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Abstract

The litter size is an important trait in prolific species such as rabbits and pigs. However,
selection on litter size has had limited success in these species because of its low heritabil-
ity and sex-limited expression. The litter size is a complex physiological trait in prolific
species, affected by several components that are expressed sequentially, for example, ov-
ulation, fertilization, embryo development, and fetal survival. The selection for ovulation
rate or/and prenatal survival has been proposed to improve litter size indirectly. Howev-
er, these alternative methods have not reached the expected response rate. Implantation
is also a critical point in successful gestation, one-third to one-half of prenatal mortality
occurring during peri-implantation. The uterus must provide an adequate microenviro-
ment for the growth and development of embryo and for receptivity to implantation.
There are multitudes of cellular events involved in crosstalk between embryo and mater-
nal uterus during peri-implantation. A better understanding of molecular mechanisms af-
fecting the implantation process could help to propose new strategies for litter size
improvement in prolific species.

Keywords: Ovulation rate, embryonic survival, litter size, candidate gene, quantitative
trait loci (QTL)

1. Introduction

Litter size is a complex physiological trait in prolific species, being affected by several com-
ponent traits representing sequential events, e.g., ovulation, fertilization, embryo develop-
ment, and fetal survival. Fertilization rate is usually high, exceeding 90 to 95% in rabbit [1],
pigs [2], and mice [3]. Therefore, prenatal survival is considered a limiting factor of litter size.
Uterine capacity is an important component in prenatal survival [4; for a review address to 5].
Whenever the ovulation is not a limiting factor, this trait depicts the ability of the uterus to
support embryo development through gestation [6]. Approximately 30 to 40% of ova shed do
not result in fetuses at term in prolific species such as rabbits, pigs, and mice (see review [7])
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due to potentially viable embryos exceeds uterine capacity. One-third to one-half of these
losses occurs during peri-implantation in rabbits [8], pigs [9], and mice [10]. Preimplantation
embryo losses are mainly associated with embryonic viability [4], including chromosomal
abnormalities [11] and oviductal or uterine environment, particularly in relation with the
suitability of oviductal or uterine secretions [12]. The oviduct must provide an adequate milieu
for sperm capacitation, gamete fertilization, and the first embryo cleavages until the embryo
enters the uterus [13]. Many proteins that may contribute to these functions have been
identified in the oviduct, including the insulin-like growth factor 1 (IGF1) [14], oviductin
(OVGP1, known also as MUC9) [15], tissue inhibitor of metalloproteinase (TIMP1) [16],
plasminogen activator inhibitor 1 (PAI1) [17], uteroglobin [18], and leptin [19]. A progesterone-
primed uterus coordinates the embryo survival and receptivity. The asynchrony between
embryo development and uterine environment increases the number of dead embryos in the
peri-implantation gestational stage [20, 21].

Inrabbits, the period between pregnancy days 8 to 17 is critical for fetal survival, corresponding
to the stage when the hemochorial placenta of rabbit is established and the control of the fetal
nutrition is transferred to the placenta [22]. A secondary critical period for fetal survival occurs
between pregnancy days 17 and 24, accompanying the uterine enlargement, the increased
tension exerted on the spherical conceptus, and the reduction of blood flowing through the
maternal vessels of the uterus [23]. In this moment, the placenta should compensate these
limiting factors and increase its surface area for fetomaternal exchanges [24] and stimulate the
development of an adequate vascular network [25, 26]. In pigs, the distribution of mortality
after implantation is slightly different throughout pregnancy [9], the first peak occurring
between days 30 and 40 of gestation (10-15%) while the second peak is observed in the last two
weeks of gestation (5-10%). Despite the existing species differences, it is now accepted that
each embryo requires a minimum space in uterus to attach, survive, and develop. Thus, a
decrease in the availability of uterine space increases prenatal mortality in pluriparous species,
such as rabbits [4] or pigs [27], despite that the factors involved in the process may differ among
species. In pigs, the area of attachment between the placenta and endometrium is a limiting
factor of uterine capacity, due to its noninvasive placentation [9]. Thus, it was proposed that
uterine capacity in pigs could be defined more correctly as the total amount of placental mass
or surface area that a dam can support to term [28]. Earlier studies in pigs indicate that the
limiting influence of the uterine capacity is generally exerted after the day 30 of gestation and
that the effects of moderate crowding of embryos before day 30 could be compensated by
increased placental efficiency later in gestation (see review [29]).

2. Selection experiments for components of litter size

Litter size is an important economic trait in prolific species such as rabbits or pigs. However,
direct selection for litter size has not presented the success expected for these species (see
review [7, 30]), which may be due to the fact that it is a female sex-limited trait with low
heritability. The selection response for litter size has been established around 0.1 young per
generation in rabbits [31, 32] and pigs [33-36]. This response has been much lower than that
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reported in mice: 0.15 to 0.20 young per generation [37-40]. Recently, in pigs, a selection
experiment for litter size at day 5 after farrowing obtained a selection response around to 0.25
young per generation [41]. However, additional information on following generations will be
required to confirm this trend.

The leading components of litter size are the ovulation rate and the prenatal survival; these
parameters are also the limiting factors for the litter size improvement. For this reason,
selection for ovulation rate and prenatal survival has been proposed as an indirect approach
for increasing litter size. Selection for ovulation rate in prolific species, namely rabbits [42],
pigs [43-45], and mice [40, 46], were in fact successful to improve the ovulation rate, but it was
not convoyed by a corresponding increase in litter size in either pigs or rabbits, which was
attributed to an increase in prenatal loss.

The selection for prenatal survival in pigs [45] and mice [40] allowed to increase litter size in
both pigs and mice, but it was not more advantageous compared with the direct selection for
litter size. Besides, prenatal survival might be limited by uterine capacity, defined as the
maximum number of fetuses that a dam can support at birth when ovulation rate is not a
limiting factor [6]. However, the ability to establish this trait is not easily performed across
species, as it is dependent on the species physiology. In pigs, litter size in unilaterally ovario-
hysterectomized females may be considered an indirect measure of the uterine capacity in pigs
[6], since the remaining ovary nearly doubled its ovulation rate originating the fetal over-
crowding in the ipsilateral uterine horn. Conversely, in unilaterally ovariectomized female
rabbits and mice, which possess a duplex uterus that impedes intercornual transmigration, the
number of total fetuses would represent their uterine capacity [47, 48].

Selection experiments for increased uterine capacity failed to obtain the expected success on
litter size, in rabbits [8, 49], pigs [44], or mice [50]. Considering that uterine capacity in pigs
would be more appropriately measured using the total amount of placental mass or the surface
area that a dam can support to term as variables [28], a divergent selection experiment for
placental efficiency developed in this species achieved success [51]. However, selection for
increased placental efficiency will unlikely result in correlated increase in litter size [52].

A joint selection for ovulation rate and prenatal survival using an index would expectably
show a greater response on litter size, since these parameters are optimally weighted [53, 54].
In pigs [55] and mice [56], the use of this joint selection successfully increased litter size, but
the gain was lower than expected, probably due to a low precision of the estimated genetic
correlations or the use of inappropriate economic weights [57]. Alternatively, a two-stage
selection was proposed, which would be less affected by the precision of the genetic parame-
ters; its application to rabbits [58] and pigs [59] obtained greater response on litter size than
the observed in the other experiments of selection for litter size [31-36].

Selection for the environmental variability in litter size has been recently proposed as an
alternative method for increased litter size. A reduction in litter size environmental variability
would increase litter size heritability, and consequently its response to selection [60]. In rabbits,
the environmental variance of a doe was estimated as within-doe variance of litter size.
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Selection for environmental variance of litter size was successful [61], and as a consequence of
reducing litter size variability the litter size was increased due to higher embryo survival [61].

3. Genetic control before implantation

The maternal genome controls virtually all aspects of early embryo development, through
several maternal gene products such as mRNA and protein, which are loaded into the egg
during oogenesis. As development proceeds, two processes subsequently lead to the maternal-
to-zygotic transition (MZT) during which developmental control is transferred to the zygotic
genome: first, a subset of the maternal mRNAs is degraded; second, the embryonic genome is
transcriptionally activated. These maternal gene products play an important role in the
regulation of the first cleavages until embryonic genome is activated [62]. Zygotic genome
activation (ZGA) is a critical event determining the transition from maternal to embryonic
control of development. Disruption of these critical events by specific chemicals or environ-
mental factors results in irreversible arrest of embryo development [63]. ZGA has been shown
to be a species-specific phenomenon, occurring at 2-cell stage in mice [64], 4-cell stage in pigs
[65], and 8- to 16- cell stages in sheep, cows, or rabbits [66]. Many maternal-effect genes have
been identified initially in mouse during the MZT, and several of whom have been detected
posteriorly in rabbits and pigs.

Genome-wide gene activation in the zygote (ZGA) is regarded as crucial for preimplantation
embryonic development. Multiple maternal factors were identified on the regulation of ZGA,
which are listed in Table 1. Ablation of the gene encoding for these proteins results in embry-
onic arrest at cleavage-stage development.

These factors play critical roles in the regulation of embryo preimplantation development. For
example, DICER1 enzyme is required for completion of oocyte mitotic maturation, and oocytes
are arrested in metaphase of meiosis I when DICER1 gene is deleted [67, 68]. HSF1 protein is
required for oocyte maturation. Embryos produced in knockout females for this gene are
unable to proceed into the 2-cell stage after fertilization, possibly due to mitochondrial damage
and altered redox homeostasis [69, 70]. UCHL1 is an import factor in blocking polyspermy [71,
72]. AGO2 is involved in the destruction of maternally inherited transcripts and activation of
zygotic gene expression; knockout female for this factor is infertile because embryos fail to
undergo the first cleavage [73, 74]. Moreover, embryos from MATER, ZAR1, PADI6, and
SEBOX knockout females do not develop beyond the 2-cell stage embryo [75-82], and embryos
lacking SMARCA4, DNMT1, DNMT3A, TET, and KLF4 are unable to reach the 8-cell stage
[83-91]. BCLXL, HDAC1, and C-MYC exhibit maximum expression in 8-cell rabbit embryos
coinciding with start of ZGA [90]. Hence the peak expression of transcripts at ZGA might be
a requirement for embryo development. OCT4, NANOG, and SOX2 were co-expressed in
epiblasts, and the combinatorial expression of these three genes is critical for the embryo
development [92, 93].
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Symbol gene Name Effect References in
Mice* Rabbits and pigs
Endoribonuclease Dicer or helicase with
DICER1 Metaphase II [67] [68]
RNase motif
HSF1 Heat shock factor 1 Zygote [69] [70]
UCHL1 Ubiquitin carboxyl-terminal hydrolase L1 Zygote [71] [72]
AGO2 Argonaute 2 Zygote [73] [75]
MATERjor M 1 anti th. b i 2-cell [75] [76]
aternal antigen that embryos require -cell stage
NLRP5 8 Y q 8
ZAR1 Zygote arrest 1 2-cell stage [77] [78]
PADI6 Peptidylarginine deiminase type 6 2-cell stage [79] [80]
SEBOX Skin-embryo-brain-oocyte homeobox 2-cell stage [81] [82]
BRGI or
Brahma-related gene 1 4-cell stage [83] [84]
SMARCA4
DNMT1 DNA cytosine methyltransferase 1 4-cell stage [85] [86]
DNMT3A DNA cytosine methyltransferase 3 alpha 4-cell stage [87] [86]
TET1,2 and 3 Ten-eleven translocation (Tet) dioxygenases  4-cell stage [88]
KLF4 Kruppel-like factor 4 4-cell stage [89, 90]
BCLXL B-cell lymphoma-extra large 8-cell stage [89]
HDAC1 Histone deacetylase 1 8-cell stage [89]
Avian myelocytomatosis viral oncogene
C-MYC 8-cell stage [90]
homolog
NANOG The homeoprotein Nanog 16-cell stage [91] [84, 89, 93]
OCT4 or POU5F1 Octamer-binding protein 4 Morula [92] [89, 90, 93]
SOX2 SRY-box containing gene 2 Blastocyst [84, 89, 93]

* Using gene-knockout mouse models.

Table 1. Maternal genes acting on early fetal embryogenesis.

4. Genetic control during implantation

Implantation requires a complex interaction among the developing embryo, decidualizing

endometrium and developing maternal immune tolerance. For the successful implantation, it

is of upmost importance the synchronization between the acquisition of implantation compe-
tency by the blastocyst and a receptive state in the uterine endometrium, for which the
concurrence of the ovarian steroid hormones dynamics is crucial. The ovarian hormones
determine a complex interplay of locally produced molecules in the endometrium, including
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cytokines, growth factors, homeobox transcription factors, lipid mediators, and morphogen
genes that are involved in the complex process of implantation. The crosstalk between the
blastocyst and the uterusis limited in most mammal species for a brief period, named as window
of implantation. During this short period, in response to a viable embryo, the endometrium
responds through species-specific transformation of the superficial tissue architecture, a
process known as decidualization, allowing the organ to accommodate embryonic growth and
placentation. The decidua will function like a barrier, protecting the embryo against the
maternal immune system [see review 94].

Steroid hormones

The progesterone receptor (PR) was identified as one of the molecules that genetic polymor-
phisms were associated with the risk of implantation failure. The PR is encoded by PGR gene,
and has two isoforms, PRA and PRB, both of them are expressed in the uterus [94]. Studies in
mice showed that a deletion on PRA provokes severe abnormalities in ovarian and uterine
function and impairs implantation [94]. A study in rabbits reported that favorable allele of
PRG had an additive effect of 0.25 for implanted embryos and kits for litter size [95].

Estrogen receptor (ER) was also implied in uterine receptivity for embryo implantation. ER
presents two isoforms, known as ERa (encoded by ESRI gene) and ERf3 (encoded by ESR2
gene). In mice, knocking out the ERa gene leads to unsuccessful implantation [94]. In pigs,
favorable allele of ESR shows an additive effect between 0.45 and 0.75 piglets for litter size [96,
97]. In another hand, it has been shown that the ERBB receptor feedback inhibitor 1 (ERRFI1)
gene is involved with successful implantation, which was associated with its suppression of
ESR1 activity in the uterine epithelium, a crucial event for embryo implantation. Despite that
the ovaries of ERRFI1 knockout female mice show a normal morphology and steroidogenesis
function, its uterine horns do not develop an implantation site [98]. The steroid receptor
coactivators (SRC1 and SRC2) present distinct physiological functions in the female repro-
ductive system. For example, female mice lacking either SCR1 or SCR2 show progesterone
resistance and compromised decidualization, whereas deletion of both SCR1 and SCR2 genes
provoke infertility in female due to a complete blockage of decidualization [99], suggesting
that one of the steroid receptor coactivators may, at least in part, compensate the absence of
the other. Also the blockage of the repressor of estrogen receptor activity (REA), a significant
modulator of estrogen responsiveness, was reported to induce implantation failures [100].

Moreover, prostaglandins (PGs) play an important role in various reproductive processes,
including ovulation and implantation [101]. Cyclo-oxygenases (COX-1 and COX-2) are crucial
enzymes in the synthesis of various PGs. Females lacking COX-1 and COX-2 are infertile,
due to abnormalities in ovulation, fertilization, implantation, and decidualization [102]. A
study in pigs showed that favorable allele of COX-2 had an additive effect of 0.3 piglets for
litter size [103].

Cytokines

During the embryo implantation, the endometrium undergoes a dramatic transformation into
a specialized transitory tissue known as the decidua in species with invasive hemochorial
placenta, such as rodents and lagomorphs. In other species with no invasive placenta as pigs,
the changes in endometrium ought to allow the trophoblast and its supporting layer of
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extraembryonic mesoderm to contact successfully with the uterine epithelium. The placenta
surrounding the developing embryo facilitates the nutrient transfer and limits trophoblast
invasion. The endometrium is recognized as an important site of production of cytokines and
their receptors, which are also potential regulators of the phenotype and activation status of
the uterine-resident leukocytes. Leukocytes infiltrated in the endometrium are required for
the immunotolerance pathways that allow the maternal organism to accommodate the
conceptus during implantation and placental development. Several cytokines, such as the
macrophage colony-stimulating factor 1 (CSF1, also known as M-CSF), granulocyte colony-
stimulating factor (CSF3, also known as G-CSF), and granulocyte-macrophage colony-
stimulating factor (CSF2, also known as GM-CSF), are implicated in the recruitment and
phenotypic regulation of the abundant populations of endometrial macrophages, granulo-
cytes, and dendritic cells. These cytokines appear to be related to the successful embryo
implantation and placental growth [104]. Also leukemia inhibitory factor (LIF), interleukin-6
(IL-6) and interleukin-11 (IL-11), and its receptor (IL-11Ra) have unquestionable roles in the
implantation process [105-107]. Studies in pig have reported an association between certain
polymorphisms in LIF gene with the number of piglets [108-111].

Growth factors

The epidermal growth factor (EGF), heparin-binding epidermal growth factor-like growth
factor (HB-EGF), the vascular endothelial growth factors (VEGFs), the IGF-I and IGF-II as well
as the IGF-binding protein-1 (IGFBP-1) are important factors for implantation. It was shown
that EGF plays a critical role in trophoblast invasion, differentiation, and proliferation. EGF
deficiency during pregnancy causes intrauterine growth retardation or abortion [112], while
the deletion of epidermal growth factor receptor (EGFR or ERB1) gene causes failure in the
embryo development and the placenta formation [113]. Likewise, other factors involved in the
implantation process, such as HB-EGF, are expressed in endometrial stromal and epithelial
cells. It has been demonstrated that HB-EGF regulates endometrial cell proliferation, glandular
epithelial secretion, and decidual transformation [113]. Gene knockout studies reveal that
deletion of HBEGF reduces litter size [114].

VEGEF is an endothelial-cell specific mitogen in vitro, and it is the main factor responsible for
de novo blood vessel formation (vasculogenesis) and angiogenesis in vivo [115]. Proper level
of VEGF expression is required for implantation [116]. Many critical cell responses, including
mitogenesis, proliferation, growth, differentiation, and angiogenesis, are mediated by IGF-I
and IGF-II [117]. Both IGF-I and IGF-II are necessary to maintain normal embryonic growth
rates [117]. In addition, higher expression of IGF1 mRNA has been observed during the peri-
implantation period in mouse uterus [118]. Also in rabbit, it has been observed that IGF-II
receptor plays an important role in embryo development and its implantation [119].

Transcription factors

Homeobox genes are transcriptional regulators evolutionarily conserved that control embryonic
morphogenesis and differentiation [120]. Homeobox A (HOXA10 and HOXA11) and H6
homeobox 3 (HMX3) genes are expressed in uterine stromal cells during the receptivity period,
and upregulated upon decidualization in response to steroid hormone stimulus. Ablation of
HOXA10, HOXA11, or HM X3 genes leads to implantation defects [121-123]. MSX1 (also known
as HOX7.1) and MSX2 also belong to homeobox genes, and deletion of both genes results in
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female infertility due to altered uterine polarity and integrity of the surface epithelium [124].
The Kruppel-like transcription factors (KLFs) are implicated in diverse cellular processes,
including proliferation, differentiation, and apoptosis. The Kruppel-like factor 5 (KLF5), one
of these transcription factors, is essential for the establishment of uterine receptivity [125], and
its depletion induces implantation failure [126]. KLF9 is another KLF that plays an important
role in blastocyst attachment; its loss reduces female fertility due to defective implantation
[127]. The transcription factor named heart and neural crest derivatives-expressed transcript
2 (HAND?2) and its protein are present in endometrial stromal cells adjacent to the surface
epithelium in the uterus prior to the onset of implantation [128], suggesting that they may play
a key role in uterine receptivity in mice [129]. Forkhead box protein A2 (FOXAZ2) is only
expressed in the glandular epithelium of the uterus, and FOXA2 deficiency affect the endo-
metrial gland formation and decidualization [130]. Deletion of chicken ovalbumin upstream
promoter transcription factor II (COUP-TFII), which is mainly expressed in uterine stromal
cells, originates implantation failure due to disrupted uterine receptivity associated with high
estrogen activity [131].

Morphogen genes, lipid mediatiors, integrins, mucins, and others molecules

Proteins belonging to the transforming growth factor beta superfamily (TGF-p), Wingless
(WNT), Hedgehog, and Notch have been identified as morphogens. Morphogens act directly
on angiogenesis, cell growth, pattern formation, embryo development, metabolic regulation,
cell migration, and tissue repair, while also presenting neurotropic effects. Five TGF-s have
been identified, of which TGF-f1, 2, 3 are abundant in mammals. However, only TFG-{31
appears to limit the number of implanted embryos [132]. Activins are also members of the
TGE-B superfamily that participate in the regulation of several biological processes, including
cell differentiation and proliferation, apoptosis, and the immune response [133]. Activin A
plays an important role in the implantation of embryos in rabbits and mice, promoting
decidualization and preventing the activation of T cells [134]. Among all bone morphogenetic
proteins expressed in the uterus, only BMP2 shows intense expression in the stromal cells
surrounding the implanted embryo under response to progesterone [135]. In vitro studies in
undifferentiated stromal cells demonstrated that silencing the expression of BMP2 efficiently
blocks the decidualization [136]. Deletion of NODAL gene was accompanied by severe
malformation of the maternal decidua basalis during placentation and increasing fetal losses
before birth [137]. Several components of WNTs signaling pathway are spatiotemporally
regulated in the peri-implantation uterus and are crucial to implantation. The absence of
WNT4, WNT5a, and WNT7a in the uterus induces defective embryo implantation and
subsequent decidualization failure [138-140], while deletion of WNT7b gene provokes fetal
losses during mid-gestation, due to failure of chorioallantoic fusion [141]. Indian hedgehog
(IHH) is a member of the Hedgehog family. It has been reported that conditional deletion IHH
protein in the uterus results in implantation failure [142]. Activation of smoothened (SOM),
another member of the Hedgehog family, provokes hypertrophy in uterus along and conse-
quently failure to decidual response [143]. The NOTCH1 is responsible for cell survival, cell-
to-cell communication, differentiation, and all fundamental processes for successful
decidualization [144].

The blastocyst has a significant number of cannabinoid receptors (CB1) that are activated by
the anandamide (AEA) produced in the uterus. It has been found that the levels of AEA are
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lower in the receptive uterus and at implantation sites than in the non-receptive uterus or at
inter-implantation sites. These findings suggest the need for low AEA levels to activate uterine
receptivity [145].

The integrin family of cell adhesion molecules is a major class of receptors for the extracellular
matrix. They have many functions in cellular processes including differentiation, apoptosis,
and attachment [146]. Previous studies have demonstrated that integrins exhibit distinctive
expression patterns in different phases of uterine receptivity. Both a481 and avf33 integrins
are present in uterus at the time of implantation, and intrauterine inhibition of these two
molecules results in defective implantation [147, 148].

Symbol gene Name Effects References
Morphogens
Transforming growth factor Failures in immunotolerance during embryo
TFG-B1 [132,133]
betal implantation

Limiting decidualization, and no preventing
INHBA Activin A [134]
activation of T cells

BMP2 Bone morphogenetic protein 2 Block the decidual reaction [135, 136]

Abnormal decidua basalis at midgestation
NODAL NODAL [137]
and aberrant placental development

WNT4, WNT5A4, Wingless-related MMTV . ) o )

WNT7A and WNTZE  integration site 4, 5a, 7, 7b. Implantation and decidualization failures [138-141]

IHH Indian hedgehog Implantation failure [142]
Uterine hypertrophy with the reduction in the

SMO Smoothened number of uterine glands and impaired [143]
decidualization

NOTCH1 Notchl Failure in decidualization [144]

Lipid mediators

AEA Anandamide Uterine receptivity [145]

Integrins

ITGA4/ITGB1 a4p1 integrin Implantation and decidualization failures [146, 147]

ITGAV/ITGB3 av3 integrin Implantation and decidualization failures [146, 148]

Mucins

MUC1 Mucin 1 Embryo attachment failure [149, 151]

OVGP1 or MUC9 Oviductal glycoprotein 1 Fertilization and implantation failures [152]

Other molecules

CTNNBI1 [-catenin Defects in embryonic ectoderm cell layer [153-154]

Comprised decidualization;
CX43 or CJA1 Connexin 43 [155]
neovascularization defects

Table 2. Genes considered as critical to implantation.
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Mucins also participate in the decidualization process. For example, mucin (MUC1) has been
identified as an effective barrier that prevents embryo attachment to the uterine epithelium.
Uterine MUC1 expression declines to undetectable levels prior to blastocyst attachment,
reinforcing the impression that loss of MUC1 contributes to the establishment of a receptive
uterus [149-151]. Other oviductal glycoprotein, as OVGP1 or MUCY, seems to affect the
differentiation of endometrial and fetal cells by paracrine pathway, inhibiting the implantation
and fetal development [152]. The active beta-catenin (CTNNB1) is only detected in morula and
early blastocyst stages, its signal disappearing as soon as the blastocyst hatches from the zona
pellucida [153]. Furthermore, deletion of CTNNB1 gene provokes severe gastrulation defects
that results in embryonic lethality [154]. Connexin 43 (CX43, also known as GJA1) is a major
gap junction protein that is markedly expressed in the uterine stromal cells surrounding the
implanted embryo during early pregnancy. Deletion of CX43 gene leads to aberrant differen-
tiation of uterine stromal cells, preventing the secretion of angiogenic factors, such as the VEGF.
As consequence, the development of new blood vessels within the uterine stromal compart-
ment suffers a striking impairment, resulting in the arrest of embryo growth and early
pregnancy loss [155]. All these critical genes on successful implantation are listed on Table 2.

5. Approaches for identifying genes in pigs and rabbits

In pigs and rabbits, genetic markers associated with reproductive traits have been identified
through two complementary approaches. The first approach has been performed through
unbiased genome scans with anonymous DNA markers, such as microsatellites and more
recently with thousands of single nucleotide polymorphisms (SNPs), which have been used
to identify quantitative trait loci (QTL) with effects on reproductive traits. Genome-wide
scanning usually proceeds without any presuppositions regarding the importance of specific
functional features of the investigated traits. Until now, a total of 28 suggestive QTL have been
reported on pig chromosomes (SSC) 2, 6, 7, 8, 11, 12, 14, 15, 16, 17, and 18 for litter size
[156-165],0nSSC 1,2, 3,4,5,6,7,8,9, 10, 13, 14, 15, 16, 17, and 18 for ovulation rate [165-171],
and on SSC8 for the uterine capacity and prenatal loss [159, 166, 168].

In the second approach, the physiological role of candidate gene is known, and the gene is
scanned for polymorphisms and associations to variations within the trait. Numerous genes
have been evaluated as candidate genes affecting litter size in pigs, such as the estrogen
receptor (ESR) [95-97], retinol binding protein 4 (RBP4) [172], gonadotrophin-releasing
hormone receptor (GNRHR) [173], osteopontin (OPN) [174], folate-binding protein (FBP) [175],
mitogen-activated protein kinase 3 (MAP3K3) [176], vascular endothelial growth factor
receptor (KDR) [176], ERBB2 interacting protein (ERBB2IP) [176], and peroxisome proliferator-
activated receptor delta (PPARD) [176]. Another candidate genes have been found for
progesterone receptor (PRG), TIMP1, oviductal glycoprotein 1 (OVPGI), hydroxysteroid-17-
beta- dehydrogenase 4 (HSD17B4), endoplasmic oxidoreductin-1-like protein (ERO1L), and
octamer-binding transcription factor 4 (OCT4) in rabbits [177-181]. However, associations of
these genes with litter size are always population specific, and the causative mutations
underlying litter size remain unexplored.
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DNA microarray is a new powerful tool for studying the molecular basis of interactions on a
scale thatis impossible using conventional analysis, making possible to examine the expression
of thousands of genes simultaneously. In order to expand the understanding of the biological
processes involved in the success of female reproduction, several studies in gene expression
were developed in pigs targeting to identify the changes in ovaries [182, 183] and the endo-
metrium at implantation [184-191]. For example, after selecting for 11 generations using an
index of ovulation rate and embryonic survival, followed by 7 generations of selection for litter
size, a total of 71 differentially expressed genes were identified in ovarian tissues of the selected
and control lines at days 2—-6 of the follicular stage of the estrous cycle [182]. Many of these
genes had not been previously associated with reproduction. From these genes, 59 were
homologous to genes of known function, 5 had no known matches in GenBank, and 7 were
homologous to sequences of unknown function. Among the differentially expressed genes
identified were those associated with the transport of cholesterol in ovarian follicles and the
synthesis of steroids, such as collagen type I receptor (CD36L1, also known as scavenger
receptor class B typeI). The experiment also showed the importance of studying the expression
of all these genes at different times of estrous cycle. For instance, genes of steroidogenic acute
regulatory protein (STAR), 3-B-hydroxysteroid dehydrogenase (36HSD), were overexpressed
in higher producing pig ovaries at day 2 of analysis, while were underexpressed at day 3. In
contrast, plasminogen activator inhibitor 1 (PAI1) and cytochrome P450 17-a-hydroxylase
(CYP17) were overexpressed at day 3.

In a different study, 189 genes were found to be differentially expressed in the ovaries of
pregnant pigs with high and low prolificacy, of which 72 were overexpressed in the high
prolificacy group, while 133 of them were overexpressed in the low prolificacy group [183].
These genes appear to cluster in three main biological processes: the first group would be
related to the immune system response activation against external stimulus, the second group
included integrated genes that regulate maternal homeostasis by complement and coagulation
cascades, and the third was involved in lipid and fatty acid enzymes of metabolic processes
of the steroidogenesis pathway. Among validated genes, 2-5-oligoadenylate synthetase 1
(OAS1) was found overexpressed in high prolificacy females, while a family with sequence
similarity with 46 member C (FAM46C), secreted phosphoprotein 1 (SPP1), thiosulfate
sulfurtransferase (TST), and vitronectin (VTN), were reported overexpressed in low prolificacy
females.

Recent microarray analysis revealed more than 2000 differentially expressed genes in endo-
metrium between pregnant and cyclic pigs at the time of implantation, i.e., on days 12 [186],
13 [191], 14 [187], 15[188], 16 [192], 18 [191], or 24 [191] of gestation. Most genes were involved
in cell motility as well as apoptosis, transporter activity, calcium ion binding, lipid metabolic
processes, hormone activity, vascular development and proteolysis, immune response. The
identified and validated genes that are upregulated included ADAM metallopeptidase with
thrombospondin type 1 motif 20 (ADAMTS20), mucin 4 (MUC4), leukemia inhibitory factor
receptor alpha (LIFR), interleukin 6 receptor (IL6R), interferon regulatory factor 1 (IRF1),
immunoresponsive 1 homolog (IRG1), secreted phosphoprotein 1 (SPP1), osterocrin (OSTN),
nuclear receptor interacting protein 1 (NRIP1), proteolipid protein 1 (PLP1), signal transducer
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and activator of transcription 1 (STAT1), serpin peptidase inhibitor, clade B (ovalbumin),
member 7 (SERPINB?), s100 calcium binding protein A 9 (5100A9), Erb-B2 receptor tyrosine
kinase 3 (ERBB3), and fibroblast growth factor 9 (FGF9). Contrasting, mucin 5AC, oligomeric
mucus/gel-forming (MUC5AC), interleukin 11 receptor alpha (IL11RA), interleukin 24 (IL24),
brain and acute leukemia cytoplasmic (BAALC), defensin beta 1 (PBD-2), defensin beta 1
(PBD-2), cadherin 17 1i (CDH17), FXYD domain containing ion transport regulator 4 (FXYD4),
G protein-coupled receptor 83 (CPR83), and fibroblast growth factor receptor 3 (FGFR3) are
downregulated [182-187, 191]. Litter size is controlled by a large number of genes.

Improvement in litter size has become one main objective of selection in pig and rabbit
breeding programs. However, litter size is a complex trait, because it is controlled by numerous
genes in complicated physiological networks such as those affecting ovulation rate, embryo
survival, and uterine capacity. The genomic approaches, both QTL mapping and candidate
gene analysis, have helped increase understanding in genetic control of litter size. Moreover
newly developed tools based on DNA microarray techniques appear to be useful for in-depth
understanding of the genetics of litter size in pigs and rabbits. A better understanding of
genetic mechanisms controlling litter size could help to design more efficient selection
strategies in improvement of this trait.
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