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1. Introduction  

Image segmentation plays an essential role in the interpretation of various kinds of images. 
Image segmentation techniques can be grouped into several categories such as edge-based 
segmentation, region-oriented segmentation, histogram thresholding, and clustering 
algorithms (Gonzalez & Woods, 1992). The aim of a clustering algorithm is to aggregate data 
into groups such that the data in each group share similar features while the data clusters 
are being distinct from each other. 
The K-means algorithm is a widely used method used for finding the structure of data (Tou 
& Gonzalez 1974). This unsupervised clustering technique has a strong tendency to get 
stuck into local minima when finding an optimal solution. Therefore, clustering results are 
heavily dependent on the initial cluster centers distribution. Hence, the search for good 
initial parameters is a challenging issue and the clustering algorithms require a great deal of 
experimentation to determine the input parameters for the optimal or suboptimal clustering 
results. 
Competitive learning model introduced in (Rumelhart & Zipser, 1986) is an interesting and 
powerful learning algorithm which can be used in unsupervised training for image 
classification (Hung, 1993). Simple Competitive Learning (SCL), shows stability over 
different run trials but this stable result is not always the global optima. In fact, in some 
cases the SCL converges to local optima over all run trials and the learning rate needs to be 
adjusted in the course of experimentation so that the global optimization can be achieved. 
There are a number of techniques, developed for optimization, inspired by the behaviours of 
natural systems (Pham & Karaboga, 2000). Swarm intelligence (SI) including Ant Colony 
Optimization (ACO) introduced in (Dorigo et al., 1996) and Particle Swarm Optimization 
(PSO) introduced in (Kennedy & Eberhart, 1995) has been introduced in the literature as an 
optimization technique. There are several SI approaches for data clustering in the literature 
which use clustering techniques such as K-means algorithm. In most of these approaches 
ACO or PSO are used to obtain the initial cluster centers for the K-means algorithm. We 
propose a hybrid algorithm which combines SI with K-means. We also use the same method 
to combine SI with SCL. 
Our aim is to make segmentation results of both K-means and SCL less dependent on the 
initial cluster centers and learning rate respectively. Hence, their results are more accurate 
and stabilized by employing the ACO and PSO optimization techniques. This improvement 
is due to the larger search space provided by these techniques. In addition, our 
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methodology of considering both spatial and spectral features of the image helps to produce 
results with improved accuracy. 
We have integrated the K-means and simple competitive learning algorithms with ACO in 
(Saatchi & Hung, 2005) and (Saatchi & Hung, 2006) respectively. In this paper we will study 
the hybridization of PSO with each of the K-means and the SCL algorithms. A thorough 
comparison study on ACO-K-means, PSO-K-means, ACO-SCL, PSO-SCL, K-means and SCL 
algorithms will also be provided. 

2. Clustering Algorithms 

2.1 K-means 

The K-means algorithm, first introduced in (McQueen, 1967), is an is an unsupervised 
clustering algorithm which partitions a data set into a certain number of clusters. The K-
means algorithm is based on the minimization of a performance index which is defined as 
the sum of the squared distances from all points in a cluster domain to the cluster center 
(Tou & Gonzalez, 1974). First K random initial cluster centers are chosen. Then, each sample 
is assigned to a cluster based on the minimum distance to the cluster centers. Finally cluster 
centers are updated to the average of the values in each cluster. This is repeated until cluster 
centers no longer change. Steps in the K-Means algorithm are:  
Step 1: Initialize K initial cluster centers randomly. 
Step 2: For each pixel, calculate the distance to the cluster centers and assign the pixel to a 
cluster which has the minimum distance to its center. 
Step 3: Calculate the average of the pixel values in each cluster and take them as new cluster 
centers.
Step 4: Repeat steps 2 and 3 until new cluster centers converge to the previous ones. 
The K-means algorithm tends to find the local minima rather than the global minima. 
Therefore, it is heavily influenced by the choice of initial cluster centers and the distribution 
of data. Most of the time the results become more acceptable when initial cluster centers are 
chosen relatively far apart since the main clusters in a given data are usually distinguished 
in such a way. If the main clusters in a given data are too close to one another in the feature 
space, the K-means algorithm fails to recognize these clusters. For its improvement the K-
means algorithm needs to be enhanced with the optimization technique in order to be less 
dependent on a given data set and initial cluster centers. 

2.2 Simple Competitive Learning 

Competitive learning model introduced by Rumelhart and Zipser in (Rumelhart & Zipser, 
1986) is an interesting and powerful learning algorithm which can be used in unsupervised 
training for image classification (Hung, 1993). Several different competitive learning 
algorithms have been proposed by neural network researchers. These algorithms are 
capable of detecting various features represented in input signals. They have been applied 
in several different areas such as graph bipartitioning, vector quantization, etc (Hertz & 
Krogh, 1991). In this section the unsupervised simple competitive learning will be briefly 
presented.
The neural network models are characterized by the topology, activation function and 
learning rules. The topology of the simple competitive learning algorithm can be 
represented as a one-layered output neural net. Each input node is connected to each output 
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node. The number of input nodes is determined by the dimension of the training patterns. 
Unlike the output nodes in the Kohonen’s feature map, there is no particular geometrical 
relationship between the output nodes in the simple competitive learning. In the following 
development, a 2-D one-layered output neural net will be used. During the process of 
training, the input vectors are fed into the network sequentially in time. The “trained” 
classes are represented by the output nodes and the center of each class is stored in the 
connection weights between input and output nodes. 
The following algorithm outlines the operation of the simple competitive learning as applied 
to unsupervised training in (Hung, 1993); Let L denote the dimension of the input vectors, 
which for us is the number of spectral bands. We assume that a 2-D (N x N) output layer is 
defined for the algorithm, where N is chosen so that the expected number of the classes is 
less than or equal to N2.
Step 1: Initialize weights wij(t) (i = 1, …, L and j = 1, …, N x N) to small random values. 
Steps 2 to 5 are repeated for each pixel in the training data set for each iteration. 
Step 2: Present an input pixel X (t) = (x1,…, xL) at time t.
Step 3: Compute the distance dj between xi and each output node using  

(1)
L

i

ijij twxd

1
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where i, j, L, wij and xi are similarly defined as in steps 1 and 2. 
Step 4: Select an output node j* which has the minimum distance. This node is called the 
best matching unit (BMU) or the winning node. 
Step 5: Update weights of the winning node j* using 
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where (t) is a monotonically slowly decreasing function of t and its value is between 0 and 
1.
Step 6: Select a subset of these N2 output nodes as classes. 
SCL shows stability over different run trials but this stable result is not always the global 
optima. In fact, in some cases the SCL converges to local optima over all run trials and the 
learning rate needs to be adjusted in the course of experimentation so that the global 
optimization can be achieved. 

3. Swarm Intelligence 

There are a number of techniques, developed for optimization, inspired by the behaviours of 
natural systems (Pham & Karaboga, 2000). In this study, we employ swarm intelligence, a 
natural optimization technique for optimizing both K-means and SCL algorithms. 

3.1 Ant Colony Optimization 

The ACO heuristic is inspired by the foraging behaviour of a real ant colony in finding the 
shortest path between the nest and the food. This is achieved by a deposited and 
accumulated chemical substance called pheromone by the passing ant which moves towards 
the food. In its searching the ant uses its own knowledge of where the smell of the food 
comes from (we call it as heuristic information) and the other ants’ decision of the path toward 
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the food (pheromone information). After it decides its own path, it confirms the path by 
depositing its own pheromone making the pheromone trail denser and more probable to be 
chosen by other ants. This is a learning mechanism ants possess besides their own recognition 
of the path. As a result of t this consultation with the ants’ behaviors already shown in 
searching for the food and returning to the nest, the best path which is the shortest is marked 
between the location of the nest and the location of the food. 

Figure 1. Ants finding the shortest path around an obstacle as a result of pheromone 
concentration

It was reported in the literature (Dorigo et al, 1996) that the experiments show when the ants 
have two or more fixed paths with the same length available from a nest to the food, they 
eventually concentrate on one of the paths and when the available paths are different in 
length they often concentrate on the shortest path. This is shown in Figure 1, when an 
obstacle is placed on the established path of ants, they first wander around the obstacle 
randomly. The ants going on a shorter path reach the food and return back to the nest more 
quickly. After a certain amount of time, the shorter path will be reinforced by pheromone. 
This path eventually becomes the preferred path of the ants (Zheng et al., 2003). 
ACO uses this learning mechanism for the optimization. Furthermore, in the ACO 
algorithm, the pheromone level is updated based on the best solution obtained by a number 
of ants. The pheromone amount that is deposited by the succeeding ant is defined to be 
proportional to the quality of the solution it produces. For the real ants as shown in Figure 1, 
the best solution is the shortest path and it is marked with a strong pheromone trail. In the 
shortest path problem using the ACO algorithm, the pheromone amount deposited is 
inversely proportional to the length of the path.  
In their research, Dorigo et al (1996) took the ant system as a colony of cooperating agents 
for solving the traveling salesman problem (TSP). Considering the short path problem, 
suppose for any pair of nodes Vi and Vj on the graph G, there is a connection cost attached to 
the edge (Vi, Vj) and the pheromone trail and heuristic information are stored on the edge. 
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The goal of an ACO heuristic is then to find the shortest path on graph G. In ACO heuristic, 
m artificial ants are normally used to find the best solution. Suppose an ant k is in vertex Vi

at certain step i during its search process. This ant selects the connection with the probability 
(Dorigo et al., 1996):  

otherwise

Itallowedj
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where Pkij is the probability of ant k choosing the path (Vi, Vj) from Vi. Parameters ij and ij

are the pheromone and heuristic information assigned to the edge (Vi, Vj) respectively, 
and  are constants that determine the relative influence of the pheromone and heuristic 
information, and allowedk(t, I) is the set of vertices which is allowed to be visited according to 
problem constraints.  
Then ant k moves and deposits a pheromone on the trail, which is defined below:   
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where Q is a positive constant and Lk is the cost of the path used by ant k. After all m ants 
completed their path finding, the pheromone on each edge is updated according to the 
following formula:   

 (5) 
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where  is the evaporation factor (0  1) which causes the earlier pheromones vanish 
over the iterations. Therefore, as the solution becomes better, the corresponding pheromone 
have more effect on the next solution rather than the earlier pheromones which correspond 
to the initial undesired solutions found.  
This pheromone information will be a guide for the new set of ants. Each time, the current 
best solution is saved, and this process will be repeated until a termination criterion is met.

3.2 Particle Swarm Optimization 

The PSO algorithm is inspired by the group behavior of schools of fish, flocks of birds and 
swarms of insects. As an example, birds are likely to find food in flocks, without knowing its 
location in advance. It seems that members of the flock buildup their intuition in order to 
find their nutriment. As sociobiologist E. O. Wilson (Wilson, 1975) has written, in reference 
to fish schooling, “In theory at least, individual members of the school can profit from the 
discoveries and previous experience of all other members of the school during the search for 
food. This advantage can become decisive, outweighing the disadvantages of competition 
for food items, whenever the resource is unpredictably distributed in patches.” (p. 209) 
The PSO algorithm consists of a swarm of particles flying through the search space 
(Kaewkamnerdpong & Bentley, 2005). Each particle’s position is a potential solution to the 
problem. Each particle’s velocity is modified based on its distance from its personal best 
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position and the global best position. In other words the particles move according to their 
experience and that of their neighbors which yields to the best fitness value. 
Each particle i maintains the following information (van der Merwe & Engelbrecht, 2003): 

xi, the current position of the particle, 

vi, the current velocity of the particle, 

yi, the personal best position of the particle (pbest); the best position visited so far by the 
particle, and 

, the global best position of the swarm (gbest); the best position visited so far by the 
entire swarm.  

The objective function evaluates the positions of the particles. Personal best position (pbest)
is then obtained as follows (van der Merwe & Engelbrecht, 2003):  

 (6) 
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where f is the objective function. The global best position (gbest) is obtained as follows (van 
der Merwe & Engelbrecht, 2003):  
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For each iteration of a PSO algorithm, vi and xi are updated as follows (van der Merwe & 
Engelbrecht, 2003):  

))()(ˆ)(())()(()()1( 2211 txtytrcxtytrctvtv iiiii
(8)
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 (9) 

where  is the inertia weight which serves as a memory of previous velocities. The inertia 
weight controls the impact of the previous velocity. The cognitive component, yi(t)–xi

represents the particle’s own experience as to where the best solution is. The social 
component, (t) – xi represents the belief of the entire swarm as to where the best solution is. 
c1 and c2 are acceleration constants and r1(t) , r2(t) ~ U(0,1) ,where U(0,1) is a random number 
between 0 and 1. 
The PSO algorithm is repeated until a termination criterion is reached or the changes in 
velocity get near to zero. A fitness function is used to evaluate the optimality of the solution. 
The following algorithm outlines a PSO based image classification (Omran et al., 2002). In 
this algorithm, a single particle xi represents N cluster means such that xi=(mi1,...,mij,…,miN)
where mij represents the j-th cluster centroid vector of the i-th particle. Therefore, a swarm 
represents a number of candidate cluster centers. The fitness of each set of cluster is 
measured using: 

))((),(),( minmax2max1 iiiii xdzxZdZxf (10)

where zmax=2s -1 for an s-bit image; Z is a matrix representing the assignment of pixels to 
clusters of particle i. Each element zijp indicates if pixel zp belongs to cluster Cij of particle i.
The constants w1 and w2 are user defined constants. Also, 
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is the maximum average Euclidean distance of particles to their associated clusters and 
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is the minimum Euclidean distance between any pair of clusters. The algorithm is as 
follows: 
Step 1: Initialize cluster centers for each particle randomly. 
Step 2: For each particle, assign each pixel to a cluster that has the minimum distance to its 
cluster center. 
Step 3: Calculate the fitness function for each particle and find the global best solution. 
Step 4: Update the cluster centers using Eqs. (8) and (9). 
Step 5: Repeat the procedure until the stopping criterion is reached. 

4. Swarm Intelligence and K-means 

4.1 The Hybrid ACO-K-means Algorithm 

We propose a hybrid ACO-K-means algorithm which uses the ACO to improve the 
performance of the K-means algorithm for clustering. The proposed algorithm starts by 
choosing the number of clusters and a random initial cluster center for each cluster. ACO 
plays its part in assigning each pixel to a cluster. This is done according to a probability 
which is inversely proportional to the distance (similarity) between the pixel and cluster 
centers and a variable, , representing the pheromone level. We define pheromone to be 
proportional to minimum distance between each pair of cluster centers and inversely 
proportional to the distances between each pixel and its cluster center. So the pheromone 
gets larger when the cluster centers are far apart and clusters are more compact (our 
criterion for best solution), making the probability of assigning a pixel to that cluster high. 
Pheromone evaporation is considered to weaken the influence of the previously chosen 
solutions, which are less likely to be desired. Similar to the K-means algorithm, at this stage 
new cluster centers are updated by calculating the average of the pixels in each cluster and 
this will be repeated until cluster centers no longer change. But unlike K-means, this 
algorithm doesn’t stop here. We assume that the clustering job is performed by an ant and 
there are m ants repeating this job, each with their own random initialization, and they all 
will end up with a solution. A criterion is defined to find the best solution and the 
pheromone level is updated accordingly for the next set of m ants as a leading guide. If the 
termination criterion is satisfied, the algorithm will be terminated. Hence, an optimal 
solution is obtained. 
The algorithm starts by assigning a pheromone level  and a heuristic information  to each 
pixel. Then each ant will assign each pixel to a cluster with the probability distribution P
derived from Eq. (13), (Dorigo et al., 1996): 

K
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where Pi(Xn) is the probability of assigning pixel Xn to cluster i, i(Xn) and i(Xn) are the 
pheromone and heuristic information assigned to pixel Xn in cluster i respectively,  and 
are constant parameters that determines the relative influence of the pheromone and 
heuristic information, and K is the number of clusters. Heuristic information i(Xn) is 
obtained from: 

),(*),(
)(

inin

ni
CPXPDistCCXCDist

X  (14) 

where Xn is the nth pixel, CCi is the ith spectral cluster center and PCi is the ith spatial cluster center. 
CDist (Xn, CCi) is the Euclidean distance between Xn and CCi , considering the color features of 
the pixels and PDist (Xn, PCi) is the Euclidean distance between Xn and PCi, considering the 
position of the pixels on the image. Constant  is used to balance the value of  with .
The value for the pheromone level  assigned to each pixel is initialized to 1 so that it does 
not have any effect on the probability at the beginning. This pheromone gets larger over the 
iterations which we describe later. 
Suppose m number of ants is chosen for clustering an image. Each ant is giving its own 
clustering solution. After m ants have done their clustering, the current best solution is 
chosen and the assigned pheromone to this solution is incremented. All the cluster centers 
are updated using the cluster centers of the current best solution. The next set of ants is 
inspired from the previous set. In each of the iterations, each one of the m ants search for a 
solution based on its own heuristic knowledge and the best solution found by the previous 
m ants. This is repeated a certain amount of times until the overall best solution is obtained.  
The best solution of the m solutions found in each of iterations is selected according to two 
factors; Euclidean distance between cluster centers in terms of spectral values (separateness of 
clusters), and sum of the Euclidean distances between each pixel and its cluster center, in terms 
of spectral and spatial values (similarity and compactness of each cluster). To choose the best 
solution: 1) the Euclidean distance between cluster centers in terms of spectral signatures 
should be large so the clusters are more distinct, 2) the sum of the Euclidean distances between 
each pixel and its cluster center in terms of spectral signatures should be small so that each 
cluster becomes more homogeneous, and 3) the sum of the Euclidean distances between each 
pixel and its cluster center in terms of spatial signatures should be small so that each cluster 
becomes more compact. To achieve the first one, for each clustering performed by ant k (k = 
1,…,m), we compute the distances between every pair of cluster centers and sort these 
distances. Then we select the minimum distance Min(k). Now we compare all these minimums 
performed by all the ants, and select the maximum of them [MinMax(k)]. To achieve the 
second and third, for each clustering performed by ant k we compute the sum of the distances 
between each pixel and its cluster center, and sort these sums of the distances. Then we select 
the maximum and compare all these maximums performed by all ants, and select the 
minimum of them. The second maximum and third maximum of the solutions are compared 
in the same way and the minimum is selected. Each time a solution is selected it gets an 
additional vote. The solution with the largest vote is selected as the best solution. 
After the best solution is found, the pheromone value is updated according to Eq. (15) (Li & 
Xu, 2003): 

i(Xn)  (1-  )  i(Xn)+ i  i(Xn)  (15) 
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where  is the evaporation factor (0  1) which causes the earlier pheromones vanish 
over the iterations. Therefore as the solution becomes better, the corresponding pheromone 
have more effect on the next solution rather than the earlier pheromones which correspond 
to the initial undesired solutions found. The parameter i(Xn) in Eq. (15) is the amount of 
pheromone added to previous pheromone by the succeeded ant, which is obtained from:  

. otherwise                        0
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(X ni
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In Eq. (16), Q is a positive constant which is related to the quantity of the added pheromone 
by ants. Min(k ) is the minimum distance between every two cluster centers obtained by ant 
k  (the winner ant) in spectral feature space. AvgCDist(k ,i) is the average of the spectral 
Euclidean distances and AvgPDist(k ,i) is the average of the spatial Euclidean distances
between all pixels in cluster i and their spectral cluster center and spatial cluster center 
obtained by ant k , respectively. Min(k ) causes the pheromone become larger when clusters 
get more far apart and hence raise the probability. AvgCDist(k ,i) and AvgPDist(k’,i) cause the 
pheromone become larger when the cluster has more similar pixels and is more compact 
respectively. In other words, the more the Min(k ) is, the more far apart our clusters are 
which is desired and the larger the pheromone is. The less the AvgCDist(k ,i) and AvgPDist 
(k ,i) are, the more similar and compact our clusters are which is desired and the larger the 
pheromone is. 
Next, cluster centers are updated using the cluster centers of the best solution. This 
algorithm is repeated a certain amount of times until the very best solution is obtained. 
The Hybrid ACO-K-means algorithm is described below: 
Step 1: Initialize pheromone level assigned to each pixel to 1, the number of clusters to K and 
number of ants to m.
Step 2: Initialize m sets of K random cluster centers to be used by m ants. 
Step 3: Let each ant, assign each pixel Xn to one of the clusters (i), randomly, with the 
probability distribution Pi(Xn) given in Eq. (13).
Step 4: Calculate new cluster centers; If the new cluster centers are approximately equal to 
the old ones, go to next step. Otherwise, go to Step 3. 
Step 5: Save the best solution among the m solutions found. 
Step 6 Update the pheromone level for each pixel according to the best solution using Eqs. 
(15) and (16).
Step 7: Assign cluster center values of the best clustering solution to the clusters centers of 
all ants. 
Step 8: If the termination criterion is satisfied go to the next step. Otherwise, go to Step 3. 
Step 9: Output the optimal solution. 

4.2 The Hybrid PSO-K-means Algorithm 

As discussed in section 3.2, in the PSO based clustering presented in (Omran et al., 2002) the 
cluster centers assigned to particles were initialized randomly. Each pixel was distributed  to 
a cluster with minimal Euclidean distance. Then PSO was used to refine the cluster centers 
using a fitness function. In (van der Merwe & Engelbrecht, 2003) the K-means algorithm was 
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applied to feed one particle of the initial swarm and the rest of the swarm were initialized 
randomly. Then the same algorithm described above is employed. We propose a new 
hybridization of PSO-K-means algorithm where the K-means is applied to all particles and 
solutions are evaluated in a way similar to the evaluation used in the proposed ACO-K-
means algorithm.  
The proposed PSO-K-means algorithm is presented as follows: 
Step 1: Initialize the number of clusters to K and number of particles to m.
Step 2: Initialize m sets of K random cluster centers to be used by m particles. 
Step 3: For each particle, let each pixel x belong to a cluster in which it has the smallest 
Euclidean distance to the centroid.  
Step 4: Calculate new cluster centers; If the new cluster centers converge to the old ones, go 
to the next step. Otherwise, go to Step 3. 
Step 5: Save the best solution found so far performed by each particle. Call it pbest or 
personal best solution. 
Step 6: Save the best solution among the m personal best solutions found. Call it gbest or 
global best solution. 
Step 7: Update cluster centers of each particle according to the cluster center values of the 
pbest and gbest solution, using Eqs. (8) and (9).  
Step 8: If the termination criterion is satisfied go to next step. Otherwise, go to Step 3. 
Step 9: Output the optimal solution. 

5. Swarm Intelligence and Simple Competitive Learning 

5.1 The Hybrid ACO-SCL Algorithm 

We apply the ACO to simple competitive learning algorithm and investigate its 
performance. Similar to our previous hybrid algorithms described in section 4, the 
pheromone and heuristic information are defined to satisfy the clustering criteria which 
include the similarity of data in each cluster, distinction of the clusters and compactness of 
each cluster. At the end of all iterations, the best solution is selected in the same way as what 
we used for the ACO-K-means algorithm.  
The ACO-SCL algorithm is described as follows. Let L denote the dimension of the input 
vectors, which for us is the number of spectral bands. We assume that a 2-D (N × N) output 
layer is defined for the algorithm, where N is chosen so that the expected number of the 
classes is less than or equal to N2. Here weights of the nodes contain cluster center values. 
Step 1: Initialize the number of clusters to K and the number of ants to m. Initialize 
pheromone level assigned to each pixel to 1 so that it does not have any effect on the 
probability using later at the beginning. 
Step 2: Initialize m sets of K different random cluster centers to be used by m ants. 
Step 3: Let each ant, assign each pixel Xn to one of the clusters (i), randomly, with the 

probability distribution Pi(Xn) given in Eq. (13) where heuristic information i(Xn) is
obtained from Eq. (14).
Step 4: For each input pixel the cluster center of the cluster which it belongs to is considered 
as the BMU. Calculate new cluster centers using: 

LitCxttCtC iiii ...,,1)),()(()()1(  (17) 
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where (t) is a monotonically slowly decreasing function of t and its value is between 0 and 
1. L is the number of spectral bands. 
Step 5: Save the best solution among the m solutions found. 
Step 6: Update the pheromone level for each pixel according to the best solution. The 
pheromone value is updated according to Eq. (15).
Step 7: Assign cluster center values of the best clustering solution to the clusters centers of 
all ants. 
Step 8: If the termination criterion is satisfied go to next step. Otherwise, go to Step3. 
Step 9: Output the optimal solution. 

5.2  The Hybrid PSO-SCL Algorithm 

The PSO-SCL algorithm which combines the PSO and SCL, is described as follows. Let L
denote the dimension of the input vectors, which for us is the number of spectral bands. We 
assume that a 2-D (N × N) output layer is defined for the algorithm, where N is chosen so 
that the expected number of the classes is less than or equal to N2. Here weights of the nodes 
contain cluster center values. 
Step 1: Initialize the number of clusters to K and the number of particles to m.
Step 2: Initialize m sets of K different random cluster centers to be used by m particles. 
Step 3: For each particle, let each pixel x belong to a cluster in which it has the smallest  
Euclidean distance to the centroid. 
Step 4: For each input pixel the cluster center of the cluster which it belongs to is considered 
as the BMU. Calculate new cluster centers using Eq. (17).  
Step 5: Save the best solution found so far performed by each particle. Call it pbest or 
personal best solution. 
Step 6: Save the best solution among the m personal best solutions found. Call it gbest or 
global best solution. 
Step 7: Update cluster centers of each particle according to the cluster center values of the 
pbest and gbest solution, using Eq. (8).  
Step 8: If the termination criterion is satisfied go to next step. Otherwise, go to Step 3. 
Step 9: Output the optimal solution. 

6. Simulation Results 

Experimental results from our proposed hybrid algorithms were compared with those of the 
K-means and the SCL algorithms, and discussed in this section. Since the SCL is very 
dependent on the learning rate, i.e. (t) in Eq. (17), we performed some experiments on 
choosing a value for (t). Considering that (t) is a monotonically slowly decreasing 
function of t and its value is between 0 and 1, we suggest the following formula: 

1

2.0
(t)

rt  (18) 

where t and r denote iteration and a rate which is a constant that we obtained by 
experiments, respectively. The experiments were performed over 20 run trials on several 
different images, for r from 10 to 50 incrementing by 10. Two of them reported in this 
chapter. Experiments showed better results for r = 10. Therefore, the experiment was 
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repeated similarly but this time for r from 1 to 10 incrementing by 1. This experiment 
showed better results for r between 1 and 5. In our experiments r is chosen to be 2. 

The ACO-K-means and ACO-SCL algorithms were shown to be dependant on 
parameterization as well. Parameters used in these algorithms, other than r include , Q, ,

, and . Parameters ,  and  are used to keep the values of  and  in the same order. 
Parameter Q controls the added amount of pheromone and  eliminates the influence of the 
earlier added pheromone. Considering that r should be between 1 and 5 from the previous 
experiment, r was chosen to be 2. Evaporation factor was set to be  = 0.8. According to the 
performance of the experiments, parameters  and Q were shown to have little influence on 
the results, while  and  were more influential. The parameter values tested were as 
follows:  =1000 and 10000, Q =10 and 100,  =0.1 to 50 incrementing by 10, and  =0.1 to 50 
incrementing by 10. Each experiment was performed for 20 run trials on each image. There 
were unacceptable results when  =0.1. There were good results when  =0.1, for images 
shown here but they were unstable. There were some sets of parameters that still did well 
for one of the images but not for the other. Knowing that  should be small while 
should not be small, we set up another experiment:  =1000 and 10000, Q =10 and 100, 
=0.1 to 2 incrementing by 0.1,  =50 to 5 decrementing by 5. All the results were 
acceptable but not all of them were stable. So in this experiment stability of the results 
was examined. Experimental results show that  should not be very large, otherwise it 
becomes unstable. When  is chosen to be 5 and  is between 0.1 and 2, the result showed 
to be more stabled. From these sets of experiments, the chosen parameters are as follows:  r
= 2,  = 0.8,  = 2,  = 5,  = 1000, and Q = 10. The number of ants was chosen to be m = 5. 

The PSO-K-means and PSO-SCL algorithms also include a set of parameters to be 
determined empirically. The parameters were chosen as suggested by (van der Merwe and 
Engelbrecht, 2003) which resulted in good convergence. Parameters were set as follows: c1 ,
c2 = 1.49 and  = 0.72. The number of ants was chosen to be m = 10. 

We examined the proposed hybrid algorithms and compared the results with those of the K-
means and the SCL algorithms in Figs. 2 to 5. Images used include flamingo, cubes, aurora 
and river. The number of clusters to be found in all images is 3 except for cubes which is 4. 
The most dominant results of the algorithms over 20 different run trials are presented. The 
improvement of the ACO and PSO on the K-means algorithm is obvious in all of the images 
tested. In cubes, flamingo and Aurora images it can be seen that the K-means algorithm has 
unstable results and in some cases it misses some clusters while the ACO-K-means and 
PSO-K-means algorithms are more stable and they clearly recognize the clusters. In the river 
image the results show that the K-means algorithm can generate stable results and the ACO-
K-means algorithm seems to be less stable, but it is apparent that even for this image, the 
ACO-K-means algorithm can improve the classification results. This is also the case with the 
ACO-SCL and PSO-SCL algorithms as opposed to SCL in Aurora image. Results on Aurora 
image clearly show that the ACO and PSO algorithms can improve the SCL in cases where 
the SCL algorithm is trapped into local optima. To further investigate the behavior of the 
algorithms described, we obtained the classification accuracy percentage of the results on 
the river image. Each algorithm is run 30 times on the river image, shown in Fig. 5 (a). Then ,  
by comparing the classification results with the ground truth data, shown in Fig. 5 (h), the 
error matrix for each classified image is calculated. The best, worst and average cases are 
shown in Fig. 6. The stability of the SCL algorithm over the ACO-SCL and the PSO-SCL 
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algorithms can be inferred from this figure. But, as it was stated before in the aurora image 
this stable result is not always a global optima. Similarly, it can be inferred from Fig. 6  that 
the K-means algorithm is more stable than the ACO-K-means algorithm  in the case of river 
image. Nevertheless, results of the ACO-K-means algorithm include some very good results 
with much higher classification accuracy percentage than those of the K-means algorithm.  

(a) (b1) (b2) (c) (d)

(e) (f) (g1) (g2) (g3)
Figure 2. The most dominant classified results among 20 runs (a) Original image, (b1 & b2) 
K-means (c) Hybrid ACO-K-means, (d) Hybrid PSO-K-means, (e) SCL, (f) Hybrid ACO-SCL, 
(g1, g2, & g3) Hybrid PSO-SCL 

(a) (b1) (b2) (b3) (b4)

(c) (d) (e) (f) (g)

Figure 3. The most dominant classified results among 20 runs (a) Original image, (b1, b2, b3

& b4) K-means, (c) Hybrid ACO-K-means, (d) Hybrid PSO-K-means, (e) SCL, (f) Hybrid 
ACO-SCL, (g) Hybrid PSO-SCL 
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(a) (b1) (b2) (c1) (c2)

(d) (e) (f) (g)

Figure 4. The most dominant classified results among 20 runs (a) Original image, (b1 & b2) K-
means, (c1 & c2) Hybrid ACO-K-means, (d) Hybrid PSO-K-means, (e) SCL, (f) Hybrid ACO-
SCL, (g) Hybrid PSO-SCL 

 (a) (b) (c) (d) 

 (e) (f) (g) (h) 

Figure 5. The most dominant classified results among 20 runs (a) Original image, (b) K-
means, (c) Hybrid ACO-K-means, (d) Hybrid PSO-K-means, (e) SCL, (f) Hybrid ACO-SCL, 
(g) Hybrid PSO-SCL, (h) The ground truth data 

Besides, the stability of the K-means algorithm over the ACO-K-means algorithm inferred 
from fig. 6, is a particular case, i.e. for the river image. The K-means algorithm is not stable 
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in general. In fact in the case of flamingo and cubes, ACO-K-means algorithm produced 
more stabled results compared to K-means algorithm. 
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Figure 6. Comparison of the results generated by algorithms using error matrix evaluation 
on the river image 

7. Conclusion 

Experimental results showed that SI techniques can improve the K-means and the SCL 
algorithms in recognizing the clusters. The K-means algorithm often fails to realize clusters 
since it is heavily dependent on the initial cluster centers. The ACO-K-means and PSO-K-
means algorithms provides a larger search space compared to the K-means algorithm. By 
employing these algorithms for clustering, the influence of the improperly chosen initial 
cluster centers will be diminished over a number of iterations. Therefore, these algorithms 
are less dependent on randomly chosen initial seeds and is more likely to find the global 
optimal solution. 
We have also shown that SI can be beneficial to the SCL algorithm. SI can help SCL find the 
global optima using the same parameter set and learning rate as those used in the SCL and 
recognize the clusters where the SCL fails to do, in some cases. This can be advantageous 
since for SCL to find the global optima the learning rate should be adjusted in the course of 
experimentation.
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