are widespread and abundant and exert an impact on the mobility of uranium in
phosphate-bearing systems and soils contaminated by actinides.

These minerals contain the autunite-type sheet, of the composition of [(UO2)(PO4)]−, which
involves the sharing of equatorial vertices of uranyl square bipyramids with phosphate
tetrahedra. In each of these structures, Cu2+ cations are located between the sheets in Jahn-
Teller32 [122] distorted (4 + 2) octahedra, with short bonds to four H2O groups in a square-
planar arrangement and two longer distances to oxygen atoms of uranyl ions. A
symmetrically independent H2O group is held in each structure only by H-bonding, and
in torbernite (and in zeunerite), it forms the square-planar sets of interstitial H2O groups
both above and below the planes of Cu2+ cations. In metatorbernite (and in metazeuner‐
ite), the square-planar sets of interstitial H2O groups are either above or below the planes
of Cu2+ cations. The bond-length-constrained refinement provides the crystal-chemically
reasonable descriptions of H-bonding in those four structures [120].

7. Turquoise [123],[124]: CuAl6(PO4)4(OH)8·4H2O is a copper analogue of triclinic mineral
fausite ZnAl6(PO4)4(OH)8·4H2O (the space group P1 with the cell parameters a = 7.410 Å,
b = 7.633 Å, c = 9.904 Å, α = 68.4°, β = 69.65° and γ = 65.05°). The structure (Fig. 23) consists
of distorted MO6 polyhedra (M= Zn, Cu), AIO6 octahedra and PO4 tetrahedra. By the edge-
and corner-sharing of these polyhedra, a fairly dense three-dimensional framework is
formed, which is further strengthened by a system of hydrogen bonds. The metal atoms
in the unique MO6 (M = Zn or Cu) polyhedron show a distorted [2 + 2 + 2] coordination,
the distortion being more pronounced in turquoise. About 10% of the M site is vacant in
both minerals. In turquoise, a previously undetected structural site with very low
occupancy of (possibly) Cu is present at the position (1/2,0,1/2).

Fig. 23. The structure of turquoise viewed along the b-axis [124].

32 According to the Jahn-Teller theorem, any nonlinear molecule in a degenerate electronic state will be unstable and will
undergo some kind of distortion that will lower its symmetry so as to remove the degeneracy of the electronic state and
also to attain lower energy. The Jahn-Teller effect is termed as static when there is permanent distortion in the structure
of molecule [122].
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8. Vivianite [125],[126],[127]: is monoclinic mineral of the composition of Fe3(PO4)3·8H2O,
which crystallizes in the space group of C1 2 /M with the cell parameters a = 10.08 Å, b =
13.43 Å, c = 4.70 Å and β = 104.50° (Fig. 24). The mineral was named by ABRAHAM GOTTLOB

WERNER in 1817 after JOHN HENRY VIVIAN. Vivianite belongs to the simplest group of
minerals with the composition given by general formula: A3(XO4)2·8H2O, where A = Mg,
Zn, Ni, Co or Fe and X is P or As [128].

Fig. 24. The structure of vivanite viewed along the b-axis [125].

9. Wavellite [129]: the mineral of the composition of Al3(PO4)2(OH)3·4.5-5H2O (the space
group Pcmn, a = 9.62 Å, b = 17.36 Å and c = 6.99 Å). The two aluminum atoms in the
structure are octahedrally coordinated (Fig. 25): one is bonded to two O atoms, two –OH
groups and two H2O molecules and the other to three O, two (–OH) and one H2O.
Phosphorus is in tetrahedral coordination with oxygen. Al octahedra, linked through
(OH) corners, form chains parallel to the c-axis, and P tetrahedra are attached to this chain
by sharing O atoms of subsequent octahedra. An extra H2O molecule occupies the large
cavity between the chains, and as indicated by a high temperature factor, it has a statistical
distribution within this cavity.

Fig. 25. The structure of wavellite viewed along the b-axis (a) and stereoscopic view of the wavellite
structure (b) [129].
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10. Xenotime [118]: monazite (Fig. 26) is isostructural with zircon (I4 1 /AMD). Monazite atomic
arrangement as well as that of xenotime is based on [001] chains of intervening phos‐
phate tetrahedra and RE polyhedra, with REO, polyhedron in xenotime that accommo‐
dates heavy lanthanides (Tb-Lu in the synthetic phases) and REO polyhedron in monazite
that preferentially incorporates larger light rare-earth elements (La-Gd). As the struc‐
ture “transforms” from xenotime to monazite, the crystallographic properties are
comparable along the [001] chains, with the structural adjustments to the different sizes
of REE atoms occurring principally in (001).

Fig. 26. The structure of xenotime-(Y): a = 6.8947 Å, b = 6.8947 Å and c = 6.0276 Å (a) and xenotime-(Dy) (b) a = 6.9052 Å,
b = 6.9053 Å and c = 6.0384 Å (b) [118] viewed along the b-axis.

Isostructural arsenate analogues of many phosphate minerals are known, and in some cases,
vanadates too. Some orthophosphates capable of forming complete ranges of solid solutions
with the corresponding orthoarsenates are [25]:

• Variscite group: MXO4·2H2O, where M = Fe, Al and X = P or As;

• Fairfieldite group: Ca2M(XO4)2·2H2O, where M = Mn, Fe, Mg, Ni, Zn, Co and X = P, As;

• Vivianite group: M3(XO4)2·8H2O, where M = Fe, Mn, Mg, Zn, Co, Ni and X = P, As;

• Monazite group: MXO4, where M = Ce, La, Nd, Th, Bi and X = P, As;

• Rhabdophane group: MXO4·H2O, where M = Ce, La, Nd, Th and X = P, As;

• Xenotime group: MXO4, where M = Y, Ce, Bi and X = P, V;
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• Autunite group: M[(UO2)2(XO4)]·nH2O, where M = Ca, Ce, Ba, K, NH4 +, Sr, Pb, Mg, Na, Zn
and X = P, As, V;

• Crandallite group: MM’3(XO4)2(OH)6·H2O, where M = Ca, Sr, Ba, M’= Al, Fe and X = P, As.

Phosphate minerals, like silicate minerals, are found with a great variety of cations. Unlike the
latter group that contains numerous types of condensed silicate anions, almost all phosphate
minerals are orthophosphates that contain PO4 3− anion. Non-phosphorus anions, such as O2−,
OH−, F−, Cl−, SO4 2−, SiO4 4− and AsO4 3−, may also be present in these stoichiometric (or as
occluded) materials [25].
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