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Abstract

Recent technological innovations have ignited an explosion in microbial genome se‐
quencing that has fundamentally changed our understanding of biology of microbes and
profoundly impacted public health policy. This huge increase in DNA sequence data
presents new challenges for the annotation, analysis, and visualization bioinformatics
tools. New strategies have been designed to bring an order to this genome sequence
shockwave and improve the usability of associated data. Genomes are organized in a hi‐
erarchical distance tree using single-copy ribosomal protein marker distances for distance
calculation. Protein distance measures dissimilarity between markers of the same type
and the subsequent genomic distance averages over the majority of marker-distances, ig‐
noring the outliers. More than 30,000 genomes from public archives have been organized
in a marker distance tree resulting in 6,438 species-level clades representing 7,597 taxo‐
nomic species. This computational infrastructure provides a foundation for prokaryotic
gene and genome analysis, allowing easy access to pre-calculated genome groups at vari‐
ous distance levels. One of the most challenging problems in the current data deluge is
the presentation of the relevant data at an appropriate resolution for each application,
eliminating data redundancy but keeping biologically interesting variations.

Keywords: Genome analysis, clusters, proteins, bacteria, prokaryotes

1. Introduction

Prokaryotes are probably the largest and the most diverse group of cellular organisms.

The number of described species is now about 12,000, and the number of species on earth is
estimated in the millions [1]. Recent rapid advances in sequencing technologies provided a
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relatively cheap and fast way of studying the diversity of microbial species by discovering
representatives of novel divisions or even phyla [2] and analyzing the variation within the
species by sequencing closely related genomes from the ecological microbial populations or
clinical studies of pathogenic bacteria.

Historically, prokaryotic organisms were organized by classical taxonomic ranking system
(species, genus, family, order, and phylum). Delineation of prokaryotic species was originally
based on phenotypic information, pathogenicity, and environmental observations. Due to the
high mutation level, fast replication rate, and efficient DNA exchange mechanisms, microbial
organisms can easily adapt to their habitats. Genomic studies have shown that different species
living in similar ecological environments show similarity at the genomic level (e.g., congruent
evolution of water-living bacteria from various taxonomic origins [3]) while same pathogenic
species (or symbionts) rapidly adapting to the new hosts become quite different at genomic
level (e.g., Buchnera aphidicola [4], Serratia symbiotica [5]).

Next-generation sequencing technologies provide new insights into the life of microbes and
their interactions with the host, but they do not classify the organisms in a traditional way.
Many novel species are described as “candidatus” or “<genus> sp.”

The genomes of uncharacterized isolates of the Candidatus Arthromitus, host-specific
intestinal symbionts, comprise a distinct clade within the Clostridiaceae [6].

http://www.ncbi.nlm.nih.gov/genome/13597

The number of uncharacterized species is rapidly growing in public genome collections. As of
November 2014, almost half of bacterial and archaeal species in NCBI Refseq data set remain
uncharacterized. (Bacteria: 3,559 uncharacterized, 7,597 total; Archaea: 162 uncharacterized,
399 total.)

The need for different approaches to the identification of microbial species that can take into
account the advantages of the growing massive volume of genomic sequence data is being
actively discussed in the research community.

Scientists from different disciplines (taxonomists, ecologists, and evolutionary biologists) have
different interpretations of species defined by the framework of their needs and the tools they
use for identification. A recent review [7] describes the history and present state of various
methods of description of prokaryotic species. The authors suggest the concept of species as
“a category that circumscribes monophyletic, and genomically and phenotypically coherent
populations of individuals that can be clearly discriminated from other such entities by means
of standardized parameters.”

Comparative analysis requires a target: a coherent group of isolates with some degree of
similarity defined by the goal of the study (the analysis of pathogen outbreak performed at
the species level or below, while biodiversity studies use broader group such as families or
phyla). Several groups have attempted to delineate the taxonomy of Archaea and Bacteria
using the methods based on single-copy universally conserved markers [8-13]. Other methods
are discussed in recent reviews [14].
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Different species vary dramatically in terms of the sampling density and data quality. Clinical
and epidemiological studies produce large data sets of closely related (clonal) genomes (Table
1), while other species are sampled very coarsely. Genomic and proteomic structure of a
densely sampled group of related strains is commonly described by the concept of pan-genome
[15] species.

The complexity of the data is challenging to the analysis, representation, and visualization of
the data sets. One of the challenges is the amount of the resources required for a brute-force
processing approach (e.g., BLAST all-to-all of 35 million proteins will take five days on 1,000
processors). Another big problem is data heterogeneity and redundancy: the closest-neighbor
results will often contain long list of nearly identical objects, making it difficult to identify more
distant neighbors.

Here we describe a combined approach that provides a robust, fast, and scalable method of
defining the sequence similarity genome groups that can be used for comparative genome
analysis  and  resolve  some  known  issues  with  the  delineation  of  species  in  traditional
taxonomy.

2. Materials and methods

The genomes are organized in hierarchical groups calculated with different methods. The
universal ribosomal markers approach is used to build a distance tree and to define species
and superspecies-level clades (genome groups). The species-level clades are further refined by
using whole-genome alignments and creating tight (clonal) genome groups.

2.1. NCBI hardware and software

The hardware available at NCBI includes a Univa Grid Engine (UGE) Grid-Engine-based
computer farm and PanFS scalable storage system connected through a powerful router. The
most recent version UGE 8.2.1 includes support for Linux GROUPs, support for Window
server execution nodes, and a beta version of DRMMA2 (Distributed Resource Management
and Application API 2). A large weakly coupled distributed computer system like this requires
coarse-grained parallelization approaches with minimal communication between the proc‐
esses. Many processing steps, such as computing BLAST hits, are naturally parallel.

2.2. Data snapshot

A given data snapshot represents a collection of genome (and protein) sequences and metadata
available at the time. Navigating through millions of nucleotide sequences in public archives
to find a set that comprises a whole-genome collection can be sometimes challenging. GenBank
release 207 contains 182,188,746 sequences, and 189,739,230,107 nucleotides. The traditional
NCBI sequence repository was designed for GenBank records in the early 1990s. It is organized
as a collection of single-nucleotide sequence records with annotated sequences stored as
nucleotide–protein sets. By GenBank requirements, each sequence record should be associated
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with the organisms registered in the NCBI Taxonomy Database. For the first 10 years of
microbial genome sequencing, each species has a unique genome representation in public
sequence archives. When sequencing costs decreased, researchers began to explore microbial
population structure and the intraspecies differences. NCBI Taxonomy group began assigning
Taxonomy ID for strain level nodes as proxies of unique genome identifiers. More recently,
next-generation sequencing and rapid pathogen detection approaches have shifted the
paradigm from a single isolate representing an organism to multiisolate projects often
representing almost identical isolates from the outbreak analysis. These closely related
genomes differ by metadata only: patient information, date, and place of sample collection.
NCBI has created new resources that capture the sequence data and metadata information:
BioProject, BioSample, and Assembly [16]. A triplet of these identifiers uniquely defines a
genome with the metadata that can be used for further comparative analysis.

NCBI internal database UniCol is used to store collections of the nucleotide and protein
sequence data associated with every BioProject, BioSample, Assembly triplet. The database
provides a tracking history for a given snapshot with the sequence assembly and metadata
available at the time.

Clade_id Name Genomes Clonal groups Taxonomy

19988 Staphylococcus aureus 4182 118 species

19668 Escherichia, Shigella 2479 986 multiple

20829 Mycobacterium tuberculosis 1844 11 species

19669 Salmonella 971 139 genus

19507 Acinetobacter 846 306 genus

19252 Helicobacter pylori 432 258 species

20104 Streptococcus 394 154 genus

19672 Enterobacter, Klebsiella 384 149 multiple

20137 Enterococcus 354 161 genus

19921 Brucella 335 9 genus

Table 1. Calculated clades may include a single species, a single genus, or multiple genera for closely related species.

2.3. Genome quality assessment

There are several criteria that are used to evaluate the quality of genome assembly.

The N50/L50 metrics are automatically calculated for each genome. Acceptable values are
dependent on genome size, and genomes which do not meet the criteria are not processed for
Refseq. For known clades, the genome size is expected to fall within 2 standard deviations
from the mean for clades, which have at least 10 members. This standard allows for the
identification of partial genomes and unusually large genomes, which may indicate a bad
assembly or contamination.
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Some genomes submitted to GenBank represent an assembly from a mixed culture (accession
# AKNF01000000 is a mixed culture of Shigella flexneri 1235-66 and an unknown Shigella species)
or a hybrid of different species or a chimera genome (accession # AP012495 chimera genome
constructed by cloning the whole genome of Synechocystis strain PCC6803 into the Bacillus
subtilis 168 genome). Partial and “anomalous” assemblies are clearly flagged in NCBI assembly
database and not included in clade analysis.

2.4. Marker to genome alignment

Genome distance is defined as an average of pairwise protein distances of universally
conserved single-copy proteins as defined in [8] (Table 2).

Genomic markers (E.coli K12 accessions) Genomic markers

NP_417801 ribosomal protein S12

NP_417800 ribosomal protein S7

NP_414564 ribosomal protein S2

NP_418410 ribosomal protein L11

NP_418411 ribosomal protein L1

NP_417779 ribosomal protein L3

NP_417774 ribosomal protein L22

NP_417773 ribosomal protein S3

NP_417769 ribosomal protein L14

NP_417767 ribosomal protein L5

NP_417765 ribosomal protein S8

NP_417100 ribosomal protein l6p/L9E

NP_417762 ribosomal protein S5

NP_417757 ribosomal protein S13

NP_417756 ribosomal protein S11

NP_417698 ribosomal protein L13

NP_417697 ribosomal protein S9

NP_417634 ribosomal protein S15P/S13E

NP_417770 ribosomal protein S17

NP_417772 ribosomal protein L16/L10E

NP_417760 ribosomal protein L15

NP_417763 ribosomal protein L18

NP_417755 ribosomal protein S4

Table 2. List of genomic markers used in genomic analysis. Escherichia coli K-12 accessions are given as an example.
Each marker has a corresponding protein cluster which is used in the analysis.

2.5. Genome distance

Protein marker distances and genomic distance are designed to be robust while remaining
appropriately sensitive. Protein distance measuring dissimilarity between markers of the same
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type is designed to ignore differences in protein lengths and tuned to measure dissimilarity in
internal parts of the sequences. The subsequent genomic distance averages over the majority
of marker-distances, ignoring the outliers.

2.5.1. Protein distances

Consider proteins i and j, having the best aggregated BLAST alignment of length L ij with
aggregated score Sij. Assume that the proteins have lengths L i   and L j and self-scores Sii and
S jj. Define normalized scores: sij =Sij / L ij, sii =Sii / L i, s jj =S jj / L j.

Then define protein distances:
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where lij
( p) are corresponding alignment length. The marker-protein distances are weighted by

alignment lengths lij
( p) in order to provide where possible results similar to the original method

in [8] based on concatenation of proteins. However, the use of offset Δij allows filtering out
outliers since the averaging in (2) is performed over N ij

h −2Δij distances in the middle. For each
phylum level group, an agglomerative hierarchical clustering tree is built using the complete
linkage clustering algorithm [19, 20].
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2.6. Genome clustering pipeline

The pipeline for calculating genome clades consists of three major components (see Figure 1).
The first is the collection of the input data from NCBI main sequence repositories. The genomic
data are dynamic: hundreds of new genomes and assembly updates are submitted to NCBI
each day. We create a snapshot of all live genome assemblies and their nucleotide sequence
components (chromosomes, scaffolds, and contigs) and store them in an internal relational
database: UniCol. The genome data set is organized into large groups (phyla and superphyla
defined by NCBI Taxonomy). The assemblies are then filtered by quality and passed to the
processing script. Ribosomal protein markers are predicted in every genome to overcome
problems with the genome annotations (missing and/or incorrect annotations) and to normal‐
ize markers’ data set. Marker predictions are performed by aligning reference protein markers
against full genome assemblies. Assemblies with at least 17 markers are passed to the next
step. Genome distance is calculated as an average of pairwise protein distances of markers
shared in a pair of genomes. Finally, agglomerative hierarchical clustering trees are built within
phylum-level groups. Clades at the species level are calculated using species-aware algorithm.
Superclade trees are constructed by sectioning the trees at the distance of 0.25.

Figure 1. Dataflow of ribosomal-marker-based clade (genome group) processing. Ribosomal markers (in green) are
maintained outside of the main pipeline (in blue). Clades and markers are available on NCBI FTP site: ftp://
ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPORTS/CLADES/ ftp://ftp.ncbi.nlm.nih.gov/genomes/
GENOME_REPORTS/MARKERS/
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2.7. Clades and superclades

Due to biological, historical, and sampling reasons, microbial organisms have very different
levels of strain variation within species. Using the genome data available in public archives
we have calculated the diameter of the species defined by NCBI Taxonomy (see Figure 2).

Figure 2. Distribution of Taxonomy-defined species diameter. Y axes – diameter of species, X axes – species numbered
in the descending diameter order.

Instead of using one fixed threshold, we utilize a taxonomy-aware algorithm that allows
increasing the size of a genomic group in certain circumstances. Two distance threshold, the
lower threshold d_lower and the upper threshold d_upper, are established (currently, we use
values d_lower = 0.015 and d_upper = 0.025). Genomes with the lowest common ancestor with
height d_lower or below are always in the same group, while genomes with the lowest
common ancestor with height above d_upper are never placed together. In between d_lower
and d_upper, taxonomic information is used: two subgroups are merged in a larger group if
any pair of species in a group is already together in one of two subgroups (i.e., there are no
new merges of species). Species are defined according to the NCBI taxonomic records [16].

Phylum-level trees are not practical for presentation and evaluation of closely related genomes.
However, it is important to see the relationships (distance) between close clades (see Figure 3).

2.8. Genome groups

Species-level clades are further refined by whole-genome alignments using megablast with
default parameters [18]. The genome groups are defined by clustering the genomes at 95%
identity and 90% coverage. An example of genome groups for Klebsiella pneumonia clade is
shown in Figure 4. For each group a representative genome with the highest level of assembly
and annotation quality is selected.
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3. Results and discussion

Large clades obtain additional members in each subsequent snapshot (see Figure 5). The
process assigns related genomes to the same clade consistently. There is also a large growth
in singleton clades, reflecting an increasing interest in sequencing taxonomically distinct
organisms.

We have developed an infrastructure for grouping all whole-genome sequence assemblies at
various proximity levels. By using universally conserved ribosomal genes we define the
species-level groups. We propose a set of 23 single-copy marker gene families that have
consistent evolutionary histories. The proposed ribosomal protein-marker distance and
genomic distance are tailored to achieve robustness, while remaining appropriately sensitive.

The major objective of our approach is to generate and actively maintain the target sets for
pan-genome analysis. These ribosomal-marker-based groups (clades) roughly correspond to

Figure 3. Superclade tree for three abundant groups: A – Salmonella, B – Bacillus, C – Streptococcus. Green boxes rep‐
resent clades; box size is proportional to the number of genome in a clade.
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Figure 4. Klebsiella pneumonia clade contains 534 full genome assemblies organized in 25 closely related genomic
groups. Blue circles at the end of the branch represent a single genome; green boxes represent a group of genomes with
the box size proportional to the number of genomes.

Figure 5. Clade growth in four sequential snapshots.
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the species level as defined by NCBI Taxonomy. The subclades are calculated to show the
closeness of the groups at the higher level. The relationship within the species-level group is
further refined with whole pairwise genome alignment performed by megablast [18]. Tight
genomic groups are defined at the level of 95% identity over the 95% genome coverage. By
using the representative genomes from the tight groups, we can reduce the redundancy in
comparative genomic studies. Other targets can be used for more refined population variation
studies within species or SNP analysis for pathogen outbreak detection. These target sets
require  more  accurate  distance  measure  such as  whole  genomic  alignments,  K-mer  dis‐
tance [21].

3.1. Clades and species

Using a taxonomy-aware clustering algorithm does not completely solve the discrepancies
between the species-level clades and traditional species. Genome sequences provide great
opportunity to refine the classical taxonomic description of prokaryotes [23]. All cases of
discrepancy were manually evaluated; most of them have been resolved by literature support.
Some examples are described below.

3.1.1. Different species merged into a single clade

Escherichia coli and some Shigella species are combined in a single clade by ribosomal marker
distance. Shigella, which is recognized as a genus with four species in most situations, taxo‐
nomically belongs to the diverse E. coli group, but the genus-level distinction has been retained
due to historical recognition of its medical significance. Shigella has adapted to higher primates
as the only natural hosts.

The genus Brucella consists of 10 classically recognized species [http://icsp.org/subcommittee/
brucella/] based on antigenic/biochemical characteristics and primary host species: Brucella
abortus(cattle); Brucella canis (dogs); Brucella ceti (marine mammals); Brucella inopinata; Brucella
melitensis (sheep and goats); Brucella microti; Brucella neotomae (rodents); Brucella ovis (sheep);
Brucella pinnipedialis (marine mammals); Brucella suis (swine, cattle, rodents, wild ungulates),
and recently described in [24] Brucella papionis isolated from baboons (Pappio spp.). The wave
of Next-Generation Sequencing brought in almost a hundred new isolates from a population
of Brucella, which are clearly distinct from currently recognized species that are tentatively
designated at the species level. These unnamed isolates have not yet been characterized using
traditional methods, or the species name has not yet been validly published. Brucella genus–
level clade is shown in Figure 6.

Single species represented by multiple clades

Prochlorococcus and marine Synechococcus organisms are small marine cyanobacteria, their
genomes are characterized by small size and an evolutionary trend toward low GC content
[25]. Whereas many shared derived characters define Prochlorococcus as a clade, many genome-
based analyses recover them as paraphyletic. The single species, Prochlorococcus marinus,
comprises six named ecotypes. Our ribosomal marker analysis and whole-genome alignment
(described above in section on Methods) analysis suggests that this species should be repre‐
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sented by 11 different clades (see Figure 7.) These results are supported by recent genomic
analysis of the genus of Prochlorococcus [26].

Novel species from noncultured not-isolated single cell and metagenome assemblies and new
unclassified isolates (<genus> sp.) from clinical and epidemiological studies can be organized
in hierarchical groups by genome sequence comparison methods. These groups can be used
for downstream analysis: 1) pan-genome by clades not species; 2) groups of closely related
genomes below species that can be calculated by nucleotide whole-genome comparison like
K-mer or BLAST; 3) classification validation; 4) visualization of large data sets by selecting the

Figure 6. Ribosomal-marker-based clade comprises various species of Brucella. The pairwise genome distance is de‐
fined by the number of shared proteins in the core set of Brucella pan-genome. Green dots – proteins present in CORE
set; red dots – proteins absent in CORE set.

Figure 7. Prochlorococcus marinus interspecies diversity. The dendrogram is calculated using blast genome alignment
score (%identity). The leaf nodes displayed as circles represent genomes of individual isolates/strains.
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genome representatives. Some of the applications marker-based clades and tight genome
groups have been previously briefly described in [27,28].

4. Conclusions

No matter how impressive the numbers of genome sequencing projects are, they represent a
miniscule fraction of the total number of bacterial species. The future genomic analysis tools
will have to take into consideration the uncertain origin of the DNA sequences during analysis.
Making sense of genomic data is one of the goals that are aided by the genome clustering
procedure. The hierarchical infrastructure provides the foundation for further development
of genome analysis and visualization tools.
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