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Abstract

The parameters of unit cell, structure, refractive index, solubility data, PO4/CO3 ratio,
surface area, etc., are important parameters for characterization of phosphate rocks.
Third chapter of this book introduces methods for identification, characterization and
properties of apatites in four main sections. The first part describes techniques used for
identification and investigation of properties of phosphate minerals, including X-ray
diffraction analysis, powder neutron diffraction, X-ray fluorescence as well as
spectroscopic and microscopic methods. Some of these techniques are then demonstrat‐
ed on the fluorapatite specimen in the second part. The third part of this chapter deals
with thermodynamic properties of apatite-type compounds and introduces some of
thermodynamic predictive methods. The fourth part is dedicated to dissolution of
apatite, where the reaction between solids and liquids according to different dissolu‐
tion models is described. Chapter ends with methods for the evaluation of reactivity of
phosphate rocks.

Keywords: Apatite, Carbonate to Phosphate Ratio, Dissolution of Apatite, Reactivity
of Apatite, Citrate Solubility

3.1 Techniques used for identification of phosphate minerals

There are several parameters which are used in characterization of phosphate rocks, includ‐
ing the following [1],[2]:

a. Unit-cell parameters

b. Refractive index
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c. Solubility data based on chemical extraction methods, e.g. neutral ammonium citrate
solubility (NAC, Section 3.4.3)

d. PO4/CO3 ratio as a measure of carbonate substitution in phosphate minerals

e. Surface area and pore size distribution indicating the potential reactivity

The most important techniques used for the identification and characterization of phosphate
minerals include methods for identification of phase composition, chemical composition,
structure, surface properties, etc. A few often applied methods are introduced in this chap‐
ter [1],[2].

3.1.1. X-ray diffraction analysis

The diffraction of a beam of X-rays by a crystalline material is the process of beam scattering1

by electrons associated with atoms in the crystal and of the interference of these scattered X-
rays because of the periodic arrangement of atoms in the crystal and its symmetry.2 X-ray
diffraction analysis (XRD) is used for the determination of mineralogical composition and
quantitative X-ray diffraction analysis (Rietveld method) for the refinements of structure of
apatite from measured data using specialized software [3],[4],[5],[6].

Following the discovery of X-rays by RÖENTGEN
3 [8],[10],[11] in 1895 and the proof that X-rays

have the wave properties and diffract from a periodic atomic array by VON LAUE [12] and his
students in 1912–1913, the analytical application of X-ray diffraction has developed slowly
over the next 20 years. Most of the earliness efforts were aimed at the solution of crystal
structures of common phases. DEBYE and SHEERER (1916) and HULL (1917) suggested that powder
diffraction patterns could be used for the identification of quantification of crystalline
compounds. However, because most of the early developments were directed toward solving
single-crystal structures, it was really the middle 1930s when the powder diffraction method
began to attract the follower with the publication of the procedure of HANAWALT and RINN and
the database of patterns by HANAWALT, RINN and FREVEL (1938). With the conversion of data
sets into the first set of the Powder Diffraction File in 1941, the phase identification applica‐
tions expanded, and the modern counter diffractometer was developed by PARRISH, HAMACH‐

ER and LOWITZSCH [5].

The phase identification was one of the first applications to grow to useful level. Other major
applications of diffraction analysis include following phase changes under nonambient
conditions and atmospheres. The first diffraction experiments were actually done on single
crystals. The method is primarily directed toward determining the crystal periodicity and
symmetry and solving the arrangement of atoms in the material because this information is

1 Scattering is the process where the beam of radiation or particles is deviated from its initial trajectory by the inhomo‐
geneity in the medium which it transverses [7].
2 Other kinds of radiation commonly used for diffraction analysis are neutrons (Section 3.1.2) and electrons (Chapter
3.1.10).
3 Wilhelm Conrad Röentgen (1845–1923) was the rector of the University of Würzburg [8]. The first X-ray photography
was published in 1896 [9].
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difficult to obtain from powder experiment. Powder diffraction is one of the most important
material characterization techniques in the material research and industry [5].

Single-crystal diffraction studies are not limited to crystal structure analysis. The diffraction
topography is a large field that has provided much information on the perfection of crystals
used in industry as integral parts of devices. The examples include crystals used in sensing
and control devices, substrates for electronic components, tools and dies, turbine blades and
many other applications [5].

3.1.2. Powder neutron diffraction

Neutron powder diffraction (PND) or elastic neutron scattering enables to determine nucle‐
ar and magnetic structure of solids. Most of the information on the nature of ordered magnet‐
ic phases or magnetic structures comes from neutron diffraction experiments. Neutrons have
no electric charge and interact with the nuclei rather than with the charge distribution of atoms
in matter. They have the wavelength in the range of interatomic distances. They have magnetic
moment and interact with the magnetic moment of atoms in matter. The mass of neutrons is
similar to that of atomic nuclei; hence, they have energy and momentum similar to those of
atoms in solid and fluid materials [13],[14]. The first neutron diffraction experiments were
performed in 1945 by EO WOLLAN in the graphite reactor at Oak Ridge National Laboratory,
USA [15].

Neutron scattering (NS) results from the interactions with atomic nuclei, i.e. overscattering
lengths (distances) of the order of 10−15 m (1 fm).4 Although scattering amplitude decreases
greatly with the scattering vector (it is inverse to the scattering length), there are insignifi‐
cant variations of scattering amplitude in the same range of scattering vector for neutrons.
Consequently, powder diffraction with neutrons can resolve very fine structural and textur‐
al details of complex atomic structures. Moreover, the weak interaction of neutrons with matter
results in very low attenuation offering a unique advantage for nondestructive, in situ work
and bulk analysis (for polycrystalline materials, no crushing is required to obtain the pat‐
terns) [14].

Neutron diffraction was used to determine atomic arrangement in material. Inelastic neu‐
tron scattering measures the vibrations of atoms and small-angle neutron scattering5 (SANS)
is used to study larger structures such as polymers and colloids. The technique of surface
reflection (reflectometry) was used to study layered materials. The technique of SANS
provides the information about the size, shape and domain orientations; conformational
changes and/or flexibility; and molecular associations is solution. For the structural studies,
the elastic scattering effects, where there is no energy exchange between the radiation and
atoms, are exploited [7],[14],[16].

Neutron powder diffraction is a method often used for the structure refinement of apatite or
apatite type compounds from measured data using specialized software [17],[18],[19],[20],

4 The interaction with electrons during X-ray analysis takes place over the distances of 10−10 m (1 Å) [14].
5 Small angle scattering (SAS) of X-rays is abbreviated as SAXS [7].
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[21],[22],[23],[24] and the effect of substitutions in the apatite structure [25]. Neutron diffrac‐
tion data enable to explain the oxygen over-stoichiometry in the structure of La9.67(SiO4)6O2.5

apatite [17]. Since neutrons make possible the accurate determination of the thermal factors
and provide the visualization of the diffusion paths in ionic conductors, powder neutron
diffraction is also used for the characterization of solid oxide fuel cell materials [26]. This
method is also used to investigate apatite in hard tissues where it provides the evidence about
the deficiency of hydroxyl ion in bone apatites [27] and reconfirms that the inorganic por‐
tion is basically a hydroxylapatite-like material [27],[28].

3.1.3. X-ray fluorescence analysis and total-reflection X-ray fluorescence analysis

X-ray fluorescent analysis (XRF) is a method for the determination of sample composition [29],
[30]. The origin of characteristic X-ray spectra can be described as follows. When sufficient
energy is introduced into the atom, the electrons may be knocked out of one the inner shells.
The atom is then in an excited (ionized) state and returns to the ground state within 10−8 s. The
place of the missing electron is filled by an electron from a neighboring other shell, the place
of which, in turn, is filled by an electron from more outer shell. The atom then returns to the
ground state in steps. In every step, i.e. in every electron jump, the electron from a higher
energy level goes into a lower energy level emitting excess energy in the form of an X-ray
quantum. The energy of emitted radiation is characteristic for the atomic number of emitting
element as well as for particular electron transition taking place within the electron shell of the
atom. By measuring the energy or the wavelength of emitted radiation, the particle element
can be identified unambiguously [31].

The energy that is necessary for the atom to get to excited state can be introduced either by the
collision with a high-energy electron (sample is bombarded by electrons which are accelerated
by high-voltage) or by the absorption of an energy-rich photon, i.e. the X-ray quantum
(sample is irradiated by X-ray or gamma rays). In modern X-ray fluorescence analysis, the
sample is irradiated by polychromatic radiation from an X-ray tube. In analogy to the optical
case, this technique is referred to as fluorescence, which is responsible for the name X-ray
fluorescence analysis as the technique of spectrochemical analysis with X-rays [31].

There are two types of instruments (Fig. 1) used for X-ray fluorescence spectrometry [32],[33]:

1. Wavelength-dispersive XRF (WDXRF) or total reflection XRF (TRXRF): the method is
also often abbreviated as XRF. X-rays impinge on the sample (Fig. 1(a)) and generate
fluorescent X-rays. These are then diffracted on a crystal. A goniometer selects the
geometry between the crystal and detector that controls the detection of X-ray from the
element of interest. Different crystals have different sensitivities. Many of commercial
WDXRF instruments have two detectors and up to six crystals to optimize the condi‐
tions for each element.

2. Energy-dispersive XRF (EDXRF): the method is also abbreviated as EDX. The EDXRF
instruments use much less energetic X-ray tube. Emitted X-ray radiation from the sample
impinges directly on a detector, typically Si(Li), which generates pulses on an incident
beam. These pulses are sorted and counted by a multichannel analyzer (Fig. 1(b)).

Apatites and their Synthetic Analogues - Synthesis, Structure, Properties and Applications114



Simultaneous determination for all elements, the atomic number of which is greater than
Mg is possible.

The resolution and sensitivity of EDXRF is typically an order of magnitude worse than that
for WDXRF.

Synchrotron radiation X-ray fluorescence (SRXRF) microprobe, a promising technique, is a
nondestructive and qualitative to semiquantitative analysis of minerals and single fluid
inclusions [34]. Synchrotron radiation (SR) is a powerful advanced light source (synchrotron
radiation source, SRS) compared to conventional X-ray tube radiation and has many unique
properties, such as high intensity, natural collimations, well-defined polarization, wide
spectral range and energy tenability [35]. SRXRF is a widely applied technique for microscop‐
ic analysis of chemical elements. High-resolution requirements can be achieved using
microbeam synchrotron radiation X-ray fluorescence (μ-SRXRF). Synchrotron radiation X-ray
fluorescence can also provide the information about the oxidation state and coordination
environment of metals using techniques known as X-ray absorption of near-edge structure
(XANEX) or by micro-XANEX spectroscopy [37]. The unique tool for studying, the local
structure around selected elements is X-ray absorption fine structure (XAFS) [38].

X-ray fluorescence is usually used to investigate the composition of apatite rocks and minerals
for the purpose of their characterization [36],[39],[40], estimation of naturally occurring
radionuclides in fertilizers [41] and analysis of phosphate ore at various stage of processing
[42], e.g. flotation [43],[44].

3.1.4. Inductively coupled plasma spectrometry

Prior to inductively coupled plasma6 (ICP), the flame, direct current-arc and controlled-
waveform spark were used for the atomization (i.e. decomposition of sample to individual

Fig. 1. Schematic representation of X-ray fluorescence analyzer: (a) wavelength-dispersive (XRF) and (b) energy dispersive
(XRF).

6 Plasma is defined as an electrically neutral gas which consists of positive ions and free electrons. Plasma have sufficiently
high energy to atomize, ionize, and excite virtually all elements in the periodic table, which are intentionally introduced
into it for the purpose of elemental chemical analysis [45].
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atoms) and excitation of sample in elemental analysis. ICP denotes the technique that uses
atmospheric pressure argon inductively coupled plasma7 (ICP) for the atomization and
excitation of sample. This plasma is a highly energetic media consisting of inert ionized gas
with equivalent temperatures from 7000 to 10,000 K. Inductively coupled plasma are formed
by coupling energy produced by RF generator (typically 700–1500 W) to the plasma support
gas with an electromagnetic fields [45]. The cross-section of typical ICP torch is shown in Fig.
2.

Plasma

Ground

Load Coil

Torch

Fig. 2. Plasma with torch assembly and load coil [45].

The treatment of sample before the quantification includes vaporization, atomization,
excitation and ionization.8 The introduction of analyzed sample into inductively coupled
plasma was applied in analytical techniques including [29],[45],[46],[47],[48]:

i. Inductively coupled plasma atomic emission spectroscopy (ICP-AES): the method
connects atomic emission spectrometry with ICP. AES is based on spontaneous
emission of free atoms or ions when the excitation is performed by thermal or electric
energy. The method can identify and determine the concentration of up to 40 elements
simultaneously with the detection limit of parts per billion (ppb). Serious limita‐
tions of this technique are the spectral interferences. Despite rapid growth of ICP-MS,
ICP-AES still plays a dominant role in elemental analysis of geological, environmen‐
tal, biological and other materials.

ii. Inductively coupled plasma atomic fluorescence spectroscopy (ICP-AFS): ASF is an
analytical technique for the determination of elements in small quantities. It is based
on the emission of free atoms when the excitation is performed by radiation energy.

iii. Inductively coupled plasma-mass spectroscopy (ICP-MS): is analytical technique for
the determination of elemental composition of virtually any material. A sample,
usually in the form of an aqueous solution, is converted to an aerosol by a neutrali‐
zation process and transported to the plasma by an argon gas stream. In the plasma,
the elements of analyte are atomized, followed immediately by ionization. The
composition of ion population in the plasma is proportional to the concentration of

7 Although there are many types of plasma, such as direct current, microwave induced, etc., the ICP is considered the
most useful technique for analytical spectroscopy [45].
8 Each element has characteristics first and second ionization potential, which depends on specific electronic structure of
given element. Higher ionization potential means that more externally applied energy is required for ionization (thermal
radiation, collision with other ion or electron, or exposure to high-energy photons) [45].
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analyte species in original sample solution. Ions produced by ICP are representa‐
tively sampled and extracted from the plasma; next they are separated and meas‐
ured by a quadrupole or time-of-flight mass spectrometer

The method known as laser ablation—inductively coupled plasma—mass spectrometry (LA-
ICP-MS) is a coupling technique of laser ablation with ICP-MS technique [49],[50],[51],[52],
[53]. Multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) was applied
as the benchmark method for isotopic analysis [54] and for the determination of heavy rare
earth elements in apatites [55],[56],[57].

3.1.5. Thermal ionization mass spectroscopy

Thermal ionization mass spectroscopy (TIMS) is highly specialized technique of mass
spectroscopy used for very precise determination of isotope ratios and, as such, is widely used
for the determination of stable isotope ratios in isotope geology and for the analysis of nuclear
materials [58]. In this method, the solid sample is thermally ionized in solid-source mass
spectrometer. Ions are accelerated into the mass analyzer and then transported to the detec‐
tor [59]. Multicollector thermal ionization mass spectrometry (MC-TIMS) uses laminated
magnetic sector filet for high speed peak jumping and low hysteresis for the mass of ion
beams [60],[61].

The basic variants of the method of thermal ionization mass spectroscopy are as follows:

1. Isotope dilution–thermal ionization mass spectrometry method (ID-TIMS) [62],[63] is
used for accurate determination of element concentration and is generally considered to
be the definitive method to other techniques [58]. The method was applied for direct
measurement of uranium, thorium, lead, etc., concentrations in the determination of single
grain fission-track ages (Section 7.3.3).

2. Chemical abrasion–thermal ionization mass spectrometry method (CA-TIMS)

The ability for precise determination of isotope ratio in apatite predetermines this method for
geochronological investigations, i.e. studying of chronologic records in accessory minerals of
igneous rocks [61],[63],[64],[65].

3.1.6. Secondary ion mass spectrometry

Secondary ion mass spectroscopy (SIMS) is a method9 for the characterization of solid surface
elemental composition and isotope distribution. The technique can be applied to all ele‐
ments and allows quantitative analysis of solid surfaces, including monolayers. Energetic ion
bombardment of a solid surface (primary ions, e.g. Ar+, Cs+, O2+, … ) causes that atoms of the
sample are shifted from their original states as positive and negative ions which are termed as
secondary ions. These ions are then analyzed by mass spectrometer (e.g. quadrupole mass
spectrometer) to determine the composition of the surface of sample [66],[67]. The applica‐

9 The method was originally developed in the 1950s and 1960s by HERZOG et al and HONIG et al to analyze metals and
oxides [69], but the basis of SIMS can be traced back to the beginning of the twentieth century with the first experimen‐
tal evidence of secondary ions given by JJ THOMSON in 1910 [68].
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tions of SIMS can be broadly subdivided into static and dynamic SIMS. Static SIMS (SSIMS) is
used to investigate the composition of the outermost monolayer on any solid. Dynamic
SIMS (DSIMS) examines the concentration profile as the function of depth [68],[69],[70].

Fig. 3. Main components of SIMS [68] and schematic representation of ion microprobe imaging time-of-flight secon‐
dary ion mass spectrometry with reflectron-based mass analyser [69].

The mass filter of mass spectrometer of SIMS instruments defines the type of instruments [68],
[70]:

1. Magnetic sector SIMS (M-SIMS) instruments (Fig. 3(b), similar to those used in original
mass spectrometer)

2. Quadrupole SIMS (Q-SIMS) instruments (Fig. 4(a), first appeared in the 1970)

3. Time-of-flight SIMS (ToF-SIMS) instruments (Fig. 4(b), first appeared in the 1980)

Fig. 4. Schematic representation of magnetic sector and quadrupole SIMS instruments [70].

Secondary ion emission begins when the primary ions energy exceeds some threshold level.
This energy ranges from 30 to 80 eV and is much higher than the energies for sputtering of
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neutral particles. The most important features of the method are very low sensitivity limit for
majority of elements, the possibility to determine the concentration profile, the possibility of
isotope analysis and the identification of all the elements and isotopes starting from hydro‐
gen [66].

The SIMS method is often used for the measurement of deuterium/hydrogen (D/H) ratio and
hydroxyl (OH) content in anhydrous minerals and melt inclusions in Martian meteorites [71]
and lunar materials (apatite grains, glass beds, melt inclusions and agglutinates in soils) [72].
The method is widely used to investigate biological apatites and collagen apatite composites
[73] and the analysis of micrometer-sized samples like, e.g. interplanetary dust, presolar grains
and small inclusions in meteorites, has become more and more important in cosmochemis‐
try [74]. The method is also utilized for U-Th-Pb dating of apatites as common accessory in
igneous rocks (Chapter 8), based on the radioactive decay of U and Th [75],[76],[77].

3.1.7. Laser secondary neutral mass spectrometry

Laser secondary neutral mass spectroscopy (laser-SNMS) can be further divided to nonreso‐
nant laser-SNMS (NR-laser-SNMS) and resonant laser-SNMS (R-laser-SNMS). In NR-laser-
SNMS (Fig. 5(b)), an intense laser beam is used to nonselective ionization of all atoms and
molecules within the volume intersected by the laser beam. Sufficient laser power density,
which is necessary to saturate the ionization process, is typically achieved in a small volume.
It limits the sensitivity of the method and leads to the problems with quantification due to the
differences between effective ionization volumes of different elements. Laser-SNMS method
has significantly improved ionization efficiency over SIMS (a) [78],[79].

Fig. 5. Comparison of ToF-SIMS and laser-SNMS: (a) direct analysis of secondary ions (ToF-SIMS), (b) nonresonant laser-
post-ionization of secondary neutrals (NR-laser-SNMS) and (c) resonant post-ionization of secondary neutrals (R-laser-
SNMS) [78].

Resonant laser-SNMS uses a resonance laser ionization process, which selectively and
efficiently ionizes atoms and molecules over a relatively large volume (Fig. 5(c)). The meth‐
od has unit ionization efficiency for over 80% of elements in periodic table, i.e. the overall
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efficiency is greater than that for NR-laser-SNMS, the quantification is also simpler and
extremely high selectivity prevents almost all isobaric and molecular interferences [78],[79].

The method of NR-laser-SNMS was used by DAMBACH et al [80] to investigate different states
of biomineralization in vitro. The results indicate that in the vicinity of single osteoblasts,
extracellular enrichment of potassium typically occurs during initial stages of mineralization.
Potassium may interact with matrix macromolecules and prevent an uncontrolled apatite
deposition. However, apatite biomineral formation is correlated with a potassium release. In
conclusion, potassium seems to be involved in the process of extracellular matrix biomineral‐
ization.

3.1.8. Electron paramagnetic resonance

The concept of electron paramagnetic resonance (EPR) spectroscopy is very similar to more
familiar nuclear magnetic resonance (NMR). Both methods deal with the interaction be‐
tween electromagnetic radiation and magnetic moments. In the case of EPR, the magnetic
moments arise from electron rather than nuclei. The term EPR was introduced as a designa‐
tion taking into account contributions from electron orbital as well as spin angular momen‐
tum. The term electron spin resonance (ESR) was also widely used because in most cases the
absorption is linked primarily to the electron-spin angular momentum [82],[83]. EPR spec‐
trum is a diagram in which the absorption of microwave frequency radiation is plotted against
the magnetic field intensity [83].

The technique of electron paramagnetic resonance spectroscopy may be regarded as the
consequence of the STERN–GERLACH experiment. They showed (in 1920) that an electron
magnetic moment in an atom can take on only discrete orientation in a magnetic field, despite
the sphericity of the atom. Subsequently, UHLENBECK and GOUDSMIT liked the electron magnet‐
ic moment with the concept of electron spin angular momentum. In hydrogen atom, there is
additional angular momentum arising from the proton nucleus. BREIT and RABI described the
resultant energy levels of hydrogen atom in a magnetic field. RABI et al [81] studied the
transition between levels induced by an oscillating magnetic field, and this experiment was
the first observation of magnetic resonance. The first observation of electron paramagnetic
resonance peak was made in 1945 by ZAVOISKY, who detected the radiofrequency absorption
line from CuCl2·2H2O sample using the radiofrequency (RF) source at 133 MHz [82].

The major components of EPR spectrometer are shown in Fig. 6. The microwave bridge
supplies the microwaves at controlled frequency and power, which are transmitted to the
sample cavity via the waveguide. The sample cavity is placed perpendicular to applied
magnetic field, which can be varied in controlled way. In addition to this main magnetic field,
a controlled but smaller oscillating magnetic field is superimposed on the cavity via the
Zeeman modulation frequency. The ideal way to perform the experiment would be to apply
a fixed magnetic field and vary the microwave frequency. However, microwave generators
are only tunable over very limited ranges. Thus, the microwave frequency is fixed and applied
magnetic field is varied. The magnetic field is applied until it reaches the value at which the
sample will absorb some of the microwave energy, i.e. and EPR transition occurs [84],[85].
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Fig. 6. The block diagram for typical continuous wave EPR spectrometer [84].

Electron paramagnetic resonance (EPR) spectrum of X-irradiated sodium and carbonate
containing synthetic apatites has been studied by MOENS et al [86]. Observed spectra were
decomposed in terms of five theoretical curves representing O– radical, two CO3– radicals
(surface and bulk) and two CO2− radicals (surface and bulk). These species were also descri‐
bed in A-type and B-type carbonate-apatites [87],[88], tooth enamel [89],[90],[91],[92], [93] and
bone [94],[95], apatites, renal stones [96], etc.

3.1.9. Nuclear magnetic resonance

Solid-state nuclear magnetic resonance (NMR) is a technique for accurate measurement of
nuclear magnetic moments where the resonance frequency depends on its chemical environ‐
ment [97],[98],[99]. The method can provide useful information on the number of molecules
in the asymmetric unit and on the site symmetry of the molecule in the lattice to assist in the
refinement of powder X-ray diffraction (Section 3.1.1) data. The method can distinguish
between different polymorphs. Alternatively, solid-state NMR can be used for direct and
accurate measurement of internuclear distances. For amorphous and disordered solids, such
as inorganic glasses and organic polymers, solid-state NMR provides structural information
that cannot be obtained by any other technique [100],[101]. NMR is also the diagnostic method
used in veterinary science and medicine particularly in clinical research of human brain by
magnetic resonance imaging (MRI) [102].

The solution-state NMR method was developed for the investigation of structure of soluble
proteins [103]. Solution and solid-state NMR are both excellent methods for the determina‐
tion of chemical composition [100].
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The structural information of apatites is usually investigated from 1H, 19F and 31P NMR spectra
of apatites [104]. The 31P solid-state NMR spectroscopy is a useful tool to investigate structur‐
al information about apatites on bone organic and inorganic mineral components, as well as
to investigate the crystallinity and compositional changes in carbonated apatites [105]. Intact
bone is a demanding tissue for structural studies. Serious experimental problems arise from
the morphological diversity of bone and from the co-existence, interrelationship and great
complexity of its organic and inorganic components. Furthermore, one has to perform
noninvasive analysis because bone samples are very sensitive to physical effects and chemi‐
cal treatment. Solid-state 31P NMR gives us a unique opportunity to look specifically at the
minerals of whole bone without any chemical pretreatment, thus avoiding the intervention
into the bone structure [106].

Fig. 7. Nuclear separation along parallel chains (the crystallographic c-axis) in various apatites (a): FFF group (I), FFH
group (II) and HFH group (III). Correlation between observed 19F line width and fluorine content of fluorinated
hydroxylapatite (b) [104].

The 19F NMR spectrum of fluorinated calcium hydroxylapatite (Ca10(PO4)6F2x(OH)2–2x, where x
is the fraction of OH− replaced by F−) indicates the correlation between 19F chemical shift tensor
parameters and the content of fluorine in apatite. The presence of OH− groups induces
perturbations of fluorine environments, involving the displacements of both fluorine and
hydroxyl groups from their normal positions. This leads to a distortion of the electronic
environment with regard to the investigated fluorine nucleus and gives reasons for ob‐
served change in the 19F chemical shift tensor of fluoridated hydroxylapatite with different
fluorine content. Furthermore, the presence of OH-group destroys the fluoride long-range
structure and that results in an isotropic chemical shift distribution. This leads to observed
increase in the 19F line width in the case of low fluorine content [104],[107].

3.1.10. Scanning electron microscopy, structure and elemental analysis

The scanning microscope (SEM) permits the observation and characterization of heterogene‐
ous organic and inorganic materials on a nanometer (nm) to micrometer (μm) scale. In SEM,
the area to be examined or the volume to be analyzed is irradiated with finely focused electron
beam, which may be swept in a raster across the surface of the specimen to form an imager or
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may be static to obtain the analysis at the position. The type of signals produced from the
interaction of the electron beam (primary electron, PE) with the sample (Fig. 8(a)) includes
secondary electrons (SE, with energy ≤50 eV), backscattered electrons (BSE, E > 50 eV), Auger
electrons (AE), X-ray characteristics (X) and other photons of various energies such as
continuum X-rays and heat. Low-loss electrons (LLE) show the energy losses of a few hundreds
of eV. These signals are obtained from specific emission volumes within the sample and can
be used to examine many characteristics of the sample such as surface topography, crystal‐
lography, composition, etc. [108],[109],[110].

Fig. 8. Electron–specimen interaction (a) and schematic energy spectrum (a) [109].

Secondary and Auger electrons are highly susceptible to elastic and inelastic scattering and
can leave the specimen only from a very thin surface layer of the thickness of a few nanome‐
ters. The most probable energy of BSE falls into the broad part of the spectrum in Fig. 8(b), but
they also show more or less pronounced elastic peak followed by plasnom losses, which
depend on the primary energy, the take-off angle and the tilt of the specimen. Continuously
slowing-down approximation assumes that the mean electron energy decreases smoothly with
decreasing path length of the electron trajectories inside the specimen. The maximum
information depth of BSE is of the order of half the electron range. Characteristic X-rays will
only be excited in the volume in which the electron energy exceeds the ionization energy of
the inner shell involved. Inelastic scattering in semiconductors results in the generation of
electron-hole pairs. The recombination can take place without radiation but may result in the
emission of light quanta (cathodoluminescence, CL) [111].

The method known as electron backscattering diffraction (EBDS) enables to determine the
crystal structure and grain orientation of crystals on the surface of specimen. To collect
maximum intensity in the diffraction pattern, the surface of specimen is stipple tilted at an
angle of typically 70° from the horizontal (Fig. 22(a)). The intensity of backscatter Kikuchi
patterns (please see the pattern of fluorapatite in Fig. 23) is rather low, as is the contrast of the
signal, so extremely sensitive cameras and contrast enhancement facilities are required. This
pattern allows to identify the phases and shows the misorientation across the grain bounda‐
ries [108].

Identification, Characterization and Properties of Apatites
http://dx.doi.org/10.5772/62211

123



Scanning electron microscope can be also used to determine compositional information using
characteristic X-ray. The development of instruments for obtaining localized chemical analysis
of solid samples, i.e. electron probe microanalyzer (EMPA), occurred at the same time as the
development of SEM.

Scanning electron microscopy (SEM) is used for grain interactions and spot analysis [98],[112],
electron microprobe microanalysis (EPMA) for the distribution of elements in the matrix,
investigation of the effects of impurities on the properties of apatites and investigation of
reaction interface [113],[114],[115],[116].

3.1.11. Fourier transform infrared and Raman spectroscopy

Infrared (IR) spectroscopy is one of the most important analytical techniques that can be used
for the investigation of any sample in any state. Liquids, solutions, pastes, powders, films,
fibers, gases and surfaces can be examined with judicious choice of sampling technique.
Infrared spectrometers have been commercially available since the 1940s [117].

Fourier transform infrared (FT-IR or FTIR) spectroscopy is divided into three regions accord‐
ing to the increasing wavelength [118]:

1. Near-IR (NIR) spectroscopy, abbreviated as FT-NIR

2. Mid-IR (MIR) spectroscopy, abbreviated as FT-MIR

3. Far-IR (FAR) spectroscopy, abbreviated as FT-FAR

The spectral ranges of near-, mid- and far-infrared spectroscopy are shown in Fig. 9(a).

Fig. 9. Schematic illustration of relationships between the ranges of (a) vibrational spectroscopy and electromagnetic
spectrum [118] and (b) spectroscopic transitions underlying several types of vibrational spectroscopy. v0 indicates the
laser frequency, while v is the vibrational quantum number. The virtual state is a short-lived distortion of the electron
distribution by the electric field of the incident light [119].

The background for Raman spectroscopy was given by the discovery of Raman scattering by
Krishna and Raman in 1928. Until approximately 1986 when Fourier transform (FT)–Raman
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was introduced, physical and structural investigations dominated in literature over relative‐
ly few reports of Raman spectroscopy applied in chemical analysis [119],[120].

When monochromatic light with the energy hν0 encounters the matter (gas, solid or liquid),
there is a small probability that it will be scattered at the same frequency (Fig. 9(b)). If the
object, e.g. molecule is much smaller than the wavelength of the light, the scattering is Rayleigh
scattering. The “virtual state” is not necessarily a true quantum state of the molecule but can
be considered a very short-lived distortion of the electron cloud caused by oscillating electric
field of the light. Since blue light is more efficiently scattered than red one, Rayleigh scatter‐
ing is responsible for the blue color of sky. The electron cloud of the molecule is also pertur‐
bed by molecular vibrations, and it is possible for the optical and vibration oscillations to
interact, leading to Raman scattering. Raman scattering is shown in (Fig. 9(b)) in which the
scattered photon is lower in energy by an amount equal to the vibration transition. Raman
spectrum consist of scattered intensity plotted versus energy and each peak corresponds to
given Raman shift from the incident light energy hν0 [119].

Just like Rayleigh scattering, Raman scattering depends on the polarizability of scattering
molecules. IR band, on the other hand, arises from a change in the dipole moment. In many
cases, the transitions that are allowed in Raman are forbidden in IR, so these techniques are
often complementary (please compare Fig. 18(a) and (b)). In polarizable molecules, incident
light can excite the vibrational modes, leading to scattered light diminished in energy by the
amount of vibrational transition energies (same as in fluorescence). Scattered light under these
conditions reveals the satellite lines below the Rayleigh scattering peak at the incident
frequency–Stokes lines (Stokes part of spectrum). If there is enough energy, it is also possi‐
ble to see anti-Stokes lines. Since anti-Stokes lines are usually weaker than Stokes lines, only
the Stokes part of spectrum is usually measured [121].

The method combining Raman spectrometer with microscopic tools, typically an optical
microscope, is known as micro-Raman spectroscopy (μRS) or also Raman microscopy. The
μRS is nondestructive and noncontact method for the characterization of organic and inorganic
materials [122].

Infrared [97],[98],[123],[112],[124],[125],[126], Raman [97],[98] and micro-Raman spectroscop‐
ies [125] were often used to identify and investigate the structure and extent of substitution
and to optimize the synthesis conditions of minerals from the supergroup of apatite. Since
carbonate ions exhibit clear vibrational signature in infrared spectrum, infrared spectrosco‐
py is widely used to investigate the structure and to evaluate the carbonate/phosphate ratio
(rc/p) and the amount of carbonate ions in carbonate-apatites [127]:

[ ]2
3 /CO wt.% 28.62 0.0843c pr
- = + (1)

The example of infrared and Raman spectrum of fluorapatite is described in Section 3.2.3.

Infrared spectra of phosphate minerals in the pyromorphite series are described by ADLER [128].
In the pyromorphite series, the equilibrium internuclear X-O distance in XO4

3− ion (PO4
3−,
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AsO4
3− and VO4

3−) is primarily a function of the ionic radium of X atom. Since Pb, in this case,
is always the dominant externally coordinated cation, for various members, there is no
significant change in the interaction between the molecular vibration and the external
environment. Bradger’s equation [128],[129],

( )35
0 1.86 10 / ijk R d= × - (2)

although specifically applicable to internuclear distances in diatomic molecules, reflects
generally the inverse relationship between the force constant k0 and the internuclear dis‐
tance R. Symbol dij denotes the constant the values of which depend on the nature of bond‐
ed atoms. The molecular vibration frequency v is dependent on the restoring forces, measured
in terms of k0, between participating atoms as well as on the masses of these atoms. The
relationship may be expressed approximately by the equation:

1
2

kv c
u

p= (3)

where the vibration frequency v is a function of the force constant k and the reduced mass u
of vibrating atoms, all other terms being invariant.

The spectral frequency differences between pyromorphite, mimetite and vanadinite are
explicable and to a considerable degree predictable in terms of these parameters. On com‐
plete substitution of As or V for P the effect of reduced force constants is reinforced by increases
in mass, thereby shifting ν3 and ν1 to lower frequencies. Because of opposing mass and force-
constant effects and perhaps also because of dissimilarities in orbital configurations, the
relative positions of absorption bands are less predictable for mimetite and vanadinite than
for pyromorphite and mimetite. The theoretical frequency trends are depicted in Fig. 10 [128].

Fig. 10. Theoretical effect of change in mass and ionic radius on infrared vibration frequency of tetrahedral XO4
3− ions,

where X = P5+, As5+ of V5+ [128].
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3.1.12. Thermal analysis

Thermal analysis (TA) refers to a group of techniques10 in which the property of a sample is
monitored against time or temperature while the temperature of the sample, in a specified
atmosphere11 is programmed. These methods study the relationship between sample proper‐
ty and its temperature as the sample is heated or cooled in a controlled manner. The individ‐
ual techniques are divided according to the measured property12 [131],[132], [130] as is
introduced in Table 1.

Property Technique and abbreviation Notes

Heat Scanning calorimetry – –

Temperature Thermometry – Also can be described as heating or cooling curve

Temperature
difference

Differential thermal DMA
analysis

DTA A technique where the temperature difference
between the sample and reference material is
measured

Heat flow rate
difference

Differential scanning calorimetryDSC A technique where the difference between heat flow
rates into the sample and reference material is
measured

Mass Thermogravimetry or
thermogravimetric analysis

TG or
TGA

The abbreviation TG has been used, but should be
avoided, so that it was not confused with Tg

(temperature of glass transition)

Dimensional and
mechanical
properties

Dynamic mechanical analysis DMA Moduli (storage/loss) are determined

Thermomechanical analysis TMA Deformations are measured

Thermodilatometry TD Dimensions are measured

Electrical properties Dielectric thermal analysis DEA Dielectric constant/dielectric loss are measured

Thermally stimulated current TSC Current is measured

Magnetic properties Thermomagnetometry TM Often combined with TGA

Gas flow Evolved gas analysis EGA The composition and/or the amount of gas/vapor is
determined

Emanation thermal analysis ETA Trapped radioactive gas within the sample is
released and measured

Pressure Thermomanometry – Evolution of gas is detected by pressure change

10 The definition of terms in thermal analysis was developed by ICTAC (Confederation for Thermal Analysis and
Calorimetry).
11 Gaseous environment of the sample, which may be controlled by the instrumentation or generated by the sample [130].
12 Resulting dependence, i.e. any graph of any combination of property vs. time or temperature derived from a thermal
analysis technique, should be termed as thermal curve, which is a simplified form of more correct term thermoanalytical
curve. The first mathematical derivation of any curve with respect to temperature or time leads to the derivative
thermoanalytical curve [130]. Since the name thermogram has medical usage, the thermal analysis curve should not be
termed as thermogram [131].
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Property Technique and abbreviation Notes

Thermobarometry – Pressure exerted by dense sample on the walls of a
constant volume cell is studied

Optical properties Thermoptometry or thermos
optical analysis

TOA A family of techniques in which optical
characteristics or property of the sample is studied

Thermoluminescence TL Light emitted by the sample is measured

Acoustic properties Thermosonimetry or
thermoacoustimetry

TS Emitted (sonimetry) or absorbed (acoustimetry)
sound is measured.

Structure Thermodiffractometry – Techniques where the compositional or chemical
nature of the sample is studied.

Thermospectrometry

Table 1 Methods of thermal analysis according to measured property or physical quantity.

The measurement should be performed as follows:

1. Combined: the application of two or more techniques to different samples at the same
time. This can include thermal and nonthermal analytical techniques.

2. Simultaneous: indicates the measurement of two or more properties of a single sample
at the same time.

The sample-controlled method where the feedback used to control the heating is the rate of
transformation is termed as controlled-rate thermal analysis (CRTA) [130].

Simultaneous thermogravimetry (thermogravimetric analysis) and differential thermal
analysis (TG-DTA) are mostly used to investigate the course of synthesis and the characteri‐
zation of prepared apatites or to investigate the process of thermal decomposition of apatites,
i.e. the processes such as dehydroxylation (e.g. Section 1.5.2), defluorination (Section 3.2.4 and
8.6), decarbonation (thermal decomposition of carbonate-apatites, Section 4.6.1), etc.

3.1.13. Optical properties

The analysis of optical properties is essential for each mineral examined, and through the use
of microscopy, the optical properties of individual minerals may be interpreted in great detail.
Optical mineralogy investigates the interaction of light (usually is limited to visible light) with
minerals and rocks. Optical mineralogy concerns mainly the use of polarizing (petrographic)
microscope which has two Nicol prisms, polarizer and analyzer (polarizer below the stage and
the analyzer above the objective) [133]. Human eye is the most sensitive for viewing a solid in
the wavelength symmetrically spread in intensity around 550 nm (Fig. 11(a)). Optical
microscopy in visible light (from 700 nm (red) to 420 nm (violet), Fig. 11(b,c)) helps study the
objects of smaller sizes up to lower limit of ~ 1 μm (c). Fig. 11(d) shows the scope of spectro‐
scopic techniques associated with electromagnetic spectrum [134].
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Fig. 11. Electromagnetic spectrum of solar radiation and black body (a), the resolution of various techniques (b) and
the regions associated with spectroscopic techniques (c) [134].

Refractive index (n) is related to the angle of incidence (i) and the angle of refraction (r)
according to the Snell´s law:

sin / sinn i r= (4)

The refractive index increases as the wavelength of light decreases [134]. The absorption
coefficient is related to the imaginary part of the refractive index. It was found that since the
refractive index of a medium depends on the density of electrons in that medium, the index
increases with the density of matter [135].

The luster of mineral (R) depends of the way in which the light is reflected from the surface of
a mineral. The reflection is again dependent on the refractive index. Normally, the greater is
the index of refraction, the brighter is the luster. The luster is classified into two broad
classes [134]:

a. Nonmetallic luster: results from the interaction of light with dielectric semiconducting
and poorly conducting substances

b. Metallic luster: occurs in minerals having metallic bonding (e.g. native metals) or high
degree of covalent bonding (sulfides, sulfosalts, etc.)

Optical properties of apatites can be determined using the complex dielectric function [136],
[137],[138]
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( ) ( ) ( )1 2ie w e w e w= + (5)

in the range of linear response. By calculating the wave function matrix and using Kramers–
Krönig relations, the imaginary and real part of the dielectric function ε1(ω) and ε2(ω) can be
derived respectively as follows:
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where f(k) is the Fermi distribution function, l and n mark occupied state and unoccupied
state, respectively. Ψn(k,r) is the Bloch wave function for the nth band with the energy
En(k) at the Brillouin zone point k. The matrix element momentum transition corresponds to
the term | Ψn(k̄ , r̄) |− iℏ| Ψ1(k̄ , r̄) |2.

For each apatite, the real part ε1 and imaginary part ε2 of dielectric function have similar
features with some subtle differences. The real part ε1 has two main peaks:

1. First peak lies near the energy of 7 eV. Obviously, the first peak is caused by the transi‐
tions from O–2p and P–3p levels.

2. The second peak lying at ~25 eV results from the transitions from Ca–3p levels.

The ε2 curve in the energy range from 5 to 15 eV characterizes three main peaks:

1. The first peak lies in 7.10, 7.16 and 7.43 eV for FAP, ClAP and BrAP, respectively.

2. The second peak is located at 8.51, 8.62 and 8.76 eV for FAP, ClAP and BrAP, respectively.

3. The third peak is situated at 10.99, 11.08 and 11.45 eV for FAP, ClAP and BrAP, respec‐
tively.

The refractive index n can be obtained by n = √ε1(0). The ε1(0) for FAP, ClAP and BrAP are 1.38,
1.41 and 1.46, respectively. Therefore, the refractive indexes for FAP, ClAP and BrAP are 1.17,
1.19 and 1.21. Moreover, analogous dielectric function curves and similar refractive index
values show that the optical property of each apatite has some independence from the c-axis
ion [136].

3.1.14. Measuring of surface area, porosity and pore size distribution

There is a conventional mathematical idealization that asserts that a cube of edge length a
possesses a surface area of 6a2 and that a sphere of radius r exhibits 4πr2. In reality, however,
mathematical perfect or ideal geometric forms are unattainable (Fig. 12) since all real surfa‐
ces exhibit flaws under microscopic examination. Real surface irregularities (voids, pores,
steps, etc.) make the real surface area greater than corresponding theoretical area. When the
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cube, real or imaginary, of one meter edge length is subdivided into smaller cubes each one
micrometer (10−6 m) in length, there will be 1018 particles formed, each exposing an area of 6 ×
10−12 m2. Thus, the total area of all particles is 6 × 106 m2. This operation increases by million‐
fold the exposed area of fine powder compared to undivided material. Whenever the matter
is divided into smaller particles, new surfaces must be produced with corresponding in‐
crease in surface area [139],[140].

The particle size distribution (PSD) was usually determined by sieve analysis, sedimentation
methods (gravitational or centrifugal), microscopic techniques, light scattering, multiangle
laser light scattering (MALLS), etc. [141].

The range of specific surface area, i.e. area per gram of matter, can vary widely depending on
the particles’ size, shape and porosity. The influence of pores can often overwhelm the size
and external shape factors. The powder consisting of spherical particles exhibits total surface
(St) and volume (V = M/ρ) [139]:

( )2 2 2 2
1 1 2 2
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where ri and Ni are the average radii and numbers of particles in the fraction i. For spheres of
uniform size, Eq. 9 becomes the law:

Fig. 12. Description of particle shapes [140].
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Besides the calculation of specific surface from its geometry and PSD curve, the adsorption
isotherm (predominantly Langmuir and BET13), air permeability methods,14 and monolayer
sorption methods were used to determine the specific surface area [142],[143].

The porosity is defined as the ration of pore volume to total volume. Porous material is defined
as solids containing pores Fig. 13(a), which are classified into two major types: open and closed
pores. Penetrating open pores (interconnected pores) are permeable for fluid and therefore are
important in applications such as filters. Pores accessible from only one end are referred to as
dead-end pores. Noninterconnected (closed) pores are not accessible at all. The classification
of pores according to their size is shown in Fig. 13(b). Pores can be also classified as the pores
among agglomerates and pores among primary particles (Fig. 13(c)) [144],[145].

Fig. 13. Schematic illustration of different morphology of pores (a) and classification of porous materials based on pore
size (b) and schematic illustration of pores among agglomerates and primary particles (c) [144].

13BRUNAUER–EMMETT–TELLER (BET) theory of multilayered physical adsorption of gas molecules on a solid surface [143].
14 For example, the Blaine method, where fixed volume of air passes through the bed at steadily decreasing rate, which
is controlled and measured by the movement of oil in a manometer, the time required being measured. The method is
widely used for the determination of specific surface area of cements [143].
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Pore size distribution and permeability15 are a very desirable quantities for the characteriza‐
tion of structure of porous solids, which can be determined by the following [145],[146],[147]:

i. Stationary fluid (static) method

ii. Capillary pressure (HASSLER
16) method

iii. Quasi-steady-state methods, including the gas drive method and the solution-gas
drive method.

The surface area and the porosity of apatites have effect on the floatability (Section 8.7) of
apatites of different type and origin [148]. The surface area, the porosity and the pore size
distribution are properties of great importance for the preparation of biological apatites in
tissue engineering (Section 10.9) and tailoring their mechanical properties, solubility and
bioactivity [149],[150],[151],[152]. Ionic surfactants, such as decyltrimethylammonium
bromide (CH3(CH2)9N(CH3)3(Br), C(10)TAB), hexadecyltrimethylammonium bromide
(CH3(CH2)15N (Br)(CH3)3, C(16)TAB), as well as nonionic surfactant, can be used to control the
pore (pore size and volume) and surface characteristics of mesoporous apatite materials under
maintained pH [153]. The porosity also affects electrical properties of oxyapatites (Chapter 5)
[154],[155],[156].

3.2. Investigation and characterization of apatite specimen

3.2.1. Identification of the specimen

Some techniques mentioned above will be demonstrated on the specimen of apatite sample
(Fig. 14(a)) from Sljudjanka, Bajkal. The translucent specimen with glassy luster is greenish
blue colored and brittle as can be seen from large amount of smoothly curving conchoidal
fractures on the surface (please see also Fig. 20). When scratched by a single crystal of
corundum (Fig. 14(b)), the sample shows white colored scratch. Since the sample surface can
be also scratched by feldspar (Fig. 14(c)) but not by fluorite, the hardness in the Mohs scale17 is
equal to 5, i.e. corresponds to apatite.

15 The flow of fluids through porous materials is of great importance in the fields of industrial chemistry, oil technology,
and agriculture. In general, it may be stated that the principal interest is in the transport through reactive materials [147].
16 Experimental techniques for the measurement of relative permeability can be divided to steady- (1) and unsteady-state
(displacement) methods (2). The steady-state method was developed by HASSLER (1944). Semipermeable membranes are
provided at each end which keeps the fluids separated, except inside the core where the fluids flow simultaneously. The
pressure is measured in each phase through semipermeable barriers, and the pressure differences between the phases
are maintained constant throughout the medium so as to eliminate the capillary end effect as well as to ensure a uniform
saturation along the core. The saturation can be altered by applying capillary pressures across the nonwetting phase ports
and wetting phase semipermeable membranes [146].
17 The Mohs scale of mineral hardness is graduated as follows: talc (1), gypsum (2), calcite (3), fluorite (4), apatite (5),
orthoclase (6), quartz (7), topaz (8), corundum (9), and diamond (10). Apatite should be also scratched by steel knife (up
to 5.5) and glass (up to 6).
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Fig. 14. Specimen of apatite from Sljudjanka, Bajkal (a) shows white color of scratch (b). The sample can be also
scratched by minerals with hardness ≥6 (feldspar and higher) on the Mohs scale (c).

The microhardness of apatite sample was then determined by Vickers microhardness test.18

Fig. 15 shows the replica of diamond pyramid base19 on the surface after the indentation of
sample. The average hardness of sample was determined to be 552 (±30) HV 0.05/10. The
formation of radial cracks on the corners indicates brittle material [157]. According to the
mineral hardness conversion charts, the measured value is in good agreement with the tabular
value of apatite (535 HV [158]).

Moreover, the sample does not show any luminescence when elucidated by long UV light (Fig.
16(a)). The specific gravity of the specimen was assessed by hydrostatic weighting (b) and
pycnometric technique (c) to be 3.18 and 3.16 ± 0.20 g·cm−3, respectively. These values are in a
good agreement with average density of apatite (3.19 g·cm−3, Chapter 1). All properties of
investigated specimen mentioned above identify it as apatite, but the exact kind of apatite
mineral and its chemical composition must still be determined yet.

Fig. 15. The Vickers microhardness test with the load of 0.05 kgf for the time of 10 s and the correlation of results with
the Mohs scale.

18 Hardness tester LECO AMH 43. The method is also known as the Vickers pyramid number (HV) or the diamond
pyramid hardness (DPH).
19 Diamond pyramid with apical angle of 136°.
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Fig. 16. The specimen of apatite under UV light (compared with the fragment of red luminescence of alumina).

The sample was next treated to fine powder via milling in stain-less steal laboratory vibra‐
tion mill. The apatite mineral was then determined by X-ray diffraction analysis (Fig. 17), mid-
infrared spectroscopy (Fig. 18) and EBDS (Fig. 23) as fluorapatite (Ca5(PO4)3F, ref. [159]) with
small amount (1%) of accessory mineral calcite20 (CaCO3). Since the crystallographic parame‐
ters of identified hexagonal apatite are a = 9.3917, c = 6.8826 Å and Z = 2, it is possible to calculate
the axial ratio (Eq. 11), the volume of cell (Eq. 12) and the density (Eq. 13) as follows:

: 1:0.7328a c = (11)

( ) ( )
3
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where M is the molecular weight of fluorapatite (Table 7 in Chapter 1) and NA is the Avogadro
constant. The reconstruction of the cell of investigated apatite specimen is shown in Fig. 24.

3.2.2. X-ray diffraction analysis

Powder X-ray diffraction analysis of the apatite specimen (Fig. 17) identified it as fluorapa‐
tite. According to quantitative Rietveld analysis, the sample contains 99% of fluorapatite. There
is also small amount (1%) of calcite21 that occurs on the surface of apatite specimen. Since the
fluorapatite specimen (Fig. 14) is single crystal (Section 3.2.6), the crystal faces cannot be
recognized, i.e. the crystal habit is anhedral (refer to Footnote 2 in Chapter 2). Nevertheless,
XRD pattern shows that the most intensive diffraction possesses the Miller index (211), which
corresponds to the Miller-Bravais indices (21–31), i.e. dihexagonal dipyramid (Chapter 1).

20 Since it is present as “free carbonate,” the sample cannot be considered as carbonate-fluorapatite (Section 2.6 and 4.6.1).
21 As the results of thermal analysis revealed (Section 3.2.4), the Rietveld analysis slightly overestimates the content of
free carbonate in the sample.
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There is also basal pinacoid {1000}, first-order {10–10} and second-order {11–20} hexagonal
prism and dihexagonal prism {21–30}.

Fig. 17. X-ray diffraction analysis of investigated specimen of apatite.

It is obvious that fluorapatite belongs to the hexagonal-dipyramidal crystal system, but the
estimation of crystal habit of corresponding euhedral crystals from these results is highly
speculative due to possible combination of pinacoid (c), first-order (m) and second-order
hexagonal prisms (a) and first-order (p) and second-order dipyramids (s) with dihexagonal
dipyramid (v) faces in the single crystal.

3.2.3. Infrared and Raman spectroscopy

Infrared (mid-FT-IR22) and Raman spectrum of fluorapatite is shown in Fig. 18(a) and (b),
respectively. The most expressive infrared bands are attributed to fundamental frequencies of
tetrahedral phosphate ion [PO4]3−. The structure of apatite leads to the reduction of ion
symmetry from Td (four fundamental frequencies with IR inactive ν1 mode) to Cs, where ν1

mode becomes IR active [128],[160],[161],[162],[163]:

1. The ν1(PO4) mode is very weak (vw23) band that is related to symmetric stretching of
phosphate ion.

2. Bending: ν2 mode (vw).

22 Baseline corrected spectrum measured by KBr technique.
23 Abbreviation used for the expression of intensity and width of peak in the spectrum: very weak (vw), weak (w), middle
(m), strong (s) and very strong (vs), shoulder (sh), broad (b), very broad (vb), and sharp (sp). Spectral bands related to
impurities are abbreviated as imp [162].
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3. Anti-symmetric stretching: ν3 mode is the strongest (vs, vb) band in the infrared spec‐
trum appearing in the spectral region from 1000 to 1150 cm−1.

4. Bending: ν4 mode (m, vb) is observed between 540 and 620 cm−1.

Fig. 18. Infrared (a) and Raman (b) spectrum of investigated specimen of fluorapatite.

The crystallinity of natural and synthetic apatite samples is often determined from the
broadening of ν4(PO4) infrared absorption bands [160]. The assignment of bands in infrared
and Raman spectrum of fluorapatite is listed in Table 2.

Vibration mode Assignment C6h factor group symmetry Raman shift IR

[cm−1]

ν1 Ag, E2g, E1u 956 965

ν2 E1g 432 –

E2g – –

Ag 449 –

E1u – 460

Au – 470

ν3 Au, E2g 1034 1032

E1g, E1u 1042 1040

Ag 1053 –

E2g 1061 –

Ag 1081 –

E1u – 1090

ν4 Au – 560

E1u – 575

E2g 581 –
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Vibration mode Assignment C6h factor group symmetry Raman shift IR

[cm−1]

Ag, E1g 592 –

E1u – 601

Ag 608 –

E2g 617 –

Table 2. The interpretation of infrared and Raman bands in the spectrum of stoichiometric fluorapatite [164].

Factor group analysis of the hexagonal P63/M space group fluorapatite structure (Z = 2) yields
an irreducible representation for optically active vibration of [165]:

( ) ( ) ( ) ( ) ( )1 1 212 7 IR 8 11 IR 13g u g u gA R A E R E E RG = + + + + (14)

where IR and R denote infrared and Raman activity, respectively. The influence of pressure
on the infrared and Raman spectra of fluorapatite was investigated by WILLAMS and KNITTLE

[165]. Fluorapatite remains stable under pressures of at least 25 GPa at 300 K. Local environ‐
ment of phosphate groups in fluorapatite becomes progressively less distorted from tetrahe‐
dral symmetry under the compression, as manifested by progressively smaller site-group.

The Davydov (factor group) splitting also decreases under the compression. This decrease is
consistent with nondipole effects playing a primary role in the Davydov splitting of apatite;
indeed, the magnitude of the Davydov splitting appears to be modulated by increases of the
site symmetry of phosphate group under the compression [165].

The spectrum Fig. 18(a) shows weak peak located in the domain of OH stretching modes
(from 3500 to 3600 cm−1) at the wave number of 3535 cm−1. This band belongs to the OH
stretching mode in the hydrogen bond F…OH…(F) [166]. According to FREUND and KNOBEL

[167], the band at ~744 cm−1 belongs to the vibration of OH…F bond. According to KNUBO‐

VETS [168], the bands in the range from 745 to 720 cm−1 in apatite spectra could also be attrib‐
uted to symmetric valence oscillations of the P-O-P bridge bonds, formed by the condensation
of the PO4

3− tetrahedron. The presence of calcite causes that antisymmetric stretching mode
(ν3) of planar CO3

2− ion appears in the infrared spectrum of investigated sample [169].

3.2.4. Thermal analysis

The results of simultaneous TG-DTA of investigated fluorapatite specimen are shown in Fig.
19. The sample is heated with the rate of 10°C·min−1 up to the temperature of 1425°C. The mass
of sample is reduced by 1.25% during TG-DTA when the final temperature is reached. The
most important features are the thermal decomposition of CaCO3 and the thermal decompo‐
sition of fluorapatite.
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Fig. 19. Thermal analysis of investigated specimen of fluorapatite.

The content of calcite was verified by thermal analysis. The weight of sample was reduced
by 0.26% during the thermal decomposition of calcite. Since the theoretical mass loss of calcite
is (100 × 44.09) / 100.086 = 43.97%,24 the content of calcite in the investigated sample of fluora‐
patite is (100 × 0.26) / 43.97 = 0.59%. Although this value is lower than the content of calcite
determined by Rietveld analysis, there is still good agreement of both methods. The DTG curve
shows that the process starts at the temperature of 565°C and wide of peak is of 135°C. The
maximum rate decarbonation is reached at the temperature of 656°C.

At temperatures higher than 900°C, the weight of sample is reduced by the thermal decom‐
position of fluorapatite. The extrapolated beginning of the defluorination process (Section 8.6)
was determined to be 1199°C. At the temperature of 1425°C, the defluorination process is still
not complete. The extrapolation of experimental data25 shows that the thermal decomposi‐
tion is most probably not complete before the temperature of melting point is reached
(Table 7 in Chapter 1).

3.2.5. Scanning electron microscopy and WDX analysis

The microphotographs from SEM analysis of break plane of investigated fluorapatite speci‐
men are shown in Fig. 20. The series of conchoidal fractures on the surface show brittle fracture
as further characteristic properties of apatite.

24 It was calculated as 100 × molar mass (molar weight) of CO2/molar mass of CaCO3.
25 Theoretical mass loss (3.77%) of fluorapatite was used to set the fixed value of parameter A2.
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Fig. 20. SEM image of the break plane of investigated fluorapatite specimen: 50× (a), 75× (b), 1 000× (c) and 5 000× (d).

Fig. 21. Typical results of WDX analysis of the fluorapatite specimen and simulation of electron–specimen interaction.
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The chemical composition of sample was determined by WDX analysis (Fig. 21). The aver‐
age results are introduced in Table 3.

Element Ca P O F Na

Weight [%] 38.64 ± 0.96 16.86 ± 0.47 40.55 ± 1.37 3.75 ± 0.08 0.23 ± 0.03

Ideal composition* 39.74 18.43 38.07 3.77 –

Atomic [%] 22.67 ± 0.85 12.81 ± 0.52 59.63 ± 1.31 4.65 ± 0.05 0.24 ± 0.03

Atomic ratio 4.91 ± 0.31 2.78 ± 0.18 12.77 ± 0.19 1 0.05 ± 0.01

Ideal composition26 5 3 12 1 –

Table 3. Average chemical composition of investigated specimen of fluorapatite.

The composition of fluorapatite (Ca5(PO4)3F → Ca5P3O12F) corresponds to the element ratio:
Ca:P:O:F = 5:3:12:1. The results of WDX analysis of investigated specimen (Table 3) are in good
agreement with the composition of ideal fluorapatite and fulfill all the criteria mentioned in
Section 1.4.

3.2.6. EBDS analysis

The fragments of investigated fluorapatite specimens (Fig. 22) were further investigated by
EBDS analysis.

Fig. 22. Sample stage (a) and microphotograph of fluorapatite fragments used for EBDS (b).

The Kikuchi patterns confirm the sample as single crystal of fluorapatite Fig. 23.

26. Resulting from the apatite formula (Section 1.4).
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Fig. 23. EBDS analysis of investigated fluorapatite specimen.

Fig. 24. The Kikuchi sphere showing the orientation of apatite crystal break plane.

The Kikuchi sphere in Fig. 24 shows the orientation of the sample that is in agreement with
indistinct cleavage of fluorapatite to the direction given by Miller-Bravais indices of {0001}.
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3.3. Thermodynamic properties of apatite

DROUET [170] gives the comprehensive review on experimental and predicted thermodynam‐
ic properties of phosphate apatites and oxyapatites, where O2− ion replaces 2X− in general
M10(PO4)6X2 formula of apatite phase and publishes the summary of available thermodynam‐
ic data including standard formation Gibbs energy (∆Gf°), ∆Hf° and S° at the temperature of
298 K (25°C) and the pressure of 1 bar (105 Pa), which are listed in the periodic table of
phosphate apatites in Fig. 25.

Regular lettering: averaged data from literature (see Table1)
ltalice lettering: best estimated values from Drouet (this paper)
Estimated relative error: within1%

From C. Drouet (2014)
Journal of Chemical Thermodynamics (JCT)
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Periodic Table of Phosphate Apatites M10(PO4)6X2 :
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Fig. 25. Comprehensive periodic table of phosphate apatites provided by C. DROUET [170].

The discrepancies between published thermodynamic data probably arise from variable
crystallinity states, polymorphs (either hexagonal or monoclinic, those not being systemati‐
cally identified in literature reports), nonstoichiometry, hydration state and/or the presence of
undetected impurities. When experimental-based data are not available (or are questionable),
the so-called prediction of thermodynamic properties of solids becomes relevant. For exam‐
ple, it may allow an understanding of some unsuccessful experiment aiming at obtaining a
desired hypothetical composition, or it may fill the gap between reported and needed
thermodynamic values for the evaluation of equilibria constants or for the establishment of
phase diagrams [170]. There are many methods developed for this purpose the summary of
which can be found in works [171],[172].

For double oxides, AxByOz in the system AO-BO was established the dependence [171]:

( ) ( ),f cc x y z fH A B O f HD = = Do o (15)

Identification, Characterization and Properties of Apatites
http://dx.doi.org/10.5772/62211

143



where ∆Hfcc°(AxByOz) is the standard enthalpy of the formation of double oxide AxByOz from
the component oxides AO and BO and ΔH̄ f  represents the sum of molar fraction enthalpies
of component oxides AO and BO according to the following relationship:

( ) ( )AO BOAO BOf f fH x H x HD = D + Do o o (16)

∆H°(AO) and ∆H°(BO) are the standard enthalpies of the formation of component oxides from
the elements, and XAO and XBO are the molar fractions of component oxides in the double oxide
AxByOz with a given composition [171].

The entropy of a solid compound is a function of masses of constituent atoms and the forces
acting between these atoms: the greater the mass and the lower the force, the larger the entropy.
The entropy of ionic solid will also depend upon the magnitude of the ionic charges. For
compounds, the specific heat of which has reached the DULONG and PETIT [173] value of 6 cal.
per gram-atom [174],[175],27 the mass is the principal factor, and in 1921, the authors gave an
equation for the contribution of each element to the entropy of the compound [176].

( ) 3298K lnat.wt. 0.942S R= -o (17)

For simple salts, such as alkali halides, the entropy may be estimated with fair accuracy as the
sum of the entropies of constituent elements as given by this equation. However, the forces in
solid salts are largely the ionic attractions, and the effect of the ionic radii upon the force
constants and the vibrational frequencies is appreciable; in general, the entropy of a large ion
is increased and the entropy of a small ion is decreased compared to the values given by Eq. 17.
[176].

3.3.1. Volume-based thermodynamic predictive method

The volume-based thermodynamic approach (VTB), the so-called first-order method, has
especially received much attention because the method is rather easy to use and has been
shown in some cases to lead to output data well related to experimental results [170].

27 One calorie is 4.184 J (joules). Gram-atom [gm] (and gram-molecule) was used to specify the amount of chemical
elements or compound. These units had a direct relation with “atomic weights” and “molecular weights,” which are in
fact relative masses. “Atomic weights” were originally referred to the atomic weight of oxygen, by general agreement
taken as 16. Although physicists separated the isotopes in a mass spectrometer and attributed the value of 16 to one of
the isotopes of oxygen, chemists attributed the same value to the (slightly variable) mixture of isotopes 16, 17, and 18,
which was for them naturally occurring element oxygen. Finally, an agreement between the International Union of Pure
and Applied Physics (IUPAP) and the International Union of Pure and Applied Chemistry (IUPAC) brought this duality
to an end in 1959/1960. Physicists and chemists have ever since agreed to assign the value 12, exactly, to the so-called
atomic weight of the isotope of carbon with the mass number 12 (carbon 12, 12C), correctly called the relative atomic mass
Ar(12C). The unified scale thus obtained gives the relative atomic and molecular masses, also known as the atomic and
molecular weights, respectively [174]. The law is also known as Dulong and Petit principle, which can be expressed in
modern unit as: atomic weigh × specific heat ≈ ∂(3kTNA)/∂T 3kNA ≈ cV ≈ 25 J·K−1mol−1, i.e. the atomic weight of solid element
multiplied by its molar specific heat is a constant [175].
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3.3.2. Additive estimation methods

Additive estimation or contributive methods are probably the simplest approach based on the
following [170],[177]:

1. Atomic and ionic contribution: the technique based on the method proposed by KELLOGG

[178]:

( ) ( ) ( )
( ) ( ) ( )

pm pm

pm 2 pm pm

,298.15 K e.g. :

BaCl ,298.15 K Ba 2 Cl
x y pmC A B x C A y C B

C C C

° °

° °

= +

= +

o

o (18)

The approach was later revised by KUBASCHEWSKI [179],[180]. These authors also pro‐
posed the method for the estimation of parameters A, B and C in the temperature
dependence of Cpm°(T)28:

( )pm 2

CC T A BT
T

= + +o (19)

( ) ( ) 23 5
pm

3

10 298.15 K 4.7 1.25 10 9.05
10 0.298

m m

m

T C n n T n
A

T

--

-

é ù+ - × -ë û=
-

o

(20)

( ) ( )25
pm

3

25.6 4.2 10 298.15 K
10 0.298

m

m

n n T C
B

T

- °

-

+ × -
=

-
(21)

4.2C n= - (22)

where n is the number of ions (contributions) in the formula unit. The described ap‐
proach is worthy for the substances with melting point temperatures (Tm) bellow 2300 K.
The data on cationic and anionic contributions to heat capacity at 298 K are published in
works [177], [179],[181],[182],[183].

For ionic compounds, the entropy can be calculated29 from additive data given in Table 4,
empirically found for cation and anion constituents of the compound (increments method
of LATIMER [184]) [172].

Element Cpm° Sm° Element Cpm° Sm° Element Cpm° Sm°

Contribution of cations Ag 25.76 57.6 Hf 25.52 53,0 Pr 24.27 61.1

28 The full equation for the temperature dependence is Cpm° = A + BT + C/T2 + DT2 + F/T1/2 [J·K−1·mol−1].
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Element Cpm° Sm° Element Cpm° Sm° Element Cpm° Sm°

[J·K−1·mol−1]

Al 19.66 23.4 Hg 25.10 59.4 Rb 26.36 59.2

As 25.10 45.2 Ho 23.01 56.0 Sb 23.85 58.9

Au – 58.5 In 24.27 55.0 Se 21.34 60.5

B – 23.5 Ir (23.85) 50.0 Si – 35.2

Ba 26.36 62.7 K 25.94 46.4 Sm 25.10 60.2

Be (9.62) 12.6 La (25.52) 62.3 Sn 23.43 58.2

Bi 26.78 65.0 Li 19.66 14.6 Sr 25.52 48.7

Ca 24.69 39.1 Lu – 51.5 Ta 23.01 53.8

Cd 23.01 50.7 Mg 19.66 23.4 Te – 69.0

Ce 23.43 61.9 Mn 23.43 43.8 Th 25.52 59.9

Co 28.03 34.1 Mo – 35.9 Ti 21.76 39.3

Cr 23.01 32.9 Na 25.94 37.2 Tl 27.61 72.1

29Table 4 [172] refers to the values of entropy contribution from work [176] where some data for PO4
3− ion are given in

brackets. In order to verify this value (for the charge of cation, i.e. Ca2+, the contribution of PO4
3− anion is 17 [calories] ×

4.184 = 71.13 J·K−1·mol−1, it is possible to calculate it from recommended thermodynamic data from Fig. 25. If (for example)
three apatite end members were used, it is possible to calculate the contribution to PO4

3− anion in hydroxylapatite,
fluorapatite, chlorapatite, and bromapatite as follows:

( ) ( ) ( ) 1 1HAP : 10 39.1 6 2 18.83 780 58.56 J K molx x - -× + + × = Þ = × ×

( ) ( ) ( ) 1 1FAP : 10 39.1 6 2 17.00 728 50.50 J K molx x - -× + + × = Þ = × ×

( ) ( ) ( ) 1 1ClAP : 10 39.1 6 2 31.80 835 63.40 J K molx x - -× + + × = Þ = × ×

( ) ( ) ( ) 1 1BrAP : 10 39.1 6 2 45.70 870 64.60 J K molx x - -× + + × = Þ = × ×

It is also possible to calculate it from the contribution data for Ca3(PO4)2 or Mg3(PO4)2, where S°(298.15K) = 235.998 and
189.2 J·K−1mol−1 (HSC software v.7.1), respectively:

( ) ( ) 1 13 39.1 2 235.998 59.35 J K molx x - -× + = Þ = × ×

( ) ( ) 1 13 23.40 2 189.2 59.5 J K molx x - -× + = Þ = × ×

Therefore, it is suggested to use average value from these calculations, i.e. PO4
3− (for M2+ cation) ≈ 59 J·K−1mol−1. It is then

possible that the application of contribution techniques to apatite leads to positive error in estimated thermodynamic
data.
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Element Cpm° Sm° Element Cpm° Sm° Element Cpm° Sm°

Cs 26.36 67.9 Nb 23.01 48.1 U 26.78 64.0

Cu 25.10 44.0 Nd 24.27 60.7 V 22.18 36.8

Fe 24.94 35.0 Ni (27.61) 35.1 Y (25.10) 50.4

Ga (20.92) 40.0 Os – 50.0 Zn 21.76 42.8

Gd 23.43 56.0 P 14.23 39.5 Zr 23.85 37.2

Ge 20.08 49.8 Pb 26.78 72.2 – – –

Anion Cpm° Sm° for oxidation charge of cation

I II III IV

Contribution of anions
J·K−1·mol−1]

H− 8.79 – – – –

F− 22.80 20.8 17.0 18.3 20.4

Cl− 24.69 36.3 31.8 30.3 34.4

Br− 25.94 50.3 45.7 44.7 50.8

I− 26.36 58.3 53.5 54.8 53.9

O2− 18.41 4.5 2.9 2.4 3.2

S2− 24.48 20.6 18.4 20.1 17.0

Se2− 26.78 35.5 32.8 34.1 30.9

Te2− 27.20 38.1 41.9 44.1 40.1

OH− 30.96 (20.9) (18.8) (12.6) –

SO4
2− 76.57 80.0 69.5 64.2 (41.8)

SO3
2− – 42.9 – – –

NO3
− 64.43 86.0 74.0 – –

NO2
− – 70.6 – – –

CO3
2− 58.58 62.4 46.6 – –

CrO4
2− 90.76 – – – –

MoO4
2− 90.37 – – – –

WO4
2− 97.49 – – – –

SiO3
2− 59.3 60.7 43.9 29.3 –

SiO4
4− 73.5 – – – –

PO4
3− 73.90 (100.4) (71.1) (50.2) –

UO4
2− 107.11 – – – –

Table 4. The contribution of cations and anions to Cpm° and Sm° (298.15 K) [172],[180].
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2. Structural and simple oxide contribution: the value of Cpm°(298.15 K) or the parame‐
ters of the temperature dependence in Eq. 19 can be calculated from the contribution of
constituent oxides (Neumann–Kopp rule, NKR):

( ) ( ) ( ) ( ) ( ) ( )2, e.g., SrO CuO SrCuOx yx A s yB s A B s s s s+ = + = (23)

( ) ( ) ( )
( ) ( ) ( )

pm pm pm

pm 2 pm pm

,298.15K ,298.15K ,298.15K e.g.,

SrCuO ,298.15K SrO,298.15K CuO,298.15K
x yC A B x C A y C B

C C C

° °

° °

= +

= +

o

o (24)

or from the structural contribution [179].

3. Prediction method for homological series and groups of chemically related substan‐
ces (oxides): based on the approach of ALDABERGENOV et al [185] and GOSPODINOV and MIHOV

[186]. The molar heat capacity in homological series as Am(BxOy)n, is a linear function of
n, i.e. the coefficient which specifies the number of complex anions (BxOy)z− in the formula
unit. For example, for the series of alkaline aluminate, it can be written as

2 2AlO AlO
2 3

2 2 4 3 6AlO Al O Al O
+ +

-® ® ¼
� �

� � (25)

Since each higher anion is formed by the addition of primary ion (AlO2)− unit, higher anion
is considered to form n-multiples of primary ion, the value of which is determined from
the available experimental data for KAlO2, LiAlO2 and NaAlO2 and from ions contribu‐
tion for cation K+, Li+ and Na+ obtained from their standard entropies in an infinitely
diluted solution [179].

Apatite phase may be treated in the first approximation as the sum of contributions arising
from the constitution of binary oxides/compounds. For example, in the case of fluorapatite
(Ca10(PO4)6F2), a decomposition into contribution of 9CaO + 3P2O5 + CaF2 could be consid‐
ered. It can be generalized to any end-member in the form 9CaO + 3P2O5 + XF2 [170].

3.4. Dissolution of apatites

At the fundamental level, the reactions between solids and liquids involve a coupled se‐
quence of mass transport, adsorption/desorption phenomena, heterogeneous reactions,
chemical transformations of intermediates, etc., the identification, separation and kinetic
quantification of which are all necessary if the mechanism of the process is to be fully
understood and described [111],[187]. It was generally accepted that the process during the
dissolution of lattice ions includes the following [187],[188]:

a. Detachment of species (ion) from a kink site
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b. Surface diffusion from the crystal steps

c. Desorption from the surface

d. Diffusion into the bulk solution

The dissolution of apatites under steady-state conditions, in pure water or in aqueous acidic
media, includes the following simultaneous steps [187],[189]:

i. Diffusion of chemical reagents (H+) from bulk solution to the solid/liquid interface.
In the case of acidic dissolution, the diffusion of acid anions (An−) must be taken into
account as well.

ii. Adsorption of H+ onto the surface of apatite.

iii. Chemical transformation of the surface.

iv. Desorption of ions of fluoride, calcium and phosphate from the crystal surface.

v. Adsorption of chemicals from solution back onto the surface of apatite.

These steps are likely to be more complicated, e.g. the processes I and V include chemical
transformation of ionic species during diffusion because the pH of solution is known to depend
on the distance from the solid/liquid interface. In other words, the value of pH is higher near
to the surface of apatite and decreases with increasing distance from the surface.

When apatite gets in contact with undersaturated solution, the dissolution states from 1 to 5
mentioned above take place. In order to provide detailed description of the process, the
following assumption must be introduced [187]:

a. Stoichiometric apatite is dissolved, and neither nonstoichiometric layer nor other ions
except for calcium, phosphate, hydroxide and fluoride are initially present in the crystal
lattice, whereas the volume and surface defects (dislocations and dislocations outlets,
respectively) might be present and, when present, they are distributed randomly.

b. Except for the presence of dislocation outlets, the initial surface of apatite is perfect
(molecularly sooth). Otherwise, each imperfection might be the dissolution nucleus.

c. Despite the limitations and drawbacks discussed above, all models are correct and
complementary to each other.

d. In some cases, anions of acid might have an influence on apatite dissolution due to the
specific affinity (e.g. citrate) by means of formation of insoluble compounds (e.g. sulfate).
That is the reason why anions are not specified either here or below. It is just assumed
that the dissolution of apatite happens in acid HnA, where An− is an anion.

e. The hydration effect on all ions and molecules involved as well as that on crystal surface
of apatite is omitted for simplicity.

f. All crystal faces of solid apatite are equal and have similar ionic arrangement. There is not
any considered specific influence of different crystal faces on the dissolution mechanism.
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Since the dissolution models have limitations and drawbacks, none of them was able to
describe the dissolution of apatite in general. Furthermore, the most of models were elaborat‐
ed for the apatite dissolution in slightly acidic or nearly neutral solution (4 < pH < 8), for
relatively small values of solution undersaturation and for the temperatures in the range
from 25°C to 37°C, nothing is known about their validity for the dissolution of apatite in strong
inorganic acid such as HCl, HNO3 and H2SO4 and at temperatures above 70°C [187].

The classification of congruent (stoichiometric)/incongruent (nonstoichiometric) dissolution
is based on direct measurements of either ionic concentrations in the solution or the surface
composition of apatite during the dissolution [187]:

1. Congruent dissolution: ions in solids are dissolved simultaneously with the dissolution
rates proportional to their molar concentrations, e.g. for Ca5(PO4)3Z it should be written
[190],[191]:

[ ]
[ ] [ ]0

Ca
0

P P
t

t

R- =
-

(26)

where [Ca]t, [P]t and [P]0 denotes actual (at time t) concentration of calcium and phos‐
phorus in the solution and initial concentration of phosphorus (at time t = 0), respective‐
ly. The value of R is given by ideal stoichiometric ration of Ca:P = 5/3 in the formula of
apatite (Table 7 in Chapter 1).

2. Incongruent dissolution: the dissolution rate is different for each ion. That leads to the
formation of surface layer with chemical composition different from the bulk of solid
apatite phase.

The behavior of surface of apatite during the dissolution according to DOROZHKIN [112] is shown
in Fig. 26. Fluorine from fluorapatite or hydroxyl from hydroxyapatite dissolves most probably
as the first. This can be explained by their position in the channels of crystal lattice. The
dissolution starts with replacements of fluorine for water. Proton(s), chemisorbed on the
nearest phosphate group(s), most probably catalyze this process. Local positive charge on
apatite is formed as the result (b). Obtained local positive charge is removed by the detach‐
ment of one of the nearest calcium cations: Ca(2) is more likely to be detached first (c) since
Ca(1) is located rather far from the channel. Acidic anions present in the solution most probably
participate in this process. Later, proton(s) from the bulk solution replace other calcium
cation(s) around the nearest phosphate group. Very thin surface layer of acidic calcium
phosphates is formed as the result [112].
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Fig. 26. Schematic illustration of the surface dissolution mechanism of apatite at the nanolevel: (a) part of the initial
surface of apatite; (b) replacement of one fluorine (or hydroxyl) anion with water molecule resulting in local positive
charge formation; (c) removal of one of the nearest calcium cations; (d) sorption of next proton; (e) removal of another
calcium cation with simultaneous formation of acidic calcium phosphate; (f) detachment of one phosphate anion to‐
gether (or simultaneously) with third calcium cation. A jump-wise shift of the dissolution step occurs simultaneously
at stage f. (●) Fluorine for fluorapatite or hydroxyl for hydroxylapatite; (○) Ca(II) on the first plane, (○) Ca(II) on the
back plane and Ca(I) on the back plane; (*(+)) molecule of water and local positive charge; (∆) PO4

3− tetrahedra; H+∆H+

and ∆H+ represent the surface tetrahedral anions of H2PO4
− and HPO4

2−, respectively. Chemisorbed protons, water mol‐
ecules and acidic anions are omitted for simplicity. Note that crystal structure of apatite is shown very schematically: it
should be hexagonal, while here it looks more or less like cubic [112].

When all (or almost all) the nearest calcium cations have been replaced with protons accord‐
ing to the reactions [112]:

2
4 2 4CaHPO H Ca H PO+ + -+ ® + (27)

2
4 3 4CaHPO 2H Ca H PO+ ++ ® + (28)

phosphate anions (H2PO4
−, CaH2PO4

+, or H3PO4) also detach (f). As the result, the dissolution
step moves forward jump-wise over a distance equal to the dimension of phosphate anion, of
approximately 3 Å. The detachment of phosphate anions and calcium cations results in the
formation of hole. The dimension of this hole should be close to the lattice parameters of apatite.
Most probably, it is a dissolution nucleus on which the polynuclear dissolution mechanism is
based [112].
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3.4.1. Dissolution of fluorapatite

The adsorption of H+ onto the surface of apatite (Fig. 26(b)–(d)) resulted in the aqueous pH
increasing from 5.60 to 8.45 within the first hour of dissolution. Ions of H+ were adsorbed onto
oxygen ions of phosphate groups as well as onto ions of fluoride [187],[191].

The reaction of stoichiometric (congruent) dissolution of pure stoichiometric apatite can be
expressed by the reaction30 [112],[187],[192]:

( ) 2 3
5 4 43

Ca PO Z 5 Ca 3 PO Z+ - -® + + (29)

where Z = OH− and F−. Assuming the unit activity of the solid phase (aCa5(PO4)3Z = 1), the
equilibrium constant of dissolution (K) can be expressed via the solubility product or ion
activity product (IAP) of apatite31 [187],[193],[194],[195],[196]:

[ ]2 3
4

5 3
Ca PO Z

IAP eq.K a a a+= = � � (30)

where ai denotes the thermodynamic activity of aqueous species. The standard Gibbs (free)
energy of the reaction related to the standard temperature (298.15 K) and pressure
(0.101 MPa) is given by the formula32:

30 Reaction Eq. 7 and Eq. 12 are widely used for the description of dissolution process of apatite [112] using stoichiometry
pertinent single or double apatite formula and Z = F or OH.
31 Out of equilibrium state, IAP is not equal to K (see the discussion to Eq. 20). Double formula of apatite is assumed then
with respect to the apatite stoichiometry; the law for ionic activity product has the following form:
Ksp = a(Ca2+)

10 a(PO4
3−)

6 a(Z−)
2.

For example, in hydroxylapatite, where Z− = OH−, the activity of OH− anion can be expressed by using ionic product of
water (25°C): Kw = a(H+) a(OH−) = 1·10−14 (mol·dm−3)2 and then a(OH−) = Kw/ a(H+). Since pH = -log [H+] and pOH = -log [OH−] the
[H+] = 10−pH and [OH−] = 10−pOH and pKw = pH + pOH = 14:
Ksp = a(Ca2+)

10 a(PO4
3−)

6 10−2pOH = a(Ca2+)
10 a(PO4

3−)
6 10−2(14−pH) = a(Ca2+)

10 a(PO4
3−)

6 Kw
2102pH.

The activity of ionic species is the product of ion molar concentration ([196]) and ion activity coefficient, e.g. (a(Ca2+) =
([Ca2+] / [Ca2+]°) γ(Ca

2+
), where the standard state [Ca2+]° = 1 mol·dm−3 can be chosen), which can be calculated, e.g. the

example via Debye–Hückel, extended Debye–Hückel, or modified Davies equation (in dependence on ionic strength):
log γi = -AZi

2 √I (I < 10−3),
log γi = [-AZi

2 √I / (1+B·αi √I)] (10−3 < I < 0.1),
or log γi = [-AZi

2 √I / (1+B·αi √I)] + 0.3I (I > 0.1), respectively.
A and B are the temperature-dependent constants, Zi is the charge number of ith ion, αi is the radius of hydrated ith ion,
and I is the number of ions: I = ½ ∑ ([Ci]Zi

2).
The solubility product defined as the product of concentration of compound constituents ions, which are released during
the dissociation is often used: Ksp = [Ca2+]10 [PO4

3−]6 [Z−]2.
32 ∆rG° = -RT ln K (in the equilibrium state) and ln K = ln 10 log K. From that, it should be derived that ∆rG° =
-8.314·298.15 ln 10 log K = -5708 log K [J·mol−1], where ln 10 ≈ 2.303. Since log10K = log K = lg K, it can also be written as
∆rG° = -5708 lg K.

Apatites and their Synthetic Analogues - Synthesis, Structure, Properties and Applications152



15.707 log K kJ molrG
-é ùD = - ×ë û

o (31)

For reaction 29, the following equation33 can be derived [187]:

( ) ( ) ( )
( )( )

2 3
4

5 4 3

5 Ca 3 PO Z

Ca PO Z

r f f f

f

G G G G

G

+ - -D = D + D + D

-D

o o o o

o
(32)

Eq. 32 can be further treated as follows:

( )( ) ( ) ( )
( )

2 3
5 4 43

Ca PO Z 5 Ca 3 PO

Z

f f f

f r

G G G

G G

+ -

-

D = D + D

+D - D

o o o

o o
(33)

HAROUIYA et al [197] assumes that the dissolution of apatite in the temperature range from
5°C to 50°C, and the pH from 1 to 6 can be expressed by the following formula:

( ) 2 2
5 4 43

Ca PO 3 H 5 Ca 3 HPOF F+ + - -+ ® + + (34)

With regard to assumed standard state, the equilibrium constant of reaction (Eq. 34) can be
written as34

2 2
4

5 3 3
Ca HPO F H

K a a a a+ +
-¢ = � � (35)

The chemical affinity35 (A) of Eq. 34 is given by the law:

2 2
4

3
H

5 3
Ca HPO F

ln
K a

A RT
a a a

+

+

æ ö
ç ÷= -
ç
è

¢
÷
ø� �

(36)

In the closed-system experiment, the dissolution rates are generally obtained from the slope
of concentration of reactive solution versus the time:

33 ∆rG° = ∑νi ∆G°f,i, where νi denotes the stoichiometric coefficient of given species and ∆G°f,i its standard enthalpy of
formation.
34 Since the saturation of solution with respect to Ca5(PO4)3Z means that K′ = 0 (equilibrium state), it can be derived that
a(Ca2+)

5 a(PO4
3−)

3 a(Z−) – K´a(H+)
3 = 0 and then ∆rG° = -RT ln (a(Ca2+)

5 a(PO4
3−)

3 a(Z−) / K´a(H+)
3). Since A = -∆rG° (please see note 35), A =

-RT ln (K´a(H+)
3 / a(Ca2+)

5 a(PO4
3−)

3 a(Z−)).
35 The relationship between the reaction Gibbs energy and chemical affinity: A = -∆rG° was introduced by T. DE DONDER.
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c Mr
t sn

¶
=
¶ (37)

where r refers to the dissolution rate of apatite, ci denotes the concentration of ith element, t is
the time, Mr designates the mass of fluid in the reactor, νI is the stoichiometric coefficient and
s designates the total surface area of sample in the reactor. The slope of the plot may not be
constant and may increase or decrease with time from the following reasons [195],[197]:

1. Changes in the reactive fluid volume, which may occur due to the evaporation of solvent
or regular sampling of reactive fluid

2. Nonzero order reaction kinetics

3. Approach to equilibrium, where the dissolution rate decreases and reaches zero at
equilibrium. This approach is described by the transition state theory as follows:

1 exp Ar r
RTs+

æ öé ù-
= -ç ÷ê úç ÷ë ûè ø

(38)

The symbol r+ symbolizes the far from equilibrium dissolution rate, which may depend on the
composition of solution, A is the affinity of reaction of dissolution, σ stands for the Temkin’s
average stoichiometric number equal to the ration of rate of destruction of the activated or
precursor complex relative to overall rate, R designates universal gas constant and T is the
temperature on the absolute scale. Overall rate (r) is equal to forward rate (r+) when A >> σ RT.
As one of the approaches of equilibrium, overall rates gradually decrease and reach zero at
equilibrium where A = 0. The value of r is within 10% of r+ when A/σ RT > 2.3 which is equivalent
to A > 1.36 σ kcal·mol−1. It indicates that the parameter σ plays a crucial role in the variation of
dissolution rates at near to equilibrium conditions [195],[197].

The value of r+ depends on the pH according to the following equation [197],[198]:

pH nr k -
+ = (39)

where k refers to the tare constant and n stands for the reaction order determined as the slope
of linear dependence of ln r+ on pH. The dependence of k on the temperature is given by the
Arrhenius law:

A
A exp

RT
Ek A -æ ö= ç ÷

è ø
(40)
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where AA is the preexponential (frequency) factor and EA is the activation energy of the process.
The combination of Eqs. 38, 39 and 40 leads to the equation for the dissolution rate as
follows [197]:

( )A AH
exp / RT 1 exp

RT
n Ar A a E

s
+

æ öé ù-
= -ç ÷ê úç ÷ë ûè ø

(41)

For acidic dissolution of calcium fluorapatite, ions of F were found to dissolve faster (or prior
to) when compared to calcium and phosphate. A similar phenomenon of prior (or faster)
dissolution of calcium when compared to that of phosphate was also found [187],[199]. The
release of calcium and phosphate ions from the surface of apatite seems to be affected by the
presence of salts, such as Na2SO4, CH3COONa, or NaCl, in the solution. The concentration of
phosphate in the solution increases in the following order [187]:

2 4 3Na SO CH COON NaC1.a> >

On the contrary, the concentration of calcium ions decreases in the same order.

The undersaturation (US) and relative undersaturation (USr) of apatite solvent dissolved upon
is defined as follows36 [193]:

1/18

r
IAPUS 1 US 1
K

æ ö= - = - ç ÷
è ø

(42)

where K is the equilibrium constant of reaction 29 and IAP is the ion activity product. The law
is written with regard to the stoichiometry of double formula of apatite, where ∑νi in Eq. 30
is 2 × (5 + 3 + 1) = 18. The value of IAP/K ratio is as follows:

a. IAP/K > 1, the reaction proceeds to the left (precipitation, supersaturated solution)

b. IAP/K = 1, the reaction is in the equilibrium state (saturated solution)

c. IAP/K < 1, the reaction proceeds to the right (dissolution, undersaturated solution)

This ration is also used to calculate the saturation index (SI) for the reaction of dissolution [200]:

IAPSI log
K

æ ö= ç ÷
è ø

(43)

Depending on the saturation index, the following states of solutions are recognized:

36 Since the system is not in the equilibrium state IAP ≠ K.
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i. SI < 0 undersaturation

ii. SI = 0 saturation, i.e. mineral37 or salt is in equilibrium with solution

iii. SI > 0 supersaturation

3.4.2. Classification of the dissolution models

The models, which are usually applied for the description of dissolution of apatites, include
the following [187]:

1. Diffusion and kinetically controlled models: the dissolution of apatite was found to be
the diffusion (transport) controlled in some cases [201],[202], kinetically (surface)
controlled in other ones [203],[204], and even intermediate [205], i.e. both diffusion and
kinetically controlled. Both models usually operate with the so-called driving force which
means either the concentration gradient within the Nernst diffusion layer (the diffusion
controlled model) or the gradient of ionic chemical potentials between the apatite crystal
surface and bulk solution (the kinetically controlled model). Moreover, the results
obtained on these models are valid only within the experimental conditions studied; no
extrapolation can be made beyond the tested ranges. For example, after, let´s say, a slight
agitation decrease or temperature increase, an initially kinetically controlled dissolution
might be controlled by the diffusion. Thus, high sensitivity to applied experimental
conditions appears to be the main drawback of these models [187].

2. Polynuclear model: is based on the study of dissolution and kinetics of growth of apatite
under constant composition conditions [191],[193],[206],[207],[208]. Polydispersed
samples of apatite were put into a stirred undersaturated (for dissolution experiments) or
supersaturated (for those on crystal growth) solutions, and the pH of solution and the
amount of added chemicals (an acid for the dissolution experiments and a base for those
on crystal growth) were permanently recorded as the functions of time. The results
obtained were plotted versus either undersaturation or supersaturation values: straight
lines were obtained in the specific logarithmic coordinates typical for this model.
According to the model, the dissolution nuclei, i.e., the collections of vacant sites for Ca2+,
PO4

3−, and OH− ions, are formed on the crystal surface of apatite and spread over the
surface with a definite lateral rate.

The nucleation rate is assumed as a function of mean ion activity. The lateral growth rate
of nuclei is assumed proportional to the difference between total concentration of calcium
ions in the saturated solution and in a solution, while the rate constant is related to the
frequency for calcium ions to make a diffusion jump into a kink and, simultaneously,
partly dehydrate. Recent investigation reveals that the rate-determining step was not the
diffusion but two-dimensional surface nucleation [187].

3. Self-inhibition model: assumes the formation of self-inhibition calcium-rich layer on the
surface of apatite during the dissolution. According to this model, apatite is dissolved by

37 The ranges of Si near zero are generally considered to be within the equilibrium zone for the mineral. The ranges of SI
= 0 ± 0.5 and 0 ± (5%) (lg Kmineral) were used in various studies [200].
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ionic detachment of calcium and phosphate ions from the surface to a solution. When an
initial portion of apatite has been dissolved, some amount of calcium cations (probably,
in connection with anionic counter ions) is returned from the solution and adsorbed back
onto the surface of apatite. The latter process results in the formation of a semipermea‐
ble ionic membrane, which is formed from positively charged layer containing strongly
adsorbed calcium ions, i.e. calcium-rich layer [187], [201],[209],[210],[211].

4. Congruent and incongruent dissolution model: was already described above.

5. Chemical model: This model was developed from the self-evident supposition that it
would be highly unlikely if apatite were dissolved by the detachment of “single mole‐
cules” equal to the unit cells and consisting of 18 ions. Moreover, in the crystal lattice,
practically all ions are shared with neighboring unit cells and often cannot be attributed
to given “single molecule.” Based on the experimental results obtained on one hand, and
on analysis of the data found in references on the other hand, a sequence of four succes‐
sive chemical reactions was proposed to describe the process of apatite dissolution [112],
[187],[212],[213]:

( ) ( ) ( ) ( )5 4 2 5 4 2 23 3
Ca PO F,OH H O H Ca PO H O HF, H O+ ++ + ® + (44)

( ) ( ) ( ) 2
5 4 2 3 4 23 2

2 Ca PO H O 3 Ca PO Ca 2 H O+ +® + + (45)

( ) 2
3 4 42

Ca PO 2H Ca 2 CaHPO+ ++ ® + (46)

2
4 2 4CaHPO H Ca H PO+ ++ ® + � (47)

Eqs. 44–47 can be used instead well-known net reactions [187]:

( ) ( ) 2
5 4 2 43

2

Ca PO F,OH H O 7H 5 Ca 3 HPO
HF, H O

+ ++ + ® +
+

�

(48)

( ) ( ) 2 3
5 4 43

Ca PO F,OH 5 Ca 3 PO F, OH+ - -® + + (49)

In principle, the dissolution process could also happen according to reaction 49 followed by
chemical interaction in the solution among ions of apatite and acid near the crystal surface
[214]:
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2 3 2
4 2 4

2

5 Ca 3 PO F ,OH 7 H 5 Ca 3 H PO
HF, H O

+ - - - + + -+ + + ® +
+

(50)

1. Etch pit formation: the process of etch pit formation describes the dissolution of apatite
crystals containing structural defects (dislocations and inclusions). The presence of
dislocations accelerates the dissolution because they give rise to continuous steps on the
surface and the strain energy, which they cause in crystals, favors the etch pit formation.
The pits appear at the dislocation outlets; they are 0.1–10 pm in size (the dimensions
depend on the dissolution kinetics and dissolution time: they increase when the dissolu‐
tion progresses) and usually have a hexagonal shape according to the crystal symmetry
P63/M of pure apatite [187],[215],[216],[217],[218],[219].

2. Ion exchange model: based on a supposition about the adsorption of protons and anions
of acid (e.g. citrate anions) from a solution onto the surface of apatite and removing of
ions of calcium and phosphate into the solution instead [187].

3. Hydrogen catalytic model: based on a reasonable suggestion about the adsorption of
protons onto negatively charged oxygen ions of phosphate groups of apatite. The sorption
of protons results in the transformation of surface PO4

3− groups into HPO4
2− and catalyz‐

es the dissolution process [187].

3.4.3 Methods for the evaluation of reactivity of phosphate rocks

Chemical methods are used for the evaluation of reactivity of different phosphate rocks from
which the fertilizers are manufactured for their possible direct application as fertilizers via
empirical solubility test. Citric acid, formic acid, neutral ammonium citrate,38 and alkaline
ammonium citrate are used as solvents for the extraction of P2O5. The latter is used mainly for
the evaluation of calcined aluminum phosphates. Most of these reagents were not originally
intended to evaluate the reactivity of phosphate rocks. For instance, neutral and alkaline
ammonium citrate solutions were originally intended to separate chemical reaction products
in superphosphate and other fertilizers from unreacted rock on the assumption that unreact‐
ed rock was insoluble in these reagents. The citric acid extraction was developed to evaluate
basic slag, a popular fertilizer material in European countries. The formic acid extraction was
developed specifically for phosphate rocks [220].

Nearly all extraction methods use the ratio of sample weight to extraction volume 1 g:100 ml.
39 The extraction time usually ranges from 30 min to 1 hour. The temperature and the agita‐
tion during extraction test may be specified. For example, the AOAC method uses neutral
ammonium citrate40 of specified concentration (1 g of sample and 100 ml of solution) with the
extraction time of 30 min at 65°C. The Wagner method uses 2% solution of citric acid, the

38 Neutral ammonium citrate is prepared by dissolving required amount of citric acid and neutralizing it with ammonium
hydroxide. The pH of the reagent is adjusted to neutral [221].
39 The amount of used solution is also expressed in the name of the method, e.g. 100 ml method or 150 ml method [222].
40 The neutral ammonium citrate test was used as the official method in the United States, and the test by acidic acid was
developed for the comparison [222].
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extraction time of 30 min and the temperature of 17.5°C [220],[221],[222],[223]. Unavailable
phosphoric acid is usually expressed as the portion of fertilizer, which is insoluble in neutral
ammonium citrate [769]. Phosphate removed during the neutral ammonium test is termed as
citrate-soluble. The sum of water-soluble and citrate-soluble phosphate is termed as available [224].

Fused magnesium phosphate (FMP) is highly soluble in 2% citric acid41 but is less soluble in
neutral citrate, while calcined defluorinated phosphate (CDP) and Thomas slag (Thomas
phosphate) are fairly soluble in both citric acid and citrate. Actually, FMP dissolves fairly
rapidly in neutral citrate at the beginning, but the dissolution is hindered by gelatinous silica,
which forms on the surface of the FMP particles. This layer can be broken by vigorous
stirring [222].

One disadvantage of all these methods is that the percentage of leached P2O5 depends on the
grade of the rock, especially when the rock contains inert gangue minerals such as silica. In
order to eliminate the adventitious effect of grade, the concept of absolute citrate solubility
index (ASC) was developed [225],[226]:

[ ]
[ ]

2 5

2 5

AOAC citrate solubility P O %
ASC

Theoretical P O in apatite %
= (51)

The percentage of dissolved P2O5 is expressed as the gangue-free apatite [220]. If rocks contain
free calcium of magnesium carbonate, these carbonates should be removed by the extraction
with a suitable reagent before carrying out the test in order to obtain correct indication of
reactivity [227].

It was also found that the length of the a-axis in the apatite unit cell (a0) is statistically related
to the ASC according to the relationship [225]:

( )0ASC 421.4 9.369 a= - (52)

Author details

Petr Ptáček

Brno University of Technology, Czech Republic

41 It is believed that weak citric acid solution imitates the condition near the plant roots [222].
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