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Abstract

Three-dimensional (3-D) vibration analysis of thick functionally graded plates and cylin‐
drical shells with arbitrary boundary conditions is presented in this chapter. The effective
material properties of functionally graded structures vary continuously in the thickness
direction according to the simple power-law distributions in terms of volume fraction of
constituents and are estimated by Voigt’s rule of mixture. By using the artificial spring
boundary technique, the general boundary conditions can be obtained by setting proper
spring stiffness. All displacements of the functionally graded plates and shells are ex‐
panded in the form of the linear superposition of standard 3-D cosine series and several
supplementary functions, which are introduced to remove potential discontinuity prob‐
lems with the original displacements along the edge. The Rayleigh-Ritz procedure is used
to yield the accurate solutions. The convergence, accuracy and reliability of the current
formulation are verified by numerical examples and by comparing the current results
with those in published literature. Furthermore, the influence of the geometrical parame‐
ters and elastic foundation on the frequencies of rectangular plates and cylindrical shells
is investigated.

Keywords: Three-dimensional elasticity theory, functional graded materials, plate and
cylindrical shell, general boundary conditions

1. Introduction

Functionally graded materials (FGMs) are a new type of composite materials with smooth and
continuous variation in material properties in desired directions. This is achieved by gradually
varying the volume fraction of the constituent materials. Such materials possess various
advantages over conventional composite laminates, such as smaller stress concentration,
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higher fracture toughness and improved residual stress distribution. Recently, the FGMs have
been used to build plate and shell components in various engineering applications, especially
mechanical, aerospace, marine and civil engineering. In some cases, those FGM plates and
shells are frequently subjected to dynamic loads, which leads to the vibration behaviours,
which may cause fatigue damage and result in severe reduction in the strength and stability
of the whole structures. Therefore, the vibration analysis of the FGM plates and shells is
required and it is important to provide insight into dynamic behaviours and optimal design.

It is well known that vibration problems deal with two main concepts: plate and shell theories
and computational approaches. The development of plate and shell theories has been subjected
to significant research interest for many years, and many plate and shell theories have been
proposed and developed. The main plate and shell theories can be classified into two catego‐
ries: two-dimensional (2-D) plate and shell theories, including classic plate and shell theory
(CPT) [1–4], the first-order shear deformation theory (FSDT) [5–16], and the higher order shear
deformation theory (HSDT) [17–26], and three-dimensional (3-D) theory of elasticity [27–35].
However, all 2-D theories are approximate because they were developed based on certain
kinematic assumptions that result in relatively simple expression and derivation of solutions.
Actually, 3-D elasticity theory, which does not rely on any hypotheses about the distribution
field of deformations and stress, not only provides realistic results but also allows for further
physical insight. More attempts have been made for 3-D vibration analysis of plates and shells
in the recent decades. Furthermore, many analytical, semi-analytical and numerical compu‐
tational methods have also been developed, such as Ritz method, state-space method,
differential quadrature method (DQM), Galerkin method, meshless method, finite element
method (FEM) and discrete singular convolution (DSC) approach.

However, a close scrutiny of the literature in this field reveals that most investigations were
carried out based on 2-D plate and shell theories, and a general 3-D solution for this subject
seems to be limited. Moreover, the review also reveals that most of previous research efforts
were restricted to vibration problems of FGM plates and shells with limited sets of classical
boundary conditions. It is well recognized that there exist various possible boundary restraint
cases for plates and shells in practical assembly and engineering applications. Consequently,
it is necessary and of great significance to develop a unified, efficient and accurate method that
is capable of universally dealing with FGM plates and shells with general boundary conditions.

In view of these apparent voids, the aim of this chapter is to develop an accurate semi-analysis
method that is capable of dealing with vibrations of FGM plates and shells with general
boundary conditions, including classical boundaries, elastic supports and their combinations
and to provide a summary of known 3-D results of plates and shells with general boundary
conditions, which may serve as benchmark solutions for future researches in this field.

In this chapter, 3-D vibration analysis of thick functionally graded plates and cylindrical shells
with arbitrary elastic restraints is presented. The effective material properties of functionally
graded structures vary continuously in the thickness direction according to the simple power-
law distributions in terms of volume fraction of constituents and are estimated by Voigt’s rule
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of mixture. By using the artificial spring boundary technique, the general boundary conditions
can be obtained by setting proper spring stiffness. All displacements of the functionally graded
plates and shells are expanded in the form of the linear superposition of standard 3-D cosine
series and several supplementary functions, which are introduced to remove potential
discontinuity problems with the original displacements along the edge. The RayleighRitz
procedure is used to yield the accurate solutions.

2. Theoretical formulations

2.1. Preliminaries

A differential element of a shell with uniform thickness h is considered, as shown in Fig. 1. An
orthogonal curvilinear coordinate system composed of coordinates α, β and z coordinates is
located on the bottom surface. The u, v and w denote the displacement components of an
arbitrary point in the α, β and z directions, respectively. Within the context of 3-D elasticity
theory, the linear strain-displacement relations can be expressed as follows [36]:
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where εα, εβ, εz, εβz, εαz and εαβ are the normal and shear strain components, and h α, h β and h z

are Lame coefficients.

β,v

hα,u

Lα
Lβz,w

Figure 1. Geometry of differential element of shells


 




 

  
        


 




 

           

 
  

 


   

  
        

    



 

        

          

Figure 2. Definition of coordinate systems: (a) plate and (b) cylindrical shell.

In engineering applications, plates and shells are the basic structural elements. For the sake of
brevity, this chapter will be confined to rectangular plates and cylindrical shells. According to
Fig. 2, the coordinate systems and Lame coefficients are given as follows [36]: for rectangular
plates, α = x,  β = y,  z = z,  h α =h β =h γ =1 and for cylindrical shells,
α = x,  β =θ,  z = r ,  h α =h γ =1,  h β = Ri + r . The explicit expressions of strains can be obtained by
substituting above quantities into Eqs. (1–6). The 3-D linear constitutive relations for the plates
and shells can be written as follows:
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(7)

where Qij (i, j = 1–6) are the elastic coefficients and are given as:
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where E(r) and μ(r) are the effective Young’s modulus and Poisson’s ratio of a FGMs, respec‐
tively. In this chapter, it is assumed that the FGMs are manufactured by ceramic and metallic
constituents, and the effective material properties of FGMs can be expressed as follows [37]:

( ) ( )
( ) ( )
( ) ( )

c m c m

c m c m

c m c m

E r E E V E
r V
r V

m m m m
r r r r

= - +
= - +
= - +

(9)

where E, μ, ρ and V are Young’s modulus, Poisson’s ratio, density and volume fraction,
respectively. The subscripts c and m donate the ceramic and metallic constituents, respectively.
The ceramic volume fraction follows simple power-law distribution:

(0 ),( ) 1 ( )p p
c m

z zV V z h
h h

= = - £ £ (10)

where z is the thickness coordinate, and p is the power-law index that takes only positive
values. The value of p equal to zero represents a fully ceramic plate, whereas infinite p indicates
a fully metallic plate.

In this work, the general boundary conditions can be described in terms of three groups of
springs (ku, kv, kw). Taking edge α = constant, for example, the boundary conditions can be
given as follows:

1 1 1, ,u v w zk u k v k wa a a
aa ab as s s= = = (11)

2 2 2, ,u v w zk u k v k wa a a
aa ab as s s= = = (12)

where the superscripts α1 and α2 denote the edges of α = 0 and α = L1, respectively. For the
rectangular plates, the similar conditions exist for the edges of β = constant. The classical
boundary conditions and elastic restrains can be obtained by easily changing the values of
boundary spring.
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2.2. Energy functional

The energy functional of plates or shells can be expressed as follows:

T U PP = - - (13)

where T is kinetic energy, U is elastic strain energy, and P denotes the potential energy stored
in boundary springs.

The kinetic energy T can be written as follows:
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where the over dot represents the differentiation with respect to time.

The strain energy U can be written in an integral form as follows:
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Substituting Eqs. (1–16) into Eq. (15) together with Lame coefficients, one can obtain the explicit
expressions of strain energy for rectangular plates and cylindrical shells.

The potential energy (P) stored in the boundary springs is given as follows:
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where Sαi and Sβi denote the area of boundary surfaces.

2.3. Admissible functions

It is crucially important to construct the appropriate admissible displacement functions in the
Rayleigh–Ritz method. Beam functions, orthogonal polynomials and Fourier series are often
used as displacement functions of plates and shells. However, the use of beam function will
lead to at least a very tedious solution process [38]. The problem with using a complete set of
orthogonal polynomials is that the higher-order polynomials tend to become numerically
unstable because of the computer round-off errors [38, 39]. These numerical difficulties can be
avoided by the Fourier series because the Fourier series constitute a complete set and exhibit
an excellent numerical stability. However, when the displacements are expressed in terms of
conventional Fourier series, discontinuities potentially exist in the original displacements and
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their derivatives. In this chapter, a modified Fourier series defined as the linear superposition
of a 3-D Fourier cosine series and some auxiliary polynomial functions is used to express the
displacement components, which are given as follows [40–43]:
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where λm =mπ / L α, λn =nπ / L β, λq =qπ / L z. Amnq, alnq, ālmq, ãlmn, Bmnq, blnq, b̄lmq, b̃lmn, Cmnq, clnq, c̄ lmq

and c̃ lmn are the unknown coefficients that need to be determined in future. ω is the circular
frequency and t is the time variable. ξlα, ξlβ and ξlz represent a set of closed-form sufficiently
smooth functions introduced to remove the discontinuities of the original displacement
functions and their derivatives at edges and then to accelerate the convergence of the series
representations. According to the 3-D elasticity theory, it is required that at least two-order
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derivatives of the displacement functions exist and continuous at any point. Consequently,
two auxiliary functions in every direction are supplemented, as shown in Eqs. (17–19). The
auxiliary functions are given as follows:
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It is easy to verify that

' '
1 1 1 1(0) ( ) ( ) 0,  (0) 1L La a a a a ax x x x= = = = (23)

' '
2 2 2 2(0) ( ) (0) 0,  ( ) 1L La a a a a ax x x x= = = = (24)

The similar conditions exist for the β- and z-related polynomials. It should be mentioned that
as the circumferential symmetry of the cylindrical shells in the coordinate θ, the 3-D problem
of the cylindrical shell can be transformed to 2-D analysis by using the Fourier series in
circumferential direction.

2.4. Solution procedure

Substituting Eqs. (14–16) into Eq. (13) together with the displacement functions defined in Eqs.
(17–19) and performing the Rayleigh–Ritz operation, a set of linear algebraic equation against
the unknown coefficients can be obtained as follows:

{ }2w- =K M X 0 (25)

where K is the total stiffness matrix for the structure and M is the total mass matrix. Both of
them are symmetric matrices. X is the column matrix composed of unknown coefficients
expressed in the following form:

Advances in Functionally Graded Materials and Structures104



[ , , ]u v w=X X X X T (26)

where
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The frequencies can be determined by solving Eq. (25) via the eigenfunction of MATLAB
program. The mode shape corresponding to each frequency can be obtained by back substi‐
tuting the eigenvector to the displacement functions in Eqs. (17–19).

3. Numerical examples and discussion

In this section, several vibration results of FGM plates and cylindrical shells with general
boundary conditions are presented to illustrate the accuracy and reliability of the current
formulation. To simplify presentation, C, S, F and E denote the clamped, simply supported,
free and elastic restraints. Three types of elastic boundary conditions designated by symbols
E1, E2 and E3 are considered. E1-type edge is considered to be elastic in normal direction; the
support type E2 only allows elastically restrained displacement in both tangential directions;
when all of three displacements along the edges are elastically restrained, the edge support is
defined by E3. The expressions of the different boundary conditions along the edge α = 0 are
given as follows:

Free boundary condition (F):

0zaa ab as s s= = =

Clamped boundary condition (C):

0u v w= = =
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Simply supported boundary condition (S):

0v waas = = =

First type of elastic restraint (E1):

0, 0u v w¹ = =

Second type of elastic restraint (E1):

0, 0, 0u v w= ¹ ¹

Three type of elastic restraint (E1):

0, 0, 0u v w¹ ¹ ¹

A simple letter is used to describe the boundary conditions of structure. For example, SFCE
denotes a plate having simply supported boundary condition at α = 0, free boundary condition
at β = 0, clamped boundary condition at α = Lα, and elastic restraint at β = Lβ; CS denotes a
cylindrical shell having clamped boundary condition at α = 0 and simply supported boundary
condition at α = Lα.

3.1. Rectangular plates

In this section, several numerical examples concerning the free vibration of FGM rectangular
plates with different geometrical parameters and boundary conditions have been investigated
to verify the convergence, accuracy and reliability of the present method. Some new vibration
results of rectangular plates with elastic boundary conditions are given. Unless stated other‐
wise, the material properties for ceramic and metallic constituents of FGM plates are given as
follows: Ec = 380 GPa, μc = 0.3 and ρc = 3800 kg/m3 and Em = 70 GPa, μm = 0.3 and ρm = 2702 kg/m3.

3.1.1. Convergence study

Theoretically, there are infinite terms in the modified Fourier series solution. However, the
series is numerically truncated, and only finite terms are counted in actual calculations. The
convergence of this method will be checked. Table 1 presents the first seven frequency
parameters Ω of completely free FGM square plates. The frequency parameter Ω is defined as
follows:

2 / /c ca h Ew rW =
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The geometrical parameters are given as follows: a/b = 1 and h/b = 0.1, 0.2 and 0.5. The power-
law index p is taken to be p = 1. It is obvious that the results of this study show a monotonic
trend, and the solutions converge quite rapidly as the truncated number increases. In the
following examples, the truncated numbers of the displacement expressions will be uniformly
selected as M × N × Q = 13 × 13 × 8.

h/b M × N × Q Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7

0.1

9 × 9 × 4 2.9579 4.3853 5.4058 7.4361 7.4361 12.903 12.903

11 × 11 × 4 2.9558 4.3851 5.4054 7.4293 7.4293 12.901 12.901

11 × 11 × 8 2.9524 4.3802 5.4018 7.4256 7.4256 12.898 12.898

13 × 13 × 8 2.9514 4.3802 5.4016 7.4225 7.4225 12.897 12.897

13 × 13 × 10 2.9513 4.3800 5.4015 7.4223 7.4223 12.897 12.897

0.2

9 × 9 × 4 2.7261 4.0298 4.9324 6.4506 6.4506 10.093 10.642

11 × 11 × 4 2.7257 4.0297 4.9322 6.4492 6.4492 10.093 10.640

11 × 11 × 8 2.7250 4.0287 4.9315 6.4485 6.4485 10.093 10.639

13 × 13 × 8 2.7247 4.0286 4.9314 6.4479 6.4479 10.093 10.637

13 × 13 × 10 2.7247 4.0286 4.9313 6.4478 6.4478 10.093 10.637

0.5

9 × 9 × 4 2.0442 2.8571 3.4668 3.9777 3.9777 4.0369 4.3056

11 × 11 × 4 2.0442 2.8571 3.4667 3.9776 3.9776 4.0369 4.3055

11 × 11 × 8 2.0441 2.8568 3.4665 3.9773 3.9773 4.0368 4.3053

13 × 13 × 8 2.0440 2.8568 3.4665 3.9772 3.9772 4.0368 4.3052

13 × 13 × 10 2.0440 2.8568 3.4664 3.9772 3.9772 4.0368 4.3052

Table 1. Convergence of frequency parameters of completely free FGM square plates with different thickness-to-width
ratios h/b (p = 1).

As aforementioned, the boundary conditions can be easily obtained via changing the value of
boundary springs. Therefore, the accuracy of the current method is strongly influenced by the
values of springs’ stiffness. To determine the appropriate values of spring’s stiffness, the effects
of elastic parameters on the frequencies of the FGM plate are investigated. The elastic param‐
eter Γ is defined as ratios of corresponding spring’s stiffness to bending stiffness Dc = Ech3/12(1
– μc

2). The plates are free at y = constant and restrained by only one kind of spring whose
stiffness parameter ranges from 10−1 to 1010 at x = constant. The first three frequency parameters
of the FGM square plates with h/b = 0.2 and p = 1 are presented in Table 2. It is obvious that the
increase of the elastic parameter leads to increase of the frequency parameters. When Γ ≥107,
the influence of the elastic parameters on the frequencies of the plates can be neglected. The
clamped boundary conditions can be simulated by assuming the elastic parameters equal to
109. The elastic boundary conditions can be obtained by assuming the elastic parameters equal
to 100.
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Γ ku = ΓD, kv = kw = 0 Kv = ΓD, ku = kw = 0 Kw = ΓD, ku = kv = 0

Ω1 Ω2 Ω3 Ω1 Ω2 Ω3 Ω1 Ω2 Ω3

10−1 0.0167 0.0464 0.0654 0.0167 0.0654 0.0802 0.0650 0.0654 0.1117

100 0.0419 0.1463 0.2069 0.0419 0.2069 0.2533 0.2028 0.2061 0.3514

101 0.1285 0.4615 0.6536 0.1286 0.6513 0.7985 0.6294 0.6301 1.1044

102 0.3984 1.4270 2.0440 0.3996 1.9750 2.4251 1.5056 1.7178 3.2905

103 1.0903 2.8583 3.7961 1.1184 3.0710 4.2125 2.0002 2.7732 5.9372

104 1.8471 3.1625 4.5503 2.0317 3.8426 4.3529 2.0785 3.0227 6.4327

105 2.0625 3.2758 4.5745 2.3675 4.2459 4.3815 2.0880 3.0600 6.5168

106 2.0904 3.2915 4.5774 2.4305 4.3436 4.3859 2.0891 3.0657 6.5299

107 2.0934 3.2932 4.5777 2.4464 4.3740 4.3870 2.0893 3.0664 6.5316

108 2.0937 3.2934 4.5778 2.4490 4.3790 4.3871 2.0893 3.0665 6.5318

109 2.0937 3.2934 4.5778 2.4493 4.3796 4.3871 2.0893 3.0665 6.5319

1010 2.0937 3.2934 4.5778 2.4493 4.3796 4.3871 2.0893 3.0665 6.5319

Table 2. The first three frequency parameters Ω of the FGM square plates with different elastic parameters Γ (p=1).

3.1.2. Plate with general boundary conditions

To illustrate the accuracy of the present method, the comparisons of the current results with
those in the published literature are presented. Table 3 presents the first two frequency
parameters of the FGM square plates with different boundary conditions. The results are
compared with those presented by Huang et al. [32] using the Ritz method on the basis of 3-
D elasticity theory. Table 4 presents the fundamental frequency parameters of the FGM square
plates with SSSS boundary conditions. Numerical vibration results for the same problems have
been reported by Hosseini-Hashemi et al. [18] and Matsunaga [20] using HSDTs, showing that
excellent agreement of the results is achieved.

SSSS CFFF CFCF

Ref. [] Present Diff% Ref. [] Present Diff% Ref. [] Present Diff%

Ω1 3.406 3.406 0.000 0.6637 0.6657 0.347 3.400 3.421 0.618

Ω2 6.296 6.296 0.000 1.432 1.434 0.140 3.820 3.840 0.524

Ω3 6.296 6.296 0.000 2.154 2.158 0.186 5.774 5.787 0.225

Ω4 7.347 7.345 0.027 3.396 3.405 0.265 5.976 5.989 0.218

Ω5 7.347 7.345 0.027 4.347 4.348 0.023 7.609 7.657 0.631

Table 3. First five frequency parameters of FGM square plates with different boundary conditions (h/b = 0.2, p = 5).
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h/b p = 0 p = 0.5 p = 1 p = 4 p = 10 p = ∞

0.1

Ref. [18] 0.0577 0.0490 0.0443 0.0381 0.0364 0.0293

Ref. [20] 0.0577 0.0492 0.0442 0.0381 0.0364 0.0293

Present 0.0578 0.0491 0.0443 0.0381 0.0364 0.0294

0.2

Ref. [18] 0.2113 0.1807 0.1631 0.1378 0.1301 0.1076

Ref. [20] 0.2121 0.1819 0.1640 0.1383 0.1306 0.1077

Present 0.2122 0.1816 0.1640 0.1383 0.1306 0.1080

Table 4. Fundamental frequency parameters of FGM square plates with SSSS boundary conditions (a/b = 1).

BC
h/b a/b = 1 a/b = 2

p = 0.6 p = 1 p = 5 p = 10 p = 0.6 p = 1 p = 5 p = 10

CSSS

0.1 5.660 5.235 4.434 4.272 12.66 11.71 10.01 9.671

0.3 4.415 4.096 3.263 3.083 11.01 10.20 8.354 7.676

0.5 3.391 3.156 2.435 2.265 6.866 6.464 5.023 4.591

CCSS

0.1 6.416 5.936 5.008 4.819 17.17 15.88 13.48 13.00

0.3 4.807 4.464 3.520 3.313 13.68 12.69 10.12 9.566

0.5 3.582 3.336 2.549 2.366 10.54 9.807 7.548 7.037

CCCS

0.1 7.437 6.884 5.772 5.544 17.71 16.38 13.90 13.40

0.3 5.264 4.894 3.815 3.572 14.01 13.00 10.36 9.782

0.5 3.797 3.540 2.681 2.479 10.75 10.00 7.679 7.153

CFFF

0.1 0.864 0.799 0.687 0.664 0.862 0.797 0.687 0.665

0.3 0.816 0.755 0.637 0.613 0.845 0.781 0.669 0.647

0.5 0.746 0.690 0.568 0.543 0.821 0.759 0.645 0.622

CCFF

0.1 1.684 1.558 1.330 1.285 4.230 3.911 3.356 3.246

0.3 1.473 1.363 1.125 1.076 3.900 3.608 3.021 2.902

0.5 1.253 1.160 0.932 0.885 3.479 3.220 2.627 2.506

CCCF

0.1 5.643 5.223 4.393 4.222 7.628 7.056 6.031 5.825

0.3 4.074 3.785 2.956 2.774 6.594 6.107 5.009 4.781

0.5 2.944 2.738 2.080 1.932 5.503 5.102 4.053 3.831

Table 5. Foundational frequency parameters Ω of FGM rectangular plates with different classical boundary conditions.

Several new numerical results for free vibration of FGM plates with general boundary
conditions, including classical and elastic boundary conditions, are presented in Tables 5 and
6. The geometrical parameters are given as: a/b = 1 and 2, h/b = 0.1, 0.3 and 0.5. The different
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boundary conditions, including CSSSS, CCSS, CCCS, CFFF, CCFF, CCCF, E1E1E1E1, E2E2E2E2

and E3E3E3E3, are studied. The power-law exponent is taken to be p = 0.6, 1, 5 and 10. From
tables, it is obvious that the fundamental frequency of the plate strongly depends on the values
of geometrical parameters, power-law index and boundary conditions. For the plates with
classic boundary conditions, the foundational frequency parameters decrease with increase in
the thickness-to-width ratio h/b. Except for plates with CFFF boundary conditions, the
fundamental frequency parameters of the square plate (a/b = 1) are smaller than those of the
plates with a/b = 2. The increase of the power-law index leads to decrease of the fundamental
frequency parameter for all cases considered. For the plates with elastic restraints, the
foundational frequency parameters increase as the length-to-width ratio a/b increases. Except
for plates with h/b = 0.1 subjected to E2E2E2E2 and E3E3E3E3 boundary conditions, the founda‐
tional frequency parameters decrease with increase in the power-law index p. The effects of
the thickness-to-width ratio h/b on the foundational frequency parameters are more complex.
Some 3-D mode shapes for FGM plates with different boundary conditions are shown in Figs.
3 and 4.

BC h/b a/b = 1 a/b = 2

p = 0.6 p = 1 p = 5 p = 10 p = 0.6 p = 1 p = 5 p = 10

E1E1E1E1

0.1 4.798 4.437 3.786 3.655 12.138 11.228 9.626 9.303

0.3 4.113 3.837 3.142 2.983 11.145 10.426 8.736 8.339

0.5 3.444 3.236 2.522 2.352 10.019 9.439 7.495 7.035

E2E2E2E2

0.1 1.975 2.006 2.090 2.109 6.541 6.592 6.748 6.780

0.3 3.043 3.025 2.844 2.773 9.601 9.476 8.804 8.569

0.5 3.083 2.979 2.487 2.343 9.597 9.238 7.680 7.238

E3E3E3E3

0.1 1.823 1.823 1.828 1.826 5.690 5.649 5.586 5.563

0.3 2.594 2.541 2.357 2.298 7.867 7.670 7.063 6.874

0.5 2.724 2.634 2.234 2.123 8.308 8.014 6.799 6.471

Table 6. Foundational frequency parameters Ω of FGM rectangular plates with different elasticity boundary
conditions.

3.2. Cylindrical shells

This section is concerned with the free vibration of FGM cylindrical shells with different
boundary conditions. The convergence, accuracy and reliability of the present method are
demonstrated by numerical examples and comparisons. New numerical results for the FGM
cylindrical shells with the elastic boundary conditions are also presented. Unless stated
otherwise the material properties for ceramic and metallic constituents of FGM cylindrical
shells are given as follows: Ec = 168 GPa, μc = 0.3 and ρc = 5700 kg/m3 and Em = 70 GPa, μm = 0.3
and ρm = 2707 kg/m3.
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Figure 3. Mode shapes of FGM square plate with CCCC boundary conditions with h/a = 0.5 and p = 1.
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Figure 4. Mode shapes of FGM square plate with CCCF boundary conditions with h/a = 0.5 and p = 1.

3.2.1. Convergence study

The convergence studies of the first two frequencies for the completely free cylindrical shells
with different circumferential wave numbers n are presented in Table 7. The different thick‐
ness-to-radius ratios (i.e., h/R0 = 0.1, 0.2 and 0.5) and circumferential wave numbers (i.e., n = 1,
2, 3 and 4) are considered. The power-law exponent is taken to be p = 1. From Table 7, it is
evident that the present method has a good convergence, and the truncated numbers of the
displacement expressions will be uniformly selected as M × Q = 13 × 13.
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h/R0 M × Q
n = 1 n = 2 n = 3 n = 4

f1 f2 f1 f2 f1 f2 f1 f2

0.1

10 × 10 675.95 775.84 72.216 93.963 202.45 236.49 383.66 422.39

11 × 11 675.95 775.84 72.213 93.900 202.44 236.37 383.64 422.20

12 × 12 675.95 775.82 72.211 93.898 202.43 236.36 383.61 422.19

13 × 13 675.95 775.82 72.209 93.859 202.42 236.28 383.60 422.07

14 × 14 675.95 775.81 72.208 93.858 202.42 236.28 383.58 422.06

0.2

10 × 10 702.69 829.15 156.06 195.32 426.43 484.16 782.43 843.50

11 × 11 702.69 829.14 156.06 195.27 426.42 484.05 782.41 843.32

12 × 12 702.69 829.12 156.05 195.27 426.41 484.04 782.37 843.29

13 × 13 702.68 829.12 156.05 195.24 426.40 483.98 782.36 843.19

14 × 14 702.68 829.11 156.05 195.24 426.39 483.97 782.34 843.18

0.5

10 × 10 813.89 990.82 472.71 513.27 1119.84 1157.84 1798.22 1821.60

11 × 11 813.88 990.82 472.71 513.25 1119.82 1157.80 1798.18 1821.52

12 × 12 813.88 990.81 472.70 513.25 1119.81 1157.78 1798.15 1821.49

13 × 13 813.88 990.81 472.70 513.24 1119.80 1157.76 1798.13 1821.45

14 × 14 813.88 990.81 472.70 513.24 1119.80 1157.75 1798.12 1821.43

Table 7. Convergence of the first two frequencies for the completely free cylindrical shells with different
circumferential wave numbers n (R0 = 1 m, L/R0 = 2, p = 1).

Γ
ku = ΓD, kv = kw = 0 Kv = ΓD, ku = kw = 0 Kw = ΓD, ku = kv = 0

n = 1 n = 2 n = 3 n = 1 n = 2 n = 3 n = 1 n = 2 n = 3

10−1 6.0482 156.26 426.50 6.0495 156.10 426.42 6.3136 156.05 426.40

100 19.080 158.13 427.41 19.120 156.58 426.54 19.945 156.05 426.41

101 58.929 174.72 435.81 60.159 161.25 427.76 62.811 156.06 426.42

102 153.57 251.42 482.58 181.20 197.82 438.59 190.65 156.13 426.59

103 233.55 318.79 529.79 404.21 306.64 485.62 424.98 156.65 427.85

104 250.70 330.93 538.16 506.09 361.57 523.38 510.67 157.86 430.84

105 253.21 332.47 539.14 519.80 369.75 532.12 521.32 158.32 432.03

106 253.55 332.66 539.26 521.22 370.71 533.44 522.45 158.38 432.19

107 253.62 332.69 539.28 521.37 370.89 533.83 522.56 158.39 432.20

108 253.65 332.70 539.29 521.38 370.94 533.98 522.58 158.39 432.21
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Γ
ku = ΓD, kv = kw = 0 Kv = ΓD, ku = kw = 0 Kw = ΓD, ku = kv = 0

n = 1 n = 2 n = 3 n = 1 n = 2 n = 3 n = 1 n = 2 n = 3

109 253.66 332.71 539.29 521.38 370.95 534.00 522.58 158.39 432.21

1010 253.66 332.71 539.29 521.38 370.95 534.00 522.58 158.39 432.21

Table 8. The frequencies of the FGM cylindrical shells with different elastic parameters Γ (p = 1).

It is significant to investigate the effects of elastic parameters on the frequencies of the
cylindrical shells. The cylindrical shells are restrained by only one kind of spring whose
stiffness parameter ranges from 10−1 to 1010 at x = constant. The frequencies of the cylindrical
shells with different circumferential wave numbers n are presented in Table 8. The geometrical
parameters are used as R0 = 1 m, L/R0 = 2 and h/R0 = 0.2. The power-law index is taken to be p
= 1. It is obvious that the increase of the elastic parameter leads to the increase of the frequency
parameters. When Γ ≥107, the influence of the elastic parameters on the frequencies of the plates
can be neglected. The clamped boundary conditions can be simulated by assuming the elastic
parameters equal to 109. The elastic boundary conditions can be obtained by assuming the
elastic parameters equal to 100.

3.2.2. Cylindrical shells with general boundary conditions

To illustrate the accuracy of the present method, the comparisons of the current results with
those in published literature are presented. Table 9 presents the first three frequency param‐
eters λ =ωL ρ(1 + μ) / E  for the cylindrical shells with CC, CF and FF boundary conditions. The
geometrical parameters are given as follows: h/R = 0.3, L/R = 2, R = R0–Ri. The results are
compared with exact 3-D elasticity results by Malekzadeh et al. [31] using Layerwise theory
and DQM (LW-DQ)and FEM. Table 10 presents first 10 frequencies of FGM cylindrical shells
with CF boundary conditions. The geometrical parameters are given as follows: Ri = 0.95 m,
R0=1.05 m, h = 0.1 m, L = 2 m. Numerical vibration results of the same problems have been
reported by Tornabene et al. [13] using FSDT and generalized DQM. It is noted that the Vc is
defined as Vc = (1–z/h)p. It is obvious that the results show very good agreement. The slight
discrepancies may be due to the different solution strategies in the studies.

Several new numerical results for free vibration of FGM cylindrical shells with general
boundary conditions, including classical and elastic boundary conditions, are presented in
Tables 11 and 12. The geometrical parameters are given as follows: R0 = 1 m, L/R0 = 2, h/R0 =
0.1, 0.3 and 0.5. The different boundary conditions, including CC, CS, SS, CF, SF, E1E1, E2E2 and
E3E3, are studied. The power-law exponent is taken to be p = 0, 0.6, 1, 2, 5, 10 and 20. It is observed
from Table 11 that the boundary conditions have a significant effect on the frequencies of
cylindrical shells. The higher constraints at edges may increase the flexural rigidity of the shell
leading to higher frequency response. It is obvious that the increase of the thickness-to-radius
ratio h/R0 leads to the increase of the frequency parameters. It is also seen that the fundamental
frequencies decrease as the power-law index increases. From Table 12, the frequencies of shells
also increase as thickness-to-radius ratio h/R0 increases. However, the effects of the power-law
index on the frequencies of shells became more complex. Some 3-D mode shapes for FGM
cylindrical shells with different boundary conditions are shown in Figs. 5 and 6.
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BC

n λ1 λ2 λ3

LW-DQ
[31]

FEM [31] Present
LW-DQ

[31]
FEM [31] Present

LW-DQ
[31]

FEM [31] Present

CC

1 1.7860 1.7972 1.7905 2.6043 2.6222 2.6050 3.4148 3.4192 3.4245

2 1.7452 1.7573 1.7500 3.2942 3.3114 3.2949 3.4921 3.5150 3.5012

3 1.8867 1.8862 1.8912 3.6024 3.6320 3.6099 3.9416 3.9257 3.9447

4 2.1966 2.2072 2.2004 3.8126 3.8228 3.8193 4.2757 4.3215 4.2783

5 2.6385 2.6617 2.6415 4.1302 4.1327 4.1364 4.7010 4.7322 4.7031

CF

1 0.7514 0.7546 0.7516 1.7563 1.7692 1.7568 1.8800 1.8996 1.8812

2 0.6620 0.6713 0.6622 1.8962 1.9256 1.8980 2.1305 2.1557 2.1324

3 0.9246 0.9301 0.9247 2.0610 2.0668 2.0630 2.5165 2.5482 2.5179

4 1.4021 1.4282 1.4021 2.4030 2.4646 2.4049 2.9919 3.0342 2.9930

5 1.9814 2.0228 1.9814 2.8666 2.8571 2.8684 3.5251 3.5628 3.5258

FF

1 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003 1.0710 1.0734 1.0709

2 0.2576 0.2608 0.2576 0.3800 0.3831 0.3799 1.3533 1.3594 1.3532

3 0.6884 0.6890 0.6884 0.9253 0.9377 0.9252 1.8689 1.8794 1.8689

4 1.2302 1.2525 1.2302 1.5160 1.5307 1.5158 2.4754 2.4917 2.4753

5 1.8427 1.8694 1.8426 2.1343 2.1532 2.1341 3.1169 3.1417 3.1169

Table 9. First three frequency parameters of the cylindrical shells with different boundary conditions (μ = 0.3).

p = 0 p = 0.6 p = 1 p = 5

Ref. [13] Present Ref. [13] Present Ref. [13] Present Ref. [13] Present

f1 152.93 152.13 150.03 148.67 149.29 147.76 148.75 147.10

f2 152.93 152.13 150.03 148.67 149.29 147.76 148.75 147.10

f3 220.06 219.31 212.94 211.89 212.22 211.00 219.49 218.00

f4 220.06 219.31 212.94 211.89 212.22 211.00 219.49 218.00

f5 253.78 254.30 250.74 250.36 249.31 248.68 243.43 242.86

f6 253.78 254.30 250.74 250.36 249.31 248.68 243.43 242.86

f7 383.55 384.04 370.63 370.69 369.46 369.21 383.71 382.79

f8 383.55 384.04 370.63 370.69 369.46 369.21 383.71 382.79

f9 420.51 420.86 415.47 414.68 412.97 411.88 402.56 401.57

f10 431.45 428.75 420.39 416.91 418.46 414.66 423.57 419.16

Table 10. First 10 frequencies (Hz) of the FGM cylindrical shells with F–C boundary conditions.

Advances in Functionally Graded Materials and Structures114



BC h/R0 p = 0 p = 0.6 p = 1 p = 2 p = 5 p = 10 p = 20

CC

0.1 390.33 377.23 374.78 375.39 379.94 379.62 376.24

0.3 621.15 599.34 594.11 591.68 594.96 595.70 593.23

0.5 701.10 686.38 681.10 674.46 668.80 666.26 663.96

CS

0.1 378.25 365.82 363.43 363.82 367.81 367.48 364.19

0.3 567.55 548.06 543.23 540.49 542.33 542.55 540.43

0.5 648.20 634.72 629.77 623.22 617.07 614.23 612.09

SS

0.1 367.68 355.76 353.44 353.68 357.26 356.85 353.71

0.3 528.69 510.67 506.15 503.35 504.53 504.51 502.59

0.5 608.85 596.84 592.29 585.94 579.40 576.22 574.05

CF

0.1 153.27 149.63 148.75 148.30 148.46 147.80 146.56

0.3 257.65 254.87 253.62 251.58 248.56 246.32 244.47

0.5 263.06 261.04 260.07 258.44 255.66 253.17 250.86

SF

0.1 149.92 146.38 145.51 145.06 145.17 144.51 143.30

0.3 247.41 245.02 243.86 241.81 238.61 236.30 234.48

0.5 248.50 246.92 246.06 244.45 241.51 238.95 236.67

Table 11. Fundamental frequencies of FGM cylindrical shells with different classical boundary conditions.
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Figure 5. Mode shapes of FGM cylindrical shells with CC boundary conditions with h/R0 = 0.5, L/R0 = 2 and p=1.
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BC h/R0 p = 0 p = 0.6 p = 1 p = 2 p = 5 p = 10 p = 20

E1E1

0.1 368.31 356.53 354.28 354.66 358.44 358.13 355.04

0.3 558.81 545.07 542.41 542.83 548.35 550.42 549.32

0.5 669.03 660.42 657.10 652.86 649.27 647.64 645.98

E2E2

0.1 82.564 91.860 95.778 101.94 109.61 113.78 116.41

0.3 381.14 384.20 386.62 392.04 400.91 405.96 408.78

0.5 539.57 539.80 540.83 544.12 551.17 556.07 559.18

E3E3

0.1 80.874 89.444 93.013 98.592 105.46 109.13 111.41

0.3 331.30 347.67 354.18 364.51 377.62 384.51 388.49

0.5 515.44 522.81 525.80 531.29 539.88 545.19 548.45

Table 12. Fundamental frequencies of FGM cylindrical shells with different elasticity boundary conditions.
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Figure 6. Mode shapes of FGM cylindrical shells with CF boundary conditions with h/R0 = 0.5, L/R0 = 2 and p = 1.

4. Conclusions

A new 3-D exact solution for free vibration analysis of thick functionally graded plates and
cylindrical shells with arbitrary boundary conditions is presented in this chapter. The effective
material properties of functionally graded structures vary continuously in the thickness
direction according to the simple power-law distributions in terms of volume fraction of
constituents and are estimated by Voigt’s rule of mixture. By using the artificial spring
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boundary technique, the general boundary conditions can be obtained by setting proper spring
stiffness. All displacements of the functionally graded plates and shells are expanded in the
form of the linear superposition of standard 3-D cosine series and several supplementary
functions, which are introduced to remove potential discontinuity problems with the original
displacements along the edge. The Rayleigh-Ritz procedure is used to yield the accurate
solutions. The convergence, accuracy and reliability of this formulation are verified by
numerical examples and by comparng the current results with those in published literature.
The influence of the geometrical parameters and elastic foundation on the frequencies of
rectangular plates and cylindrical shells is investigated.

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science
Foundation of China (Nos. 51175098 and 51279035) and the Fundamental Research Funds for
the Central Universities of China (No. HEUCFQ1401).

Author details

Guoyong Jin, Zhu Su* and Tiangui Ye

*Address all correspondence to: xiuzhu0403@163.com

College of Power and Energy Engineering, Harbin Engineering University, Harbin, P.R.
China

References

[1] Zhang D., Zhou Y. A theoretical analysis of FGM thin plates based on physical neu‐
tral surface. Computational Material Science. 2008; 44: 716–20.

[2] Chi S., Chung Y. Mechanical behavior of functionally graded material plates under
transverse load – Part : Analysis. International Journal of Solids and Structures.
2006; 43: 3657–74.

[3] Chi S., Chung Y. Mechanical behavior of functionally graded material plates under
transverse load – Part : Numerical results. International Journal of Solids and Struc‐
tures. 2006; 43: 3675–91.

[4] Latifi M., Farhatnia F., Kadkhodaei M. Bucking analysis of rectangular functionally
graded plates under various edge conditions using Fourier series expansion. Europe‐
an Journal of Mechanics – A/Solids. 2013; 41: 16–27.

A Unified Accurate Solution for Three-dimensional Vibration Analysis of Functionally Graded Plates and...
http://dx.doi.org/10.5772/62335

117



[5] Zhao X., Lee Y.Y., Liew K.M. Free vibration analysis of functionally graded plates us‐
ing the element-free kp-Ritz method. Journal of Sound and Vibration. 2009; 319: 918–
39.

[6] Hosseini-Hashemi S., Rokni Damavandi Taher H., Akhavan H., Omidi M. Free vibra‐
tion of functionally graded rectangular plates using first-order shear deformation
plate theory. Applied Mathematical Modelling. 2010; 34: 1276–91.

[7] Hosseini-Hashemi S., Fadaee M., Atashipour S.R. A new exact analytical approach
for free vibration of Reissner-Mindlin functionally graded rectangular plates. Inter‐
national Journal of Mechanical Sciences. 2011; 53: 11–22.

[8] Ferreira A.J.M., Batra R.C., Roque C.M.C., Qian L.F., Jorge R.M.N. Natural frequen‐
cies of functionally graded plates by a meshless method. Composite Structures. 2006;
75: 593–600.

[9] Fallah A., Aghdam M.M., Kargarnovin M.H. Free vibration analysis of moderately
thick functionally graded plates on elastic foundation using extended Kantorovich
method. Archive of Applied Mechanics. 2013; 83: 177–91.

[10] Croce L.D., Venini P. Finite elements for functionally graded Reissner-Mindlin
plates. Compute Methods in Applied Mechanics and Engineering. 2004; 193: 705–25.

[11] Kadoli R., Ganesan N. Buckling and free vibration analysis of functionally graded cy‐
lindrical shells subjected to a temperature-specified boundary condition. Journal of
Sound and Vibration. 2006; 289(3): 450–80.

[12] Tornabene F. Free vibration analysis of functionally graded conical, cylindrical shell
and annular plate structures with a four-parameter power-law distribution. Comput‐
er Methods in Applied Mechanics and Engineering. 2009; 198(37): 2911–35.

[13] Tornabene F., Viola E., Inman D.J. 2-D differential quadrature solution for vibration
analysis of functionally graded conical, cylindrical shell and annular plate structures.
Journal of Sound and Vibration. 2009; 328(3): 259–90.

[14] Sheng G.G., Wang X. Thermomechanical vibration analysis of a functionally graded
shell with flowing fluid. European Journal of Mechanics – A/Solids. 2008; 27(6):
1075–87.

[15] Jin G.Y., Xie X., Liu Z.G. The Haar wavelet method for free vibration analysis of func‐
tionally graded cylindrical shells based on the shear deformation theory. Composite
Structures. 2014; 108: 435–48.

[16] Qu Y.G., Long X.H., Yuan G.Q., Meng G. A unified formulation for vibration analy‐
sis of functionally graded shells of revolution with arbitrary boundary conditions.
Composites Part B: Engineering. 2013; 50: 381–402.

[17] Reddy J.N. Analysis of functionally graded plates. International Journal of Numeri‐
cal Methods in Engineering. 2000; 47: 663–84.

Advances in Functionally Graded Materials and Structures118



[18] Hosseini-Hashemi S., Fadaee M., Atashipour S.R. Study on the free vibration of thick
functionally graded rectangular plates according to a new exact closed-form proce‐
dure. Composite Structures. 2011; 93: 722–35.

[19] Baferani A.H., Saidi A.R., Ehteshami H. Accurate solution for free vibration analysis
of functionally graded thick rectangular plates resting on elastic foundation. Compo‐
site Structures. 2011; 93: 1842–53.

[20] Matsunaga H. Free vibration and stability of functionally graded plates according to
a 2-D higher-order deformation theory. Composite Structures. 2008; 82: 499–512.

[21] Ferreira A.J.M., Batra R.C., Roque C.M.C., Qian L.F., Martins P.A.L.S. Static analysis
of functionally graded plates using third-order shear deformation theory and a
meshless method. Composite Structures. 2005; 69: 449–57.

[22] Qian L.F., Batra R.C., Chen L.M. Static and dynamic deformations of thick functional‐
ly graded elastic plates by using higher-order shear and normal deformable plate
theory and meshless local Petrov-Galerkin method. Composites Part B: Engineering.
2004; 35: 685–97.

[23] Najafizadeh M.M., Isvandzibaei M.R. Vibration of functionally graded cylindrical
shells based on higher order shear deformation plate theory with ring support. Acta
Mechanica. 2007; 191(1–2): 75–91.

[24] Matsunaga H. Free vibration and stability of functionally graded circular cylindrical
shells according to a 2D higher-order deformation theory. Composite Structures.
2009; 88(4): 519–31.

[25] Viola E., Rossetti L., Fantuzzi N. Numerical investigation of functionally graded cy‐
lindrical shells and panels using the generalized unconstrained third order theory
coupled with the stress recovery. Composite Structures. 2012; 94(12): 3736–58.

[26] Zozulya V.V., Zhang C. A high order theory for functionally graded axisymmetric
cylindrical shells. International Journal of Mechanical Sciences. 2012; 60(1): 12–22.

[27] Vel S.S., Batra R.C. Three-dimensional exact solution for the vibration of functionally
graded rectangular plates. Journal of Sound and Vibration. 2004; 272: 703–30.

[28] Reddy J.N., Cheng Z.Q. Three-dimensional thermoelastic deformations of a function‐
ally graded elliptic plate. Composites Part B: Engineering. 2000; 31: 97–106.

[29] Amini M.H., Soleimani M., Rastgoo A. Three-dimensional free vibration analysis of
functionally graded material plates resting on an elastic foundation. Smart Materials
and Structure. 2009; 18: 1–9.

[30] Malekzadeh P. Three-dimensional free vibration analysis of thick functionally grad‐
ed plates on elastic foundations. Composite Structures. 2009; 89: 367–73.

A Unified Accurate Solution for Three-dimensional Vibration Analysis of Functionally Graded Plates and...
http://dx.doi.org/10.5772/62335

119



[31] Malekzadeha P., Faridb M., Zahedinejadc P., Karamid G. Three-dimensional free vi‐
bration analysis of thick cylindrical shells resting on two-parameter elastic supports.
Journal of Sound and Vibration. 2008; 313: 655–75.

[32] Huang C.S., Yang P.J., Chang M.J. Three-dimensional vibration analyses of function‐
ally graded material rectangular plates with through internal cracks. Composite
Structures. 2012; 94(9): 2764–76.

[33] Santos H., Mota Soares C.M., Mota Soares C.A., Reddy J.N. A semi-analytical finite
element model for the analysis of cylindrical shells made of functionally graded ma‐
terials. Composite Structures. 2009; 91(4): 427–32.

[34] Qu Y.G., Meng G. Three-dimensional elasticity solution for vibration analysis of
functionally graded hollow and solid bodies of revolution. Part I: Theory. European
Journal of Mechanics – A/Solids. 2014; 44: 222–33.

[35] Qu Y.G., Meng G. Three-dimensional elasticity solution for vibration analysis of
functionally graded hollow and solid bodies of revolution. Part II: Application. Euro‐
pean Journal of Mechanics – A/Solids. 2014; 44: 234–48.

[36] Saada A.S. Elasticity: Theory and applications. 2nd ed. Florida: Ross Publishing, Inc;
2009.

[37] Shen H.S. Functionally graded materials: Nonlinear analysis of plates and shells.
Florida: CRC Press; 2009.

[38] Li W.L. Vibration analysis of rectangular plates with general elastic boundary sup‐
ports. Journal of Sound and Vibration. 2004; 273(3): 619–35.

[39] Beslin O., Nicolas J. A hierarchical functions set for predicting very high order plate
bending modes with any boundary conditions. Journal of Sound and Vibration. 1997;
202(5): 633–55.

[40] Ye T.G., Jin G.Y., Shi S.X., Ma X.L. Three-dimensional free vibration analysis of thick
cylindrical shells with general end conditions and resting on elastic foundations. In‐
ternational Journal of Mechanical Sciences. 2014; 84: 120–37.

[41] Jin G.Y., Su Z., Shi S.X., Ye T.G., Gao S.Y. Three-dimensional exact solution for the
free vibration of arbitrarily thick functionally graded rectangular plates with general
boundary conditions. Composite Structures. 2014; 108: 565–77.

[42] Su Z., Jin G.Y., Ye T.G. Three-dimensional vibration analysis of thick functionally
graded conical, cylindrical shell and annular plate structures with arbitrary elastic re‐
straints. Composite Structures. 2014; 118: 432–47.

[43] Jin G.Y., Su Z., Ye T.G., Jia X.Z. Three-dimensional vibration analysis of isotropic and
orthotropic conical shells with elastic boundary restraints. International Journal of
Mechanical Sciences. 2014; 89: 207–21.

Advances in Functionally Graded Materials and Structures120


