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Abstract

The discovery of RNA interference (RNAi) and its utilization in downregulation of spe‐
cific target transcripts have revolutionized gene function analysis and elucidation of
many key biochemical/genetic pathways. The insights into gene function, combined with
a technology that made silencing of gene function possible using the potent, highly spe‐
cific and selective RNAi approaches, provided the solution to longstanding complex ob‐
stacles in targeted crop improvementsfor agriculture, and disease therapies for medicine.
In this introductory chapter, I aim briefly to cover the basics and peculiarities of RNAi
and the advances made in understanding the mechanisms, components, function, evolu‐
tion, application, safety and risk assessment of RNAi, while at the same time highlighting
the related chapters of this book.

Keywords: Gene silencing, RNA interference, RNAi inducers and delivery, RNAi-based
disease therapy, biosafety

1. Introduction

The “central dogma” of genetics as first presented by Francis Crick is that genes, packed inside
the cell as the deoxyribonucleic acid (DNA) molecule, are transcribed into messenger ribonu‐
cleic acids (mRNA), which are subsequently translated into proteins (or enzymes). These final
protein products provide all life functions, and together with DNA and RNA, constitute the
molecules of life. Therefore, if there is a disruption (interference) of a gene function, messenger
RNA synthesis, or protein translation, normal life processes get altered or even stopped. “No
gene-no messenger”, or “no messenger-no protein”, has been the basis of understanding
biological processes. One of the easy-to-access points in cellular processes is messenger RNA
due to its cytoplasmic location, “naked” structure, comparatively short half-life, and temporal
existence between transcription and translation. Further, mRNA is in between the chain of
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events from DNA to protein; it has the universal chemical structure, consisting of only four
nucleotides, regardless of the encoded message. In contrast, proteins are chemically much
more variable, consisting of combinations of 21 different amino acids, with side chains that
vary from very hydrophilic to highly hydrophobic. If mRNA is altered or eliminated before
translation, there is no functional gene product, which results in changing the cellular process
from the native state. This is the entire rationale of RNA interference (RNAi).

RNA interference is a process in eukaryotic cells in which double stranded endogenous or
exogenous RNA molecules trigger a cytoplasmic response, which involves sequence specific
target identification and destruction. This may include native messenger RNAs (mRNAs) that
code vitally important proteins [1]. Any type of double-stranded RNA (dsRNA) molecules can
activate RNAi where long dsRNAs, microRNAs (miRNAs) and small interfering RNAs
(siRNAs) and their various forms and modifications are considered the main players/inducers
[1]. Let us take a look at RNAi discovery history.

Plant scientists in the 1990s first used targeted gene silencing by introducing an antisense gene
into plants. The first example was silencing of a nopaline synthase (NOS) gene, for which the
silencing was only visible by loss of a band on a Norther blot and loss of NOS activity [2]. The
second antisense gene used in plants targeted the petunia chalcone synthase (CHS) gene,
encoding the first step in floral pigment production, and the result was visible in the loss of
petal pigmentation [3]. Curiously, attempts to create dark pigmented petunia flowers by
overexpression of the same CHS gene resulted in similar colorless petunia petals [4, 5]. It was
thought that such a phenotype was “due to post-transcriptional inhibition of gene expression via an
increased rate of mRNA degradation” [6]. The observed phenomenon was named as “co-suppres‐
sion” of gene expression and the molecular mechanism behind “co-suppression” remained
unknown for many years [7]. Later, a transient gene inactivation of the carotenogenic albino-3
(AL-3) and albino-1 (AL-1) genes was reported after transformation with homologous sequen‐
ces in Neurospora crassa [8]. This phenomenon, named as gene “quelling”, was observed to be
severely destructive but spontaneously and progressively reversible and monodirectional,
resulting in mutant, intermediate, and wild-type phenotypes [8]. In the years to follow, the co-
suppression phenomenon were attributed to inverted repeat T-DNA insertions, which result
in RNA transcripts with internal complementary sequences that can fold back on themselves,
generating double-stranded RNA and can seed the now well-known Argonaute/dicer
silencing system.

Following these seminal discoveries, similar phenomena were discovered in other organisms
including the nematode (Caenorhabditis elegans) and insects (Drosophila melanogaster) from
studying the function of a PAR-1 gene (required for establishing embryo polarity) in the former
and alcohol dehydrogenase in the latter (ADH) [9, 10]. These studies not only demonstrated a
wide range of functionality of “co-suppression” phenomenon but also prompted an intense
effort to understand the exact mechanism causing this process. In one experiment, injection of
dsRNAs associated with muscle protein production into nematodes successfully silenced the
targeted gene. The effect on muscle production was not observed using either mRNA or
antisense RNA [11]. With this work, for the first time, the agent directly responsible for “co-
suppression” was identified and formally named as “RNA interference” or RNAi. This work was
later recognized with the 2006 Nobel Prize.

RNA Interference4



In plants, the suppression of targeted genes during viral infections was discovered [12] and
subsequently developed into a system by which plant gene function may be studied through
inhibition by infection with viruses bearing a short sequence targeted against plant mRNAs
[13]. This phenomenon was termed as "virus-induced gene silencing" (VIGS) and is often used
to study gene function in plant species that are recalcitrant to transformation or just take a very
long time to regenerate.

Over the past decade, RNAi has been demonstrated in many eukaryotes including humans as
well as some prokaryotic life forms [14] and has been recognized to form an integral part of
many gene regulatory networks during development. This revolutionary breakthrough in
biological science has become a valuable in vitro, in vivo, and ex vivo manipulation of gene
expression, allowing for large-scale studies of gene function. It is now a routine laboratory
practice to introduce the desired gene-specific dsRNA inducers into cells and selectively,
robustly, and systematically silence the targeted sequence signature revealing its cellular
function. In addition, RNAi has become an efficient tool for agricultural biotechnology to
improve production [15] and combat disease pests as well as for medicine and molecular
pharmacology to cure complex infectious, inflammatory, and hereditary diseases [16].

Figure 1. Dynamics of scientific publications devoted to the RNA interference for the past three decades. Source:
PubMed [18] data sorted by the year of publications, which were retrieved by the search with the unquoted keyword
“RNA interference”]

RNAi research has rapidly advanced and expanded over the past decade, evidenced by
increasing numbers of publications, research projects, and practical applications in both
agriculture and medicine. For example, searching Google Scholar [17] with the unquoted
keyword “RNA interference” retrieved over 1 million (1,110,000) documents. Repeating the
same search with “organism-specified RNA interference” in PubMed database [18] on the same
date returned a total of 50,824 indexed scientific documents with a major pick after 2002
reaching to over 1,000 scientific publications per year (Figure 1). The distribution of specified
search results revealed a number of PubMed-indexed, RNAi-related publications for human
(32,007), plant (3,701), animal (27,751), insect (4,145), fungal (690), and prokaryotic (119)
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organisms. Moreover, the therapeutic application of RNAi is also expanding rapidly with 9,953
articles related to this topic and found in PubMed searching with “RNA interference therapy”
keyword. In this brief introductory chapter, I aim to cover the basic understanding behind
RNAi and an update knowledge on its applications, limitations, safety, and risks, highlighting
and discussing some of the key points presented in this book.

2. Components, mechanism, and function

The principle mechanism of RNAi is complex, but very straightforward and easy to under‐
stand. RNAi is induced by the introduction of specific exogenous dsRNA either by virus
genome RNAs, injection of synthetic dsRNAs or, in plants, is mediated by Agrobacterium.
RNAi is also part of the normal development and dsRNAs are produced by endogenous genes
encoding miRNA precursors or other long dsRNA molecules. In either case, the dsRNAs are
recognized by the enzyme dicer and cleaved into short, double-stranded fragments of ~19-25
base pair long siRNAs [1]. These siRNAs are separated into two single-stranded RNAs
(ssRNAs), which are referred to as the “passenger” and the “guide” strands. The passenger
strand is degraded, while the guide strand is picked up by the RNA-induced silencing complex
(RISC) that has enzymatic digestion activity and contains the key components of Argonaute
(AGO) and P-element induced wimpy testis (PIWI) proteins [1]. The RISC proteins perform
the unwinding of the guide and passenger strands in ATP-independent manner [19, 20];
however, ATP is required to unwind and remove the cleaved mRNA strand from the RISC
complex after catalysis [21]. There are effector proteins such as RDE-4 (nematodes) and R2D2
(insects) that recognize exogenous dsRNAs and stimulate dicer activity. R2D2 also has a
differentiating function for siRNA strands by stably binding to 5' end of the passenger strand,
thus directing the guide strand to the RISC [22]. Here, it should be noted that the 5′ end of the
guide strand is involved in matching and binding the target mRNA while the 3′ end physically
arranges target mRNAs into the cleavage-favorable site of the RISC complex [21]. AGO/PIWI
proteins localize within the specific P-body regions in the cytoplasm, considered to be a critical
site for RNAi [23–25].

It is not clear as yet how the guide strand-bound active RISC complex finds mRNA targets
within the cell, but it is known that this process is sequence-specific. Once the target mRNA is
identified and captured though RNAi machinery, RISC cleaves the target mRNA rendering it
untranslatable [1]. In most cases, the entire process is triggered by amplification of the cleavage
process through synthesis of additional dsRNAs from primarily digested fragments of mRNA.
Upon annealing to the mRNA target, the guide RNA may also be extended by RNA-dependent
RNA polymerase (RdRP), resulting in extended “secondary” dsRNAs which in turn may lead
to the formation of new siRNAs that enhance and further systematically spread the degrada‐
tion of the target mRNA in cytoplasm [26, 27].

Although the pathways toward RNAi from exogenous and endogenous dsRNA converge at
the RISC and use the same downstream RNAi machinery, there are also some clear differences
in their processing and handling [1]. Endogenous dsRNAs cleaved by dicer (1) produce 20–25
bp fragments with a two-nucleotide overhang at the 3′end of siRNA duplex [1], while the
length of exogenous dsRNAs-derived siRNAs, required for specificity, is unknown. Exoge‐
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nous dsRNAs are distinctly (2) handled by the above-mentioned effector proteins, RDE-4 or
R2D2 [26, 27], whereas siRNA derived from endogenous dsRNAs (i.e., miRNA precursors) are
handled by double-stranded miRNA precursor-binding DGCR8 and Drosha proteins with
RNAse III enzyme activity. Plants do not have Drosha homologs, instead, processing of
miRNA to siRNAs is carried out by one of four dicer-like proteins. Endogenous miRNAs (3),
except some plant miRNAs, typically have several mismatches to the target sequence, while
siRNAs derived from exogenous dsRNAs usually are designed to have a perfect match to the
target. Most importantly, (4) endogenous dsRNA-derived miRNAs are capable of mildly
inhibiting the translation of hundreds of mRNAs [28–30], while exogenous dsRNA-derived
ones usually silence only single specific target [31]. Depending on organisms, for instance in
C. elegans and D. melanogaster, (5) distinct Argonaute proteins and dicer enzymes [32, 33]
process miRNAs and exogenous siRNAs. Furthermore, endogenously processed miRNAs
prevalently (6) interact with miRNA response elements (MREs) located within the 3'-UTRs
region of target mRNAs. Upon binding to MREs, miRNAs can decrease the gene expression
of various mRNAs by either inhibiting translation (in animals) or directly causing degradation
of the transcript (in plants). In contrast, exogenous dsRNA-derived siRNAs may interact with
any complementary sequence region of the target mRNA, causing direct cleavage of the
transcript [1]. miRNAs may actually regulate translation of target mRNAs in dual ways, as
translation regulation by miRNAs oscillates between repression and activation during the cell
cycle through a yet unknown mechanism [34].

The main biological function of RNAi is regulation of gene activity of cells at the post-
transcriptional level (PTGS) either by the inhibition of translation of mRNA or by direct
degradation of the mRNA. In addition to PTGS, RNAi pathway components may contribute
to maintenance of genome organization and structure, mediated by RNA-induced histone
modification. Histone modification in turn affects heterochromatin formation and may silence
gene activity at the pre-transcriptional level [35]. This process is referred to as “RNA-induced
gene silencing (RITS) and requires dicer, siRNA and RISC component proteins such as AGO
and R2D2 [36]. In addition, RNAi components and inducers (siRNA/dicer/AGO) may also
possibly upregulate expression of genes in binding into a promoter region and through histone
demethylation, a process dubbed RNA activation [37, 38].

Because of sequence-specific recognition, regulatory properties, and the possibility of systemic
spreading of dsRNAs, RNAi is the key “sterilizing agent” of cells and tissues, and it functions
as potent immune response against foreign nucleic acids from viruses, transposons, or
transformation events which can invade and harm the genome and its stability [39]. The
chapters presented in Section 2 of this book have a more detailed coverage of the history of
the RNAi discovery, mechanism, and functional components and on the biological role of
RNAi including natural small RNAs/microRNAs as well as long noncoding RNAs in gene
regulations.

3. Differences among organisms

Although the RNAi pathway is a universal process in eukaryotic cells, and it consists of similar
component(s), mechanisms, and functions as described above, there are some variations
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among organisms in both up-take of exogenous dsRNAs and induction of RNAi. First, RNAi
is systemic and heritable in plants and C. elegans. The systemic spreading of RNAi in plants
occurs because of transfer of siRNAs between cells through plasmodesmata and the phloem
[40]. Second, in plants, RNAi induces epigenetic silencing of genes through methylation of
promoters of targeted genes which may be passed to the next generation [41], while in
Drosophila and mammals this is not the case. Third, plant miRNAs have perfect or nearly
perfect complementary to their target genes and directly cleave and degrade targeted mRNA.
In contrast, animal miRNAs have one or more mismatches to target sequence and halt the
translation process [42].

RNAi is not found in some eukaryotic protozoa (e.g., Leishmania major and Trypanosoma cruzi)
[43, 44]. Some fungi (e.g., Saccharomyces cerevisiae) lack specific RNAi component(s) and the
reintroduction of these missing components can recover RNAi [45, 46]. Further, prokaryotic
organisms have distinctive RNA-dependent gene regulation system controlled by RNA
products of translation-inhibiting genes. These regulatory RNAs are not processed by dicer
enzymes, differentiating them from eukaryotic RNAi [47]. However, recently, the clustered
regularly interspaced short palindromic repeats (CRISPR/Cas9) interference system has been
characterized in prokaryotes, which is a gene silencing pathway analogous to eukaryotic RNAi
systems [14]. The CRISPR interference system has its specific components, advantages, and
limitations that are well described in the literature [48, 49], but will not be presented here. The
chapter by Dr. Devi Singh and his colleagues in Section 2 of this book has a detailed coverage
of RNAi in various organisms. RNAi in various organisms is also discussed in the chapter by
Galay et al. presented in Section 6 of this book, highlighting the specifics of RNAi in ticks while
Dr. Tayota and his colleagues present an interesting methodological paper on RNAi in the
water flea in Section 3.

4. Evolution

Studies on components, mechanisms, and functions of RNAi have demonstrated variations
among organisms, differences in eukaryotes and prokaryotes, and indicate that RNAi is
derived from an ancestral immune defense function against transcripts of transposons and
viruses [50, 51]. Although some eukaryotes might have lost RNAi components or, even, the
entire pathway following the emergence of the Eukaryota, parsimony-based phylogenetic
analyses suggest that an ancestral lineage of all eukaryotes possibly had a primitive RNAi
capability including relevant components for some key functions such as histone modification
[50]. Phylogenetic studies also indicate that miRNAs of plants and animals may have evolved
independently, but the conservation of some key proteins involved in RNAi also indicate that
the last common ancestor of modern eukaryotes already possessed an siRNA-based gene
silencing system. The RNAi-like defense system of prokaryotes is functionally similar, but
structurally distinct from the eukaryotic RNAi system [52]. It seems likely that a proto-RNAi
system possessed at least some form of dicer-like, AGO, PIWI, and RdRP proteins. These basic
components were shared by major eukaryotic lineages and functioned within an RNA
degradation exosome complex [53].
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Being an important component of an antiviral innate immune defense system in eukaryotes,
RNAi components and various interaction/regulatory mechanisms, including the miRNA
pathway, evolved later but at faster rates under strong directional selection [54]. This could
have been a means of generating an improved response to the evolutionary arms race with
viral genes. Correspondingly, some plant viruses have evolved the means to suppress the
RNAi response in their host cells [55]. Extensive studies reported that an ancient duplication
of RNAi components followed by species-specific gene duplications and losses provided
evolutionary diversification, specificity and adaptation of the RNAi system in many organisms
[56]. Chapter(s) presented in Section 2 has covered some evolutionary aspects of RNAi.

5. Applications

Since its first discovery as anti-sense gene suppression, co-suppression or quelling phenomenon,
the sequence specificity, efficiency, and systemic spreading (in some organisms) characteristics
of RNAi to suppress target gene expression have caught researchers’ attention and soon
became an attractive and powerful tool for gene function discovery in life sciences [1]. By full
or partial suppression of target gene expression using RNAi, the change in cell physiology
and/or developmental phenotype helps to reveal the function of the target gene. Therefore, a
utilization of RNAi has revolutionized the annotation of cellular functions of many unknown
and unique genes, adding to our understanding the complex genetic/biochemical pathways
and their interactions. Thanks to its partial silencing effect, RNAi also helped to discover the
function of genes when complete knockout would cause lethality [57]. Moreover, by targeting
homologous sequences within a gene family, a single RNAi construct can suppress the
expression of multiple members of a gene family, and thus reveal phenotypes that would have
been missed in a single mutant due to redundancy in gene function.

The results of the functional genomics studies, advances in the understanding of the RNAi
mechanism, improved design of trait-specific RNAi inducers (such as miRNAs), selection of
target gene sequences combined with the development of proper delivery systems, as well as
screens for “off-target” and cross reactivity have brought the practical applications of RNAi
far beyond its initial experimental reach.

Agricultural application of RNAi through tissue culture-derived genetic modifications and
transgenic research in a wide range of technical, food, and horticulture crops have been
particularly successful and have solved many problems. Examples include, but are not limited
to, crop yield and quality improvements [15, 58], food/nutrient quality improvements and
fortification [59–62], decreasing the harmful precursors and carcinogens [63, 64], and im‐
provement of plant pest and disease resistance [65–66]. Many of these applications are now
evaluated for commercialization or are already in commercial production [67]. In this context,
targeting far red (FR) photoreceptor gene (PHYA1) using RNAi approach [15], our team
succeed to develop the world’s first RNAi cotton cultivars with improved fiber quality and
other key agronomic traits without adversely affecting the yield, which successfully passed
multi-environmental large field trials and have been approved for cotton farming in Uzbeki‐
stan.
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Therapeutic application of RNAi has also been successful in medicine and molecular phar‐
macology with examples in inflammatory and infectious disease [68-71], cancer [72-75], as well
as hereditary and neurodegenerative diseases [76]. Indeed, for many other disorders RNAi
may have great potential. To highlight advances made on this field, in Section 4 of this book,
we present several relevant chapters on advances of RNAi application in key human diseases
of blood, ocular, nervous, kidney, and oncogenic origin. In addition, Section 5 chapters discuss
RNAi utilization in various immune and infectious diseases. Section 6 chapters present the
latest advances of RNAi application in studies of insects and parasitic pests such as ticks. All
of these chapters highlight various aspects of RNAi and add interesting insights to the present
RNAi discussions.

6. Safety and risk assessment

Manipulation of the organisms’ own genetic sequence signature(s) (cis-genesis) is usually
considered safer compared to “trans-genesis” that utilizes “foreign” genetic material to create
genetically modified (GM) crops and its products [77]. However, for RNAi, when broken down
to ~21 nucleotides this quickly may lose its meaning, as a trans-RNAi will only work if it has
sufficient homology to an endogenous target transcript. Chemically, RNA is “generally
recognized as safe (GRAS)” or it is “rarely formally considered in risk assessment” [67]. Despite this
and many other examples of successful application of RNAi technology in agriculture and
medicine, there may be risks associated with high or repeated dosages of dsRNA, which
inadvertently may interfere with unintended target sequences. A growing body of evidences
suggests that testing for the safety and assessing possible risks associated with the use of RNAi-
derived products sound practical, in particular, evidence of the remarkable stability of dsRNAs
in the environment, their survival and resistance in the acidic conditions of the digestive tracts
of higher organisms, and consequent transmissibility of dsRNA from foods to humans/
animals. Further, production of possibly harmful “secondary” dsRNAs [67] by primary RNAi
inducers raised an early warning signal regarding the GRAS signature of any RNA molecule
and the possibility of risks for human health and environment.

Safety concerns about RNAi-based drugs are exemplified by the lethality of 23 out of 49 distinct
RNAi therapy experiments in mice because of potential "off-target" effects that could shut
down non-targeted gene(s) with sequence similarity to therapeutic RNAi inducer [78]. This
observed lethality, however, could be due to “oversaturation" of the dsRNA pathway and
delivery issues of short hairpin RNAs [79] that needs to be optimized for harmless therapeutic
applications. There are several suggested approaches to minimize or eliminate such “off-
target”, “oversaturation” or delivery issues, in particular through the use of (1) comprehensive
in silico target and off-target analyses [80], (2) modified designing of RNAi inducers with
improved target selectivity, and (3) efficient delivery systems.

There may also be concerns about the uptake of intact plant miRNA by consumers through
plant diet. Plant microRNAs and some long dsRNA molecules, with sequence complimentary
and perfect matches to endogenous human genes, were demonstrated to survive the digestive
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tract of humans and can freely and routinely enter the blood system [67, 81]. In vitro human
cell culture experiments further showed that such plant siRNA entered into human blood
system could silence endogenous human genes due to sequence complementarity. While this
may require attention of regulatory systems on one hand, on the other hand, human con‐
sumption of food crops with natural occurring siRNAs is considered safe and so far has not
caused any dramatic biohazards or risk [81]. The chapters in Section 3 of this book also present
updated information on RNAi delivery methods (e.g. Tayota et al.); synthesis, chemical and
structural modifications, and designing for high specificity and selectivity of RNAi inducers
(see Gvozdeva and Chernolovskaya), and limitations of RNAi and possible alternative
technology such as ER-targeted intrabodies for gene silencing (see chapter by Backhaus and
Böldicke).

Risk assessment and available protocols/guidelines are in the early stages of development.
Some suggest that dsRNA-derived products must be subject to risk assessment studies [67].
Other findings indirectly support the safety of RNAi [81, 82], provided its use is within specific
dosage ranges, the correct delivery system is in place and RNAi inducers without possible off-
target effects, unintended gene silencing and secondary dsRNA production can be designed.
However, it is always advisable to admit to possible risks of any novel genomic technology,
including RNAi, and consider potential biohazards and evaluate risks for environmental
health, before release of a new product [58, 81–85]. To accomplish this, Heinemann et al. [67]
proposed the following five-step guidance: (1) to perform detailed in silico comparative
bioinformatics analyses for targets of designed dsRNA and identify possible “off-targets” in
key consumers; (2) to experimentally quantify designed dsRNAs, and the processing of any
other unknown sequence signatures or secondary dsRNA as a result of introducing intended
RNAi inducer into recipient or its product; (3) to test possible biohazards and risks due to
exposure of RNAi product in animal and human cell/tissue culture; (4) to conduct animal
feeding experiments for the long-term physiological and toxicological patterns and possible
chronic effects; and (5) to perform clinical trials of RNAi-derived products in humans.

7. Conclusions and future perspectives

Thus, being a revolutionizing discovery in genome biology to characterize functions of any
desired unknown genetic sequences, the discovery of RNAi has significantly widened our
knowledge on core cellular processes. This knowledge has created opportunities and solutions
to longstanding obstacles in conventional agriculture and medicine, offering a bright future
to curing complex human and animal diseases, improve crop production and protection, and
a sustained global food security through proper manipulation of key genes with agricultural
or medicinal importance. Although key issues on specificity, selectivity, and delivery of RNAi
inducing structures still exist, and some safety risks associated with the use of RNAi products
have been recognized, the general believe is that RNAi is a safer technology than trans-
genomics utilizing “foreign” genetic information. Safe applications, however, require proper
designing, dosage and delivery of RNAi inducers, and before its delivery for wide consumer
market, the safety risks should be assessed. Addressing the advances made over the past three
decades in RNAi research and commercialization, in this book, we have compiled and
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presented a diverse collection of chapters contributed by the science research communities.
We all believe that RNAi, in combination with the rapidly expanding genomic information in
key organisms and novel genome editing tools, will become even more powerful and efficient,
and that we will all enjoy its benefits far into the future.
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