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Abstract

Penaeid shrimps are euryhaline in nature and have the ability to survive and adapt in
a wide range of salinities (3–50 ppt). The shrimps are cultured under a variety of con‐
ditions in many tropical and subtropical countries. Osmotic and ionic regulation is an
important mechanism of environmental adaptation in crustaceans. However, drastic
changes in abiotic and biotic conditions result in stress to the shrimps during the cul‐
ture period. Salinity and temperature are the two major environmental factors that
have huge impact on culture shrimp, affecting their physiological and metabolic pa‐
rameters, which in turn affect shrimp growth, molting, and survival. Changes in the
abiotic factors, chemical and biotic factors result in reduced immunity of shrimp and
vulnerability to bacterial and viral diseases. This chapter describes the effects of low
and high salinity on the gene profile changes of black tiger shrimp Penaeus monodon,
and the functional role of these genes in shrimp salinity stress is discussed.

Keywords: Penaeus monodon, Salinity stress, Differentially expressed genes

1. Introduction

Penaeid shrimps being euryhaline can adapt to thrive and survive in a wide range of salinity
conditions. Shrimps are, therefore, cultured and reared under different farming conditions in
tropical and subtropical countries. Water quality management is an important criterion in
shrimp farming for survival and growth of the shrimp. The optimal salinity conditions for
penaeid shrimp ranges differently for different species. Penaeus monodon, which can tolerate
low salinity of 5 ppt to high salinity conditions of 40 ppt has optimal range of salinity (15–25
ppt) for optimal growth [1]; juvenile Penaeus chinensis grows best at 20–30 ppt salinity range
[2]; the optimal conditions of salinity for growth was estimated to be in the range of 22–34 ppt
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for Penaeus latisulcatus [3]. Penaeus semisulcatus, an Indo-Pacific species requires higher salinity
(30–35 ppt) for growth [4]. Best performance (growth, survival, total biomass) for Penaeus
indicus PL20 and PL60 at salinities between 20 and 30 ppt was observed after acclimation period
[5]. Highest increase in biomass and production was observed at 25 ppt for Penaeus merguien‐
sis [6]. Litopenaeus vannamei, a native species of the Pacific coast is a very important shrimp
species, which is cultured under semi-intensive and intensive conditions in many parts of
world. The juveniles of this species have optimal growth and survival in salinity range of 33–
40 ppt [7]. It is also preferred for culture in low salinity water as it can tolerate very low salinities
of 1–2 ppt.

However, the variable climate conditions result in drastic changes in abiotic factors causing
stress to the shrimps during the culture period, which influences culture of euryhaline
penaeids. In summer months, there is increase in salinity in ponds due to high evaporation
rates and in rainy season the salinity decreases. The marine crustaceans are generally osmotic
and ionic conformers in nature. The shrimps hypo-osmoregulate above the iso-osmotic point
and hyper-osmoregulate below the iso-osmotic point through a osmoregulation mechanism.

In crustaceans, gills which are highly permeable external surfaces are the primary sites
involved in osmoregulation. In the larval stages of penaeids, the typical features of osmore‐
gulatory epithelia are present in pleurae and branchiostegites [8]. The overall ion-transport
and osmotic regulation process involves ions absorbtion or excretion between the external and
internal medium through osmoregulatory organs, such as gills, the antennal glands that
mainly function in urine production, and the gut in decapod crustaceans [9-10]

The crustaceans have two well-known important enzymes which are central to osmotic and
ionic regulation and ion uptake. The transepithelial movement of monovalent ions requires
the action of Na+/K+-ATPase or the sodium pump utilizing ATP as energy source. The other
major enzyme involved in osmoregulation is transport-related enzyme carbonic anhydrase,
which plays a role in producing H+ and HCO3- through catalysis of respiratory CO2, for
counterions in Na+ and Cl− uptake. In penaeids, carbonic anhydrase is reported to be involved
in both hyper- and hypo-osmotic regulation and is induced against low and high salinity
exposure, indicating its role in ion uptake and excretion process [11].

In our study, we have constructed suppression subtractive hybridization (SSH) cDNA libraries
to identify differentially expressed genes in shrimp P. monodon, in response to salinity stress.
The SSH clones obtained from the forward SSH cDNA libraries (Figure 1) and reverse SSH
cDNA libraries (Figure 2) constructed from gut tissues of shrimp exposed to low (3 ppt) and
high (55 ppt) salinity on BLAST analysis, revealed several functional categories.

Similarly, we obtained several functional categories of genes from the forward SSH cDNA
libraries (Figure 3) and reverse SSH cDNA libraries (Figure 4) constructed from gill tissues of
shrimp exposed to low (3 ppt) and high (55 ppt) salinity conditions. These differentially
expressed genes were subjected to RT-qPCR for gene expression analysis. Based on our study,
we discuss herein in this chapter some of the important genes identified as differentially
expressed in response to salinity stress in shrimp.
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Figure 1. Differentially expressed genes from the forward SSH library of gut tissues of P. monodon under low (3 ppt)
and high (55 ppt) salinity conditions

Figure 2. Differentially expressed genes from the reverse SSH library of gut tissues of P. monodon under low (3 ppt)
and high (55 ppt) salinity conditions
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Figure 3. Differentially expressed genes from forward SSH library of gill tissues of P. monodon under low (3 ppt) and
high (55 ppt) salinity conditions

Figure 4. Differentially expressed genes from the reverse SSH library of gill tissues of P. monodon under low (3 ppt) and
high (55 ppt) salinity conditions
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2. Osmoregulatory genes

2.1. Na+/K+-ATPase

Na+/K+-ATPase, a transmembrane protein, contains three subunits, α-, β, and γ- subunit, which
are involved in exporting three Na+ from cytosol in exchange for two K+ or NH4

+ from extrac‐
ellular fluid for each ATP hydrolyzed. The crustacean α-subunit, which is 71–74% identical in
amino acid sequence to those of vertebrate α-subunit sequences, binds to ATP and functions
for the catalytic action of the enzyme [12]. The binding of Na+/K+-ATPase complex to basolat‐
eral membrane requires participation of β-subunit and the γ-subunits of enzyme [13]. The
activity of Na++K+-ATPase in gill tisues of crustaceans depends on the osmoconcentration
gradient occurring between hemolymph and the external medium. In crustaceans, there is an
increase in Na+/K+-ATPase activity when transferred from natural seawater to dilute seawater
[14-15]. With the lowering of salinity when compared to that of normal seawater, the euryha‐
line crustacea undergo hyperosmoregulation. Increased enzymatic activity of Na++K+-ATPase
and increased α-subunit gene expression has been observed in the gill tissues of crabs [12].
Substantial increase in Na+/K+-ATPase specific activity (300%), Na+/K+-ATPase protein levels
(200%), and gene expression level of α-subunit (150%) has been observed in blue crab
Callinectes sapidus crabs during acclimitization to dilute seawater of 10 ppt salinity [16]. P.
monodon reared in 7 ppt seawater showed drastic morphological alterations of the antennal
glands. The shrimps also showed higher expression and activity of the enzyme Na+/K+-ATPase
in the antennal glands under low salinity conditions [17]. L. vannamei when transferred to
different low salinity conditions ranging from 15 ppt to 1 ppt revealed no significant difference
within 3 h for Na+/K+-ATPase α-subunit gene expression and enzyme activity. However, there
was a rapid increase at 6 h followed by decrease in the expression level from 12 h to 24 h
suggesting Na+/K+-ATPase is stimulated by salinity stress [18]. The study involving V-H
ATPase α -subunit and Na+/K+-ATPase β-subunit response to environmental stress (bacteria,
pH, Cd, salinity, and low temperature) revealed both the genes to be responsive to these
environmental stress conditions. However, the V-H ATPase α -subunit and the Na+/K+-ATPase
β-subunit, which is involved in proper folding and transport of Na+/K+-ATPase enzyme, were
found to be more sensitive to salinity stress when compared to other stress factors. The
exposure of L. vannamei to salinity stress resulted in significant changes in the expression of
V-H ATPase α-subunit and Na+/K+-ATPase β-subunit gene expression levels in the hepato‐
pancreas and gills of the shrimp. Na+/K+-ATPase β-subunit gene expression after exposure to
5 ppt increased to a highest level (17-fold) at 12 h in the gill tissues, whereas, in hepatopancreas
the maximum gene expression levels (4.4-fold) were observed 6 h after exposure to 10 ppt
salinity conditions [19].

At low (3 ppt) salinity conditions stress conditions, significant increase in the Na+/K+-ATPase
α-subunit gene expression levels was observed in gill (34.28-fold) tissues of P. monodon [20].
At higher salinity stress of 55 ppt, P. monodon Na+/K+-ATPase gene responded to salinity stress
conditions with significant expression levels in gill (15.23-fold) tissues [21]. These results
suggests that P. monodon Na+/K+-ATPase gene is involved in osmoregulatory process in shrimp
and responds significantly under salinity stress.
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3. Immune genes

Crustins, belonging to family of antimicrobial peptides (AMPs) are shown to be differentially
expressed in response to various immunostimulants and microbes [22]. Different isoforms of
crustins have been isolated from a variety of penaeid shrimps [23-25]. The up-regulation of
crustin-like AMP in shrimps suggests functional role of AMPs primarily in the shrimp immune
response [26]. Under hyperosmotic stress, crustinPm5, crustinPm1, and crustin-like Pm gene
levels were found to be up-regulated [27]. In our study, we observed crustin gene was up-
regulated in all the three shrimp tissues of gills, gut, and muscle analyzed at low salinity stress
[20]. Hence, crustins having antimicrobial activity also functionally respond to salinity stress
in shrimps.

Another class of AMPs, the penaeidin gene was found to be down-regulated in gill, gut, and
up-regulated in antennal gland tissues of shrimp exposed to high salinity stress (55 ppt)
conditions [21]. These changes in the gene expression levels of penaeidin may be regulated
through variations in hemocyte numbers in salinity-stressed shrimp. Antibacterial proteins
such as lysozymes are involved in nonspecific innate immunity in shrimps [28]. Significant
up-regulation of lysozyme gene expression occurred in gill (16.25-fold) tissues of shrimp
exposed to low salinity stress [20]. In these shrimps, the anti-lipopolysaccharide factor, which
is considered to play an important role in shrimp immune response [29], was significantly
down-regulated in gill and gut tissues as compared to up-regulation in the muscle tissues of
shrimp.

In general, as a result of environmental stress, the expression of immune-related shrimp genes
transcripts gets affected [30]. The shrimp exhibits reduction in immune parameters when
exposed to salinity stress conditions, leading to decreased resistance against pathogens [31-32].
White shrimp L. vannamei, when transferred to low salinity conditions showed significant
decrease in hemocyte count, phenoloxidase activity, respiratory burst, and superoxide
dismutase activity, which further reduced on challenge with Vibrio alginolyticus. Hence, innate
immunity in shrimps reduces with combined effect of low salinity and bacterial challenge [32].

4. Cellular-process-related genes

4.1. Ubiquitin-conjugating enzyme

The ubiquitin proteolytic system is involved in various cellular processes such as cell cycle
regulation, cellular response to stress, and immune response [33-34]. In shrimps, the ubiquitin-
conjugating enzyme E2r (UBE2r) gene isolated from Marsupenaeus japonicus showed that the
gene expression level changed significantly in the developing testis and ovary with higher
level in the testis than in the ovary, which indicates the functional role of UBE2r in oogenesis
and spermatogenesis of shrimp [35]. The gene expression pattern of ubiquitin in abdominal
muscle of 3-month-old shrimps L. vannamei at different molt stages on examination did not
increase significantly in premolt stages and was found to be relatively stable at all stages of
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the molt cycle [36]. Antiviral function has been demonstrated with ubiquitin-conjugating
enzyme, E2, isolated from F. chinensis, which could inhibit WSSV replication and ubiquitinate
WSSV RING domain-containing proteins [37]. In P. monodon ubiquitin-conjugating enzyme
E2, gene was up-regulated in muscle and gill tissues under low salinity stress conditions [20].
In American lobster, Homarus americanus the polyubiquitin gene expression revealed signifi‐
cant changes in abdominal muscle and hepatopancreas during osmotic stress, indicating that
proteins may be more susceptible to ionic fluctuations [38].

4.2. Cathepsins

The proteases are distributed into four major classes: aspartyl proteases, metalloproteases,
serine proteases, and cysteine proteases [39]. The cathepsins belonging to cysteine proteases
in addition to cellular protein degradation and turnover are also involved in numerous other
physiological processes. In fishes, the cathepsin La isoform has been implicated in yolk-
processing mechanism during oogenesis and embryogenesis [40]. In shrimps (Metapenaeus
ensis), cathepsin L, with predominant expression in hepatopancreas, is suggested to have a
role in food digestion. The immunolocalization of cathepsin L in the nucleus of oocyte suggests
its specific physiological role in shrimp oocytes [41]. The cathepsin L-like proteinases isolated
from L. vannamei showed that specific activity and mRNA expression of cysteine protease were
associated during the molt cycle [42]. The expression of the cathepsin C gene expression in
hemocytes of L. vannamei could be induced after V. alginolyticus challenge, which reached a
maximum level at 4 h post challenge period, indicating that the cathepsins in shrimp may be
involved in immune response [43]. The aspartic protease cathepsin D obtained from M.
japonicus and P. monodon were characterized for physical and chemical properties and were
shown to have identical subunits and similar optimal pH [44]. The analysis of cathepsin B gene
expression in L. vannamei tissues revealed high expression levels in midgut gland and gut,
which are involved in food digestion process. The changes in the gene expression levels and
enzymatic activity were induced by starvation in the midgut gland of the white shrimp [45].
Significant increase in the cathepsin B gene expression levels in gills, gut, and muscle tissues
of shrimp exposed to low (3 ppt) salinity conditions suggest that P. monodon cathepsin gene
responds to the shrimp adaptive mechanism to salinity stress [20].

5. Signal transduction genes

5.1. 14-3-3 protein

The members of the 14-3-3 protein family are dimeric proteins that are expressed in a wide
range of organisms and tissues. They are involved in modulation of protein interactions
through phosphorylation process. The other diverse functional roles include interaction with
a large number of protein kinases, DNA, Raf kinase, and regulation of cell cycle progression
[46]. In plants, 14-3-3 protein activates and regulates plasma membrane H+-ATPase through
fusicoccin responsive system [47]. Two Na+/K+-ATPase α -subunit forms were detected in the
gill transcripts of crab Pachygrapsus marmoratus, which differed in presence of an 81-nucleotide
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sequence near the translation start site in the D form when compared to the C form. The
extended D form was found to contain the binding motif for the regulatory protein 14-3-3,
suggesting that Na+/K+-ATPase may be stimulated by this regulatory protein binding [48]. The
two isoforms of 14-3-3 proteins identified from the P. monodon were shown to have varied gene
expression profiles during salinity adaptation in response to hypo-osmotic (3 ppt) or hyper‐
osmotic (40 ppt) salinity stress conditions. Induction of 14-3-3B gene expression in gills of
shrimp acclimated to low salinity water suggests that it is likely to be involved in controlling
osmoregulation in P. monodon under hyperosmotic conditions [49]. The up-regulation of the
14-3-3 gene expression in the tissues of shrimp exposed to low (3 ppt) or high (55 ppt) salinity
conditions suggests that P. monodon 14-3-3 gene may have a potential role in shrimp response
to salinity stress [20-21].

5.2. Calreticulin

Calreticulin, a versatile lectin-like chaperone and important endoplasmic reticulum luminal
resident protein, is involved in Ca2+ homeostasis and molecular chaperoning. Calreticulins,
which are highly conserved in most of the eukaryotes, are involved in the synthesis of various
molecules and in many other biological and physiological processes of an organism. The
highest expression of calreticulin was detected in ovary of F. chinensis. The gene expression
varied at different molting stages and could be induced by heat shock and WSSV challenge,
indicating multifunctional role of calreticulin [50]. The P. monodon calreticulin showed changes
in expression profile in response to high-temperature stress, indicating its potential as a
biomarker for stress responses in shrimps [51]. Calreticulin also responds to salinity stress with
significant increase in the gene expression levels in gills and muscle tissues of P. monodon [20].

5.3. Innexins

Innexins, which are members of large multigene families, are involved in formation of gap
junctions for cell-to-cell communication [52]. In crustaceans, innexin expression has been
associated with developing lobster stomatogastric nervous system [53]. In P. monodon, the
transcripts of innexin-2-like protein showed increased expression in response to yellow head
viral disease [54]. Innexin-2 was found to be more abundantly expressed in testes than ovaries
of P. monodon, indicating functional role of innexin-2 in spermatogenesis but not in oogenesis
[55]. The high gene expression observed for innexin 2 with 14.43-fold in muscle tissue of shrimp
under low salinity stress of 3 ppt indicates gap junctions regulation during salinity stress in
shrimps [20].

6. Energy and metabolism genes

6.1. Arginine kinase

Arginine kinase plays a major role in energy metabolism and is a phosphotransferase that
catalyzes the reversible transfer of phosphate from phosphoguanidine to ADP, resulting in
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generation of ATP [56]. In shrimps, Penm2 allergen gene having conserved guanidino
specificity region and showing very high sequence similarity with crustacean arginine kinase
has been isolated and characterized from P. monodon [57]. In crustaceans, such as in blue crab
Callinectes sapidus, the arginine kinase gene expression is associated with salinity changes. The
arginine kinase flux reduced under hyperosmotic treatments and increased with the hypo-
osmotic treatments [58]. M. japonicus when subjected to severe hypoxic stress revealed up-
regulation of arginine kinase indicating metabolic response of arginine kinase under hypoxic
stress [59]. Arginine kinase was found to be differentially expressed and up-regulated in
WSSV-infected blue shrimp (Penaeus stylirostris) [60] and the gene expression could be induced
against LPS immunostimulation in L. vannamei indicating its correlation with immune
response in shrimps [61]. The differential expression of arginine kinase in gills, gut, and muscle
tissues of shrimp exposed to low (3 ppt) salinity conditions indicates that arginine kinase plays
an important role in metabolic process associated with salinity stress in crustaceans [20].

6.2. Ferritin

Ferritin plays a functional role in iron storage and metabolism. In shrimps, this large multi‐
functional and multisubunit protein gene has been isolated and characterized from L. vanna‐
mei, which revealed that ferritin is expressed in most of the tissues of shrimp with major
expression in hemocytes [62]. The administration of ferritin resulted in increased immune
response in L. vannamei with enhanced survival rate in WSSV-challenged shrimps and
maintained physiological homeostasis of shrimps [63]. In M. rosenbergii, the isolated ferritin
gene showed conserved domain for the ferroxidase center and the administration of iron
enhanced expression of ferritin gene in a tissue-specific manner [64]. The recombinant ferritin
was shown to confer protection in P. monodon infected with Vibrio harveyi [65]. The expression
of ferritin mRNA could be induced with heavy metal ions Cu2+ and Zn2+ and WSSV challenge
in F. chinensis [66]. The gill tissues of P. monodon when subjected to low (3 ppt) salinity stress
revealed significant increase in ferritin gene expression (8.79-fold), indicating its functional
role in salinity stress in shrimps [20].

6.3. Intracellular fatty-acid-binding proteins

Intracellular fatty-acid-binding proteins (FABPs) are lipid-binding proteins that help in
transport of fatty acids across extra- and intracellular membranes and are involved in various
other biological processes such as modulation of signal transduction; gene transcription,
especially of lipid metabolism; and cell growth and differentiation [67]. FABPs have been well-
characterized in vertebrates as compared to that in invertebrates. In crustaceans, the FABP
cDNA having fatty-acid-binding motifs has been cloned and characterized from the freshwater
crayfish Pacifastacus leniusculus and P. monodon [68]. The activity of specific Na+, K+, Ca2+, and
Cl- ion channels are regulated by various fatty acids. These ion channel regulations may be
carried out directly through fatty acid interactions [69]. The shrimp (P. monodon) gut tissue
revealed highest gene expression level of FABP (14.05-fold) at high salinity stress conditions
(55 ppt) and at low salinity stress conditions (3 ppt) with 13.30-fold; the osmoregulatory
process may therefore involve the FABPs in shrimps [20-21].
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6.4. Acyl-CoA binding protein

Acyl-CoA binding protein (ACBP) is a highly conserved protein. In yeast it is involved in
transportation of acyl-CoA esters from the fatty acid synthetase to acyl-CoA-consuming
process [70]. The protein, which was first identified in mammals, acts as a neuropeptide that
prevents binding of diazepam/endozepine to GABA receptor system [71-72] and is also
involved in regulation of several acyl-CoA-dependent processes [73]. In addition, ACBP is
involved in many other functions, which include regulating biosynthesis of fatty acid,
functional regulation of enzymes and genes, intracellular acyl-CoA pool regulation, acyl-CoA
esters donation required for β-oxidation and vesicular trafficking [74], and in regulation of m-
calpain [75]. In plants Arabidopsis thaliana, different types of ACBPs are encoded [76], such as
the ACBP1 and ACBP2, which are membrane-associated proteins [77-80]; ACBP3, which is the
extracellularly targeted protein [81]; and ACBP4, ACBP5, and ACBP6, which are the cytosolic
proteins [82-83]. ACBPs are involved in abiotic stress tolerance in plants. The ACBP2 in
Arabidopsis was shown to be involved in heavy metal (Cd) tolerance [84-85]. ACBP6 and ACBP1
are functionally involved in increased freezing tolerance [78],[86]. In shrimp, ACBP functions
in antibacterial [87] and antiviral response [88]. The ACBP gene in P. monodon was identified
to be differentially expressed in the SSH libraries constructed from the gut tissues of both low
(3ppt) and high (55ppt) salinity stressed shrimps. The complete cDNA sequence of ACBP
consisted of 273 bp ORF coding for 90 amino and showed ligand-binding conserved domains
similar to the other members of ACBP family. At 2 weeks post 3 ppt salinity stress conditions,
a significant increase in the ACBP transcripts expression was observed in gills and muscle
tissues with highest levels in the gut tissues (28.08-fold). Similar increase in the gene expression
levels was observed in shrimps exposed to high salinity stress conditions of 55 ppt in gills and
muscle tissues with gut tissues revealing high (11.95-fold) levels of gene expression [89]. These
results suggest a functional role of ACBP gene during salinity stress in shrimps.

6.5. Catechol-O-methyltransferase

O-methyltransferase (OMT) is an enzyme found in a wide range of organisms such as microbes
[90], where it is involved in antibiotic biosynthesis [91], and in fungi, where it is involved in
biosynthesis of aflatoxins [92]. The OMT found in plants are well characterized for their
functional role in O-methylation during biosynthesis of lignin, stress resistance, and disease
tolerance [93]. In crustaceans, farnesoic acid O-methyltransferase (FAMeT) catalyzes farnesoic
acid methylation resulting in production of isoprenoid methyl farnesoate, which is involved
in metabolic and physiological regulation [94]. Catechol-O-methyltransferase (COMT), which
is a type of O-methyltransferases, helps in catalyzing the transfer of methyl group to the
hydroxyl group of catechol compounds from S-adenosyl-L-methionine. In higher animals, the
COMT helps in catalysis of methylation of various macromolecules that are involved in
different functional and regulatory purposes and is present in soluble and membrane-bound
forms [95]. In shrimps, the construction of suppression subtractive hybridization (SSH)
libraries from P. monodon gill tissues resulted in identification of COMT gene as one of the
differentially expressed genes subjected to salinity stress. The COMT gene was differentially
regulated in both the SSH libraries generated from low and high salinity conditions. The ORF
of COMT gene of 666 bp size revealed the coding protein with 221 amino acids [96]. The P.
monodon COMT showed the conserved domains present in superfamily of S-adenosylmethio‐
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nine-dependent methyltransferases, which includes COMT, CCoAOMT family of indolethyl‐
amine N-methyltransferase from humans, and OMT from Bacillus subtilis [97]. The P.
monodon COMT was found to be up-regulated in low and high salinity stress conditions at
different time intervals in shrimp tissues (gills, guts, and muscles), suggesting a functional role
of this gene in salinity stress tolerance in shrimps [96].

7. Stress genes

7.1. Heat shock proteins

Heat shock proteins (HSPs) initially discovered in Drosophila melanogaster are a highly con‐
served set of polypeptides present in both prokaryotic and eukaryotic cells. They are generally
involved in conferring thermotolerance as molecular chaperones by refolding the denatured
proteins and also respond against various other stresses. They play a crucial role in organisms’
response to heat shock and cellular stress. In addition, the HSPs are also important for cellular
damage protection and in maintaining cellular homeostasis [98]. In aquatic animals, the HSPs
respond to environmental pollutants, abiotic stress, and are involved in disease resistance
against viral and bacterial pathogens. The functional role and significance of HSP in farmed
aquatic animals is demonstrated in stimulating the immune response [99]. In shrimp (P.
monodon), some of the HSPs such as HSP21 have been characterized for gene expression against
WSSV infection [100]; HSP70 gene expression was found to increase in the shrimp hemocytes
after heat shock treatment [101]; and HSP90 gene expression has been related with the ovarian
maturation [102]. The transcriptional levels of HSP21, HSP70, and HSP90 were inducible under
the heat shock and responded upon bacterial exposure in P. monodon [103]. Expression of
HSP70, which is one of the widely studied HSP in aquatic organisms, was high during short-
term hyperthermic treatment when compared to hypoxic and osmotic stress in P. monodon
[104]. The significant increase in gene expression level HSP21 in the gut and muscle tissues of
P. monodon exposed to low salinity stress (3 ppt) conditions, indicates its functional role in
osmotic stress in shrimps [20].

In conclusion, the construction of SSH cDNA library in response to low (3 ppt) and high (55
ppt) salinity stress in shrimp (P. monodon) led to identification of various differentially
expressed genes. The significant up-regulation expression of several genes at transcription
level in gills, gut, antennal gland, and muscle tissues of shrimp in response to two-week post-
salinity stress condition indicates their functional role in gene pathways and regulatory
mechanism of osmotic stress at the molecular level.
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