
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 1

Microwave Power Measurements: Standards and
Transfer Techniques

Xiaohai Cui, Yu Song Meng, Yueyan Shan and
Yong Li

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/60442

Abstract

In this chapter, precision power measurement, which is probably the most important
area in RF and microwave metrology, will be discussed. Firstly, the background of RF
and microwave power measurements and standards will be introduced. Secondly, the
working principle of primary power standard (i.e., microcalorimeter) will be descri‐
bed, followed by the discussions of direct comparison transfer technique. Finally, there
will be some discussions about the performance evaluation and uncertainty estima‐
tion for microwave power measurements.

Keywords: Direct comparison transfer, Microcalorimeter, Primary standard, RF and
microwave power, Thermistor mount

1. Introduction

Recently, there are growing interests in higher frequency such as microwave and millimeter-
wave applications, which is becoming a promising solution for satellite communications [1, 2]
and millimeter-wave mobile backhauling [3]. For proper deployments of these applications and
services, accurate and reliable signal power measurements are essential and important for system
designers. Normally for the end users (i.e., system designers), microwave and millimeter-
wave power measurements are highly relied on a conventional power detector and power meter
combination or a spectrum analyzer. These measuring instruments have to be properly calibrated
with traceability to the International System of Units (SI) for assuring the quality of measure‐
ment results as required by the industry.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



As stated in ref. [4], the traceability of measuring instruments shall be achieved by means of
an unbroken chain of calibrations or comparisons linking to relevant primary standards of the
SI units of measurement as illustrated in Figure 1. The link to SI unit could be realized by a
primary standard developed and maintained by a national metrology institute (NMI) such as
the National Institute of Metrology (NIM) of China and the National Metrology Centre (NMC),
A*STAR of Singapore. For RF, microwave, and millimeter-wave measurements and standards,
power measurement has been recognized as one of the primary areas [5] and probably the
most important research area by the NMIs. For simplicity in the rest of this chapter, microwave
measurement will be synonymous to “RF, microwave, and millimeter-wave measurement.”
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Figure 1. Typical traceability chain of RF, microwave, and millimeter-wave power measurements.

In the following, we will firstly give a background of microwave power measurements and
standards. Secondly, a primary power standard (e.g., a microcalorimeter) will be discussed
with recent developments at NIM, China. This will be followed by the discussions of the
working principle of the microcalorimeter measurement system. The direct comparison
transfer technique will be then introduced, together with some improvements at NMC,
A*STAR of Singapore. Finally, performance evaluation and uncertainty estimation for
microwave power measurements will be discussed.

2. Background of Power Measurements and Standards

Basically, microwave power can be measured by the combination of a power detector and a
power meter, as shown in Figure 2. The power detector is a key instrument for power
measurements, and its function is to convert high-frequency (i.e., RF, microwave, and
millimeter-wave or higher) power to a direct current (DC) or low-frequency signal that a power
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meter can measure with a display. Different working principles and fabrication techniques
have led to several power detectors that have been widely used in commercial applications.
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Figure 2. Microwave power measurements in the combination of a power detector and a power meter.

2.1. Commercial Power Detectors

Three main types of power detectors have been commercially available, which are designed
and based on the bolometric element, thermoelectric element, and diode. The respective
working principles behind are through

1. substituting DC power for RF power (bolometric type),

2. representing a thermally generated voltage for RF power (thermoelectric type), or

3. using the rectification property to convert RF power to DC voltage (diode type).

It is noted that each type of power detector indicated above has its own strengths and weak‐
nesses for its application. In the early days [5], the diode detector was very sensitive to ambient
temperature and also with a poor linearity, and therefore, it was rarely adopted as a transfer
standard. Most of the NMIs have been continuously using bolometric detectors (i.e., bolome‐
ters) as transfer standards, since they are very nearly linear when used with a primary power
standard (e.g., a microcalorimeter [6]) through the DC substitution technique. Bolometric
detectors can also offer an extremely high long-term stability with a very low measurement
uncertainty [7, 8].

However, a bolometric detector normally has a narrow dynamic range and limited power
capability (e.g., with a power range from 10 μW to 10 mW [7]). Additionally, its productions
have been discontinued, accompanying a new industry production trend toward other types
of power sensors (e.g., diodes and thermocouples). Some NMIs therefore have attempted to
use thermoelectric detectors (e.g., thermocouples) as the transfer standards [9], which are linear
with a better sensitivity and dynamic range. Performance comparison between bolometric and
thermoelectric sensors has recently been reported in ref. [10] using the same microcalorimeter.
The results revealed that the two power standards (bolometric and thermoelectric sensors) in
the comparison can be considered equivalent.

In the following, the bolometric detector as the transfer standard will be introduced, since it
has been widely used by most of the NMIs including NIM of China and NMC, A*STAR of
Singapore. Its calibration using a microcalorimeter will be focused upon and described.

Microwave Power Measurements: Standards and Transfer Techniques
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2.2. Reference Power Standard: Bolometer

Bolometers have a very high reliability and have been used as the reference power standards
in most of the NMIs, together with a microcalorimeter. A bolometer consists of a small
temperature-sensitive resistor. It is operated by changing its own resistance following a change
in its temperature resulted from the incident microwave power being dissipated in the
bolometric element.

Two types of bolometers have been commonly used, namely, barretter and thermistor. The
barretter is a thin metal wire with a positive temperature coefficient of resistance, and the
thermistor is a small bead of semiconductor material with a negative temperature coefficient
of resistance [11]. It is noted that the thermistor is more sensitive than the barretter due to a
much greater temperature coefficient, but it has a slower response time due to its larger thermal
time constant [12].

The thermistor is therefore more popularly used. Typically, a thermistor bead has a diameter
of around 0.05–0.5 mm with a small-size (diameter of 15–100 μm) metal wire embedded inside.
A waveguide or coaxial termination that houses a thermistor with an internal matching circuit
to obtain specified impedance conditions (e.g., 100 Ω or 200 Ω) with appropriate DC bias power
applied [11] is called a thermistor mount. The schematic diagram of a popular type of wave‐
guide thermistor mount is shown in Figure 3, and some samples of waveguide thermistor
mounts used at NIM, China, are shown in Figure 4.

Flange
Bar

Bar

Thermistor

Thermistor
DC connection

Microwave

power

Figure 3. One popular type of waveguide thermistor mount.

Figure 4. Waveguide thermistor mounts.
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2.3. Primary Power Standard: Microcalorimeter

At present, calorimeters have been accepted as the basis of primary standards for microwave
power measurements and calibrations within the NMIs or the standards laboratories [5].
Among several different types of calorimeters (e.g., dry load calorimeters and flow calorime‐
ters [8]), microcalorimeters [13, 14] have been popularly used. The microcalorimeter technique
is based on the DC substitution method, and its traceability is established through the principle
of “thermal effect equivalence.” It allows the experimental determination of effective efficiency
of thermal power sensors (i.e., bolometric and thermoelectric sensors).

HeaterThermopile

DUT

Dummy

Interface

Thermal Isolation

Waveguide

Thermistor

Figure 5. Prototype of a waveguide microcalorimeter with twin-line structure.

Figure 5 presents the design and configuration of a waveguide microcalorimeter, which is
China’s national primary power standard developed and maintained at NIM, China, for the
thermistor mount [device under test (DUT) in this case] measurements [15–18] through the
DC substitution technique (i.e., applied microwave power is compensated by an appropriate
reduction of DC power). As shown in Figure 5, the design of a waveguide microcalorimeter
at NIM, China, is based on a twin-line structure with a symmetrically located inactive mount
(i.e., a “dummy” thermistor mount) as the temperature reference. A thermopile is attached in
between to monitor the temperature difference, when the microcalorimeter is in operation with
a thermistor mount (DUT). With the same DUT and dummy mounts, nearly the same thermal
transmission paths could be achieved and therefore produce almost identical response to the

Microwave Power Measurements: Standards and Transfer Techniques
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ambient temperature at both the terminals of the thermopile. This twin-line design makes the
microcalorimeter less affected by the ambient temperature. More specifically, it could
effectively reduce the influence of a long-term ambient temperature drift on the measurement
results.

The core part of the microcalorimeter as shown in Figure 5 consists of a base extension, two
thermal isolation sections (TIS), and two interface plates. The DUT is attached to a standard
waveguide flange on the interface plate with screws that pass through all the three core
components. The TIS is about 6 mm thick and is made of gold-coated ABS plastic so that the
waveguide section has little loss. A thermistor has been embedded into the TIS for monitoring
its temperature rise due to unexpected power consumption within the thermal isolation
waveguide. A sample of fabricated WR-22 waveguide microcalorimeter at NIM, China, is
shown in Figure 6.

Heater

Interface

TIS

Thermistor

Thermopile

Dummy DUT

Figure 6. Fabricated WR-22 waveguide microcalorimeter at NIM, China.

3. The Working Principle of Microcalorimeter

The microcalorimeter is used to measure the effective efficiency ηe of a thermistor mount which
serves as the reference standard for power measurements. The effective efficiency ηe of a
bolometer unit (e.g., a thermistor mount) is defined as the ratio of the changes in the DC-
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substituted power Psubto the total microwave power Prf dissipated within the bolometer unit,
as specified in ref. [11]. That is,

.sub
e

rf

P
P

h = (1)

It is noted that, in practice, the effective efficiency ηe of a thermistor mount is determined using
the DC substitution technique with a microcalorimeter, in conjunction with a self-balancing
bridge circuit.

3.1. DC Substitution Technique

The DC substitution technique has been implemented through automatically reducing the DC
bias power to keep the operating resistance of a thermistor constant, when the microwave
power is applied to the thermistor mount. Ideally, if the applied microwave power is totally
absorbed by the thermistor element and the thermistor also has the same thermal reaction for
DC and microwave power, Psub = Prf. Thereby, ηe = 1.

However, practically, there are some existing losses in the input transmission line, the mount
structure, and others. For example, as shown in Figure 7, some unexpected power consump‐
tions could be on the wall of the thermistor mount (Pw) and within the thermal isolation
waveguide (Pi), besides the net power Prft dissipated on the thermistor bead. It is noted that
practically the net power Prft is very difficult/impossible to be measured and is represented by
the compensated DC power (i.e., DC-substituted power Psub). These effects can result in a
measurement error, which is normally characterized as the mount efficiency. Moreover, the
thermistor bead has a different thermal reaction and power distribution for DC and microwave
powers and can cause a microwave-to-DC (or RF-to-DC) substitution error. Both the mount
efficiency and the microwave-to-DC substitution error shall be considered in the correction
factor g of a microcalorimeter for accurate effective efficiency determination.

Pw

TIS

Pi

Prft

Figure 7. Main power absorptions when calibrating a thermistor mount using a microcalorimeter.

The DC substitution requires a self-balancing bridge circuit to work with the thermistor mount
for keeping its operating resistance RT constant, when the microwave power is applied.

Microwave Power Measurements: Standards and Transfer Techniques
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Figure 8 shows a typical self-balancing bridge circuit for maintaining RT. The initial resistance
RT of a thermistor is normally at 200 Ω (or 100 Ω for different types of thermistor mounts) with
a DC bias. When the microwave power is fed to the thermistor, RT will change due to the
temperature rising of the thermistor. The DC bias power has to be reduced to balance the bridge
circuit. It is noted that the reduced amount of DC-biased power is proportional to the micro‐
wave power Prft applied onto the thermistor bead.

Thermistor

Amp

Microwave Power Prf

V

RT

R2R1

R3

Figure 8. An example of a self-balancing bridge circuit for monitoring the resistance change in a thermistor mount.

3.2. Operation of a Microcalorimeter

A Type IV power meter has been fabricated at NIM, China, for realizing the DC substitution
technique with a self-balancing bridge circuit inside. It works with the thermistor mount in a
closed loop to keep RT constant. The internal circuit of the NIM-manufactured Type IV power
meter for calibrating the thermistor mount is shown in Figure 9.
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Figure 9. Internal circuit diagram of the NIM-manufactured Type IV power meter for measuring the thermistor mount.
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Figure 10 presents a complete operation setup for thermistor mount measurements and
calibrations using a microcalorimeter at NIM, China. The microcalorimeter is sealed within a
watertight housing and then is placed inside a water bath. The water bath has a very good
thermal stability with a temperature fluctuation of less than 1 mK. During the measurements,
signal source, digital voltmeter (DVM), nanovoltmeter (NVM), DC reference (DC Ref), and
Type IV power meter were controlled by a computer for automation.

The measurement system is used to determine the DC bias voltages (V1 and V2) and thermopile
outputs (e1 and e2) when the applied microwave power is off/on and the system reaches the
thermal equilibrium. A typical output curve from the thermopile is also shown in Figure 10
as a reference when the applied microwave power is off/on. With V1, V2, e1, e2, and correction
factor g of a microcalorimeter, the effective efficiency ηe can be determined.

3.3. Measurement and Calibration Model

From the definition, the effective efficiency ηe of the thermistor mount is

.sub sub
e

rf sub dw

P P
P P P

h = =
+ (2)

Here, the total microwave power Prf dissipated within the thermistor mount includes the DC-
substituted power Psub on the thermistor bead and the total loss Pdw (including the loss Pw on
the wall of the thermistor mount and some portion of unsubstituted power). The DC-substi‐
tuted power Psub can be estimated through the DC bias voltages V1 and V2, as

DVM DC Ref

NIM Type IV

power meter

NVM

Watertight housing

Water bath

RF ONRF ON

RF OFF

2 hrs

Source

Figure 10. Schematic diagram for microcalorimeter measurements inside a water bath.
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The loss Pdw contributes to the portion of thermopile output change (∆e = e2 − e1) due to the
temperature rising. The thermopile output change ∆e has the following relationship:

( ).dw ie P cPD µ + (4)

The coefficient c is the weighted thermal factor due to the loss Pi within the thermal isolation
waveguide onto the thermopile output. If the loss is uniformly distributed along the axial
direction of the thermal isolation waveguide (typical case), c = 0.5.

Taking into consideration all the contributions from heat dissipated in different locations (such
as the mount wall, TIS) of a microcalorimeter into its correction factor g, the effective efficiency
ηe of thermistor mount at each frequency of interest can be calculated using the following
recommendation [14]:

2

2

1
,2

2 2

1 1

1
.e e unc

V
V

g g
e V
e V

h h

æ ö
- ç ÷
è ø= =
æ ö

- ç ÷
è ø

(5)

Here, ηe,unc is the uncorrected effective efficiency, and g is the correction factor, which is the
most important characteristic of a microcalorimeter. Several different techniques have been
proposed in refs. [17–20] for evaluating the correction factor g, in order to determine the
effective efficiency of the reference standard, thermistor mount, accurately. It is noted that
sometimes the calibration factor K of the thermistor mount is of interest for applications. The
calibration factor K can be derived from the effective efficiency ηe, as

( )21 .eK h= - G (6)

Here, Γ is the input reflection coefficient of the thermistor mount.

4. Transfer Technique: Direct Comparison

The parameter of a reference power standard such as a thermistor mount can be transferred
to the DUT sensor by means of the direct comparison transfer technique, which was proposed
and summarized by the National Institute of Standards and Technology (NIST) of USA [21,
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22]. Figure 11 presents a basic idea of the direct comparison transfer for waveguide microwave
power sensor calibration.

Monitoring power

sensor with meter

Port 3

Port 2

KSTD, ηSTD
ΓSTD

KDUT, ηDUT
ΓDUT

Coupler
Microwave

Synthesizer

ΓEG

Reference Sensor

with Meter

DUT Sensor

with Meter

Figure 11. Calibration of a waveguide power sensor by means of direct comparison transfer using a coupler.

The system consists of a microwave synthesizer and a three-port directional coupler which is
used to minimize the source mismatch [23]. As shown in Figure 11, a monitoring power sensor
with a meter is connected to Port 3 of the coupler. The effective efficiency ηDUT and the
calibration factor KDUT of a DUT sensor are measured by alternately connecting a reference
power standard (e.g., a thermistor mount with the effective efficiency ηSTD and the calibration
factor KSTD) and the DUT to Port 2 of the coupler. For the setup shown in Figure 11, the
connectors of the DUT and the reference standard are kept the same. It is noted that for coaxial
application, the coupler shall be replaced using a three-port power splitter.

The calibration factor KDUT of the DUT sensor can be determined through

2
3

2
3

1
.

1
DUT EGDUT STD

DUT STD
STD DUT STD EG

P PK K
P P

- G G
= ´ ´ ´

- G G
(7)

Here, PDUT and P3DUT are the powers measured at Port 2 using the DUT sensor and that at Port
3 using a monitoring power sensor, respectively. PSTD and P3STD are the powers measured at
Port 2 using the reference standard (e.g., a thermistor mount) and that at Port 3 using the same
monitoring power sensor. ΓSTD is the input reflection coefficient of the reference standard, and
ΓDUT is the input reflection coefficient of the DUT. ΓEG is the equivalent source match term of
Port 2 [8] and equal to
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where Sij (i, j = 1, 2, or 3) are the scattering parameters (S-parameter) of the directional coupler.
A more detailed description of eq. (7) can be obtained in refs. [24, 25], and the derivation of eq.
(8) can be found in ref. [6].

However, sometimes, a DUT sensor has an unmatched connector with the reference standards,
and then an adaptor has to be used. Some measurement models with an adaptor at DUT/
reference standards have been proposed in refs. [25–27] and will be briefly introduced below.

4.1. Calibration Scenario with an Adaptor before Reference Standard

This is the application scenario where an adaptor has been connected between the reference
standard and Port 2 of the coupler, while the DUT sensor is alternatively connected to Port 2
directly. The calibration factor KDUT of the DUT sensor can be calculated with

( ) 2

213

3 22

1
.

1
A DUT EGDUT STD

DUT STD
STD DUT STD A EG A STD

SP PK K
P P S -

- G G
= ´ ´ ´

- G - G G
(9)

Here, ΓA − STD = S11A + ΓSTDS21AS12A − ΓSTDS22AS11A, and SlmA is the S-parameter of adaptor A, and
l, m = 1 or 2. Figure 12 presents a typical measurement setup when a coaxial-to-waveguide
adaptor has been used before a waveguide reference standard (a thermistor mount as shown
in Figure 12 (a)).

(a) (b)

Reference

Monitoring
Adaptor

Monitoring

DUT

Figure 12. Calibration of a DUT sensor by means of direct comparison transfer with an adaptor before the reference
standard.
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4.2. Calibration Scenario with an Adaptor before DUT Sensor

This is the application scenario where an adaptor has been connected between the DUT sensor
and Port 2 of the coupler, while the reference standard is alternatively connected to Port 2
directly. The calibration factor KDUT of the DUT sensor can be calculated with

( )

2

3 22

3 21

1 .
1

DUT STD DUT A EG A DUT
DUT STD

STD DUT A STD EG

P P SK K
P P S

-- G - G G
= ´ ´ ´

- G G
(10)

Here, ΓA − DUT = S11A + ΓDUTS21AS12A − ΓDUTS22AS11A. The mathematical model [eq. (10)] was
previously derived using signal flow graphs together with the non-touching loop rule analysis
in ref. [25]. It was later comparatively investigated in ref. [27] through the analysis of physical
measurement processes. A consistent mathematical model has been observed.

The proposed model was successfully used to calibrate a high-sensitivity (lower power range)
power sensor with an attenuator (the attenuator can be treated as a two-port adaptor with high
loss) between the DUT and Port 2 of the coupler in ref. [27]. Good performance has been
achieved referring to the data from the manufacturer.

5. Performance Evaluation and Uncertainty Estimation

In this section, the evaluation of measurement uncertainty is briefly introduced with the Guide
to the Expression of Uncertainty in Measurement (GUM) [28]. The GUM method has been accepted
and used in most of the current routine calibration works at NMIs or the standards laboratories.
This is followed by an example of calibrating waveguide thermistor mounts with uncertainty
evaluation in an international comparison.

5.1. Estimation of Measurement Uncertainty

To evaluate the measurement uncertainty, the GUM shall be followed. According to the GUM,
there are two methods to evaluate the standard uncertainty u(xi) associated with the physical
quantity xi in the measurements, namely, Type A Evaluation and Type B Evaluation.

Type A Evaluation is a method of evaluating the standard uncertainty through the statistical
analysis of a series of observations. It is normally referred to as “repeatable” measurement
uncertainty. Type B Evaluation is a method of evaluating the standard uncertainty from other
information including previous measurement data, specifications from manufacturers, data
provided in calibration and other certificates, and uncertainties assigned to reference data
taken from handbooks.

For evaluating the uncertainty of a measurand y from the standard uncertainty information of
other physical quantities (x1, x2,… ,xN) with y = f(x1, x2,…, xN), combined standard uncertainty
uc(y) associated with y is adopted. According to the Law of Propagation of Uncertainty (LPU) in
the GUM [28], uc(y) can be estimated from the standard uncertainties of x1,x2,… ,xN, as
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where u(xi, xj) is the covariance between xi and xj.

The expanded uncertainty U, which defines an interval about the result of a measurement that
may be expected, can be estimated through U = kuc. Here, k is the coverage factor and equal to
2 for a one-dimensional physical quantity at a level of confidence of approximately 95%
assuming a Gaussian distribution. However, for a complex-valued physical quantity (e.g., S-
parameter), the coverage factor k for 95% coverage probability is around 2.45 [29, 30].

5.2. Performance Evaluation in an International Comparison

CCEM.RF-K25.W Key Comparison: The precision measurement capabilities of NIM-fabri‐
cated WR-22 microcalorimeter have been validated and demonstrated in a key comparison
(CCEM.RF-K25.W) on high-frequency power in the frequency range 33–50 GHz. The compar‐
ison is an exercise to establish the metrological equivalence of signatory NMIs’ standards as
stated in the Mutual Recognition Arrangement (MRA) of the Bureau International des Poids
et Mesures (BIPM).

In the CCEM.RF-K25.W comparison, the effective efficiency and calibration factor of the
travelling standards (Hughes Model 45772H-1100) as shown in Figure 13 were compared. The
effective efficiency of the travelling standard at each frequency of interest was determined by
measuring the heating of mount in the microcalorimeter during the DC substitution. As
introduced previously, a Type IV power meter was used as a bolometer bridge. The correction
factor g of NIM’s microcalorimeter was characterized through the measurements where a foil
short was inserted between the test port and the DUT in the microcalorimeter [16].

Figure 13. Participation in the international key comparison, CCEM.RF-K25.W.
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Figure 14. Calibration factor for the travelling standard Hughes Model 45772H-1100 (SN 216) at 33.0 GHz [31].

Figure 14 presents the measured calibration factor K for the travelling standard Hughes Model
45772H-1100 (SN 216) at 33.0 GHz. From the results shown in Figure 14, it can be observed
that the NIM’s microcalorimeter has a good measurement capability, and very good equiva‐
lence has been achieved referring to the results reported by other NMIs. An example of NIM
uncertainty budget at 33.0 GHz is shown in Table 1 as a reference.

Quantity Xi Estimate xi Standard
uncertainty u(xi)

Probability
distribution/Type

Sensitivity
coefficient ci

Uncertainty
contribution
ciu(Xi)

DOF

iu

DC voltage ratio 0.8689 0.00002 Gaussian/Type B 1.5 0.00003 50

Thermal voltage ratio 1.0172 0.0004 Gaussian/Type B 0.93 0.0004 50

Correction factor g 1.0035 0.0036 Gaussian/Type B 0.85 0.003 50

Repeatability 0.8850 0.0009 Gaussian/Type A 0.96 0.0009  3

│Γ│ 0.2778 0.0025 Gaussian/Type B 0.46 0.001 50

K 0.8196 0.0033
eff 27u =

Table 1. An example of NIM uncertainty budget at 33.0 GHz [31].

6. Summary

In this chapter, we mainly focused on the introduction of microwave power measurements
and standards. Primary power standards (e.g., microcalorimeter) and reference standards
(e.g., thermistor mounts) have been discussed. Some recent developments of the waveguide
microcalorimeter at NIM, China, and further applications of the direct comparison transfer
technique at NMC, A*STAR of Singapore, have been reported. This is followed by an intro‐
duction of uncertainty evaluation for calibrating a WR-22 waveguide thermistor power sensor
during an international comparison.

Furthermore, we have attempted to calibrate a WR-15 (50–75 GHz) waveguide thermistor
mount using the direct comparison transfer technique [32]. Good performance has been
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observed preliminarily. Further improvement works have been planned and will be carried
out in the near future.
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