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Abstract

This chapter presents a detailed analysis of properties of double-scale pulses (also called
noise-like pulses and femtosecond clusters) generated in fibre lasers and gives an in-
depth discussion of promising applications of such pulses.
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1. Introduction

Mode-locked fibre lasers possess an intriguing capability of emitting, in certain generation
regimes, a regular train of pico- or nanosecond wave packets stochastically filled with
femtosecond sub-pulses. In the available literature on the subject, these wave packets are
referred to as noise-like pulses [1–3], noise bursts [4], double-scale lumps [5], femtosecond
clusters [6] or double-scale pulses [7]. In the scope of this chapter, we use the latter of these
terms while discussing properties and applications of such pulses.

Until recently, double-scale pulse generation was only achieved in mode-locked fibre lasers,
and there is still no understanding of physical mechanisms leading to formation of double-
scale pulses, i.e., to the co-existence of a virtually stable envelope of wave packets with power
and phase fluctuations inside the wave packets. Parameters of these ultrashort pulses (such as
peak power, duration, energy or instantaneous frequency) may experience significant
fluctuations both during a single double-scale pulse and from one such pulse to another.
Coherence time of double-scale pulses is determined by the duration of sub-pulses, which
latter may be substantially shorter than that of the wave packet as a whole. As a result, such
pulses have two different typical duration scales. The shape of the intensity autocorrelation
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function (ACF) is a characteristic ‘fingerprint’ of double-scale pulses with its very distinct
narrow central peak sitting on top of a broad pedestal. The width of this narrow peak corre‐
sponds to the typical sub-pulse duration and usually amounts to several hundred femtosec‐
onds.

Double-scale pulses were mentioned for the first time at the close of the 1990s [1], when pulses
with broad spectrum and noise-like behaviour of their intensity and phase were generated in
a mode-locked erbium laser. For a long time, double-scale pulses were disregarded as ‘not
sufficiently coherent’, and thus did not draw substantial attention to the respective laser
generation regimes. Nevertheless, over recent years, this topic has been rapidly gaining
popularity after the observation of double-scale pulses with relatively high energy in ultralong
fibre lasers. Active research prompted by this discovery has shown that double-scale pulses
may even be preferable in a number of applications, including non-linear frequency conver‐
sion, such as harmonic generation [8], Raman conversion [9] or super-continuum generation
[10–13], as well as applications in imaging and sensing systems with high temporal and/or
spatial resolution. It was furthermore demonstrated that generation of double-scale pulses in
long lasers represents a remarkably multiform phenomenon encompassing many non-linear
optical mechanisms, whose interaction may result in the emergence of diverse spatio-temporal
coherent structures in laser radiation [14].

Here, we present a detailed analysis of double-scale pulse properties and provide an in-depth
discussion of the above-mentioned and other important and promising applications of double-
scale pulses generated in mode-locked fibre lasers.

2. Generation of double-scale pulses

The most common way to generate double-scale pulses is via fibre lasers passively locked due
to the effect of non-linear polarisation evolution (NPE). It should also be noted that to date
double-scale pulses have been demonstrated in other types of passively mode-locked lasers,
including those using saturable absorbers made of single-walled carbon nanotubes [15], as
well as topological insulators [16] and non-linear loop mirrors or amplifiers (NOLM/NALM)
[11, 17, 18]. Nonetheless, NPE lasers possess the largest number of degrees of freedom in
adjustment of the generation regime. This greatly facilitates realisation of various generation
regimes in them, including double-scale generation ones [5, 7, 14].

A typical configuration of a fibre laser passively mode-locked due to NPE is presented in Fig.
1. In most reported research, laser-diode-pumped (LD) erbium- or ytterbium-doped optical
fibres are used as the active medium. Since their generation spectrum is rather wide, NPE-
mode-locked lasers are most often implemented in ring-cavity configuration, thus avoiding
the need for broadband reflectors. Optical isolators are normally used to ensure unidirectional
generation. Adjustment and switching of generation regimes are done with intra-cavity
polarisation controllers PC1 and PC2. The generated laser radiation can be extracted from the
cavity either through fibre couplers or through one of the ports of the fibre-optical polarisation
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beam splitter, which also carries the function of introducing polarisation-dependent optical
losses, thus ensuring passive NPE mode locking.

Figure 1. Typical layout of a fibre laser passively mode-locked due to the NPE effect.

In relatively short lasers (with few-meter-long cavities), both double-scale and ‘usual’ pulses
(as well as some transitional or intermediate regimes between these two) may be generated at
different settings of the intra-cavity polarisation controllers or the pump power level (see Fig.
2). In contrast, elongation of the fibre laser cavity to several hundred metres or several
kilometres leads to predominant generation of double-scale pulses [19, 20]. Cavity elongation
is one of the most effective ways to raise the output pulse energy in passively mode-locked
lasers [21]; therefore, double-scale pulses became the focal point of research conducted by
many groups around the world. Various publications studied spectral and temporal properties
of double-scale pulses produced in different generation regimes [22–25].

3. Direct numerical simulation of double-scale pulses

Numerical modelling of double-scale pulse generation in fibre lasers is usually based on the
generalised non-linear Schrödinger equation (GNLSE) [20] or on a system of simultaneous
equations for polarisation components of the intra-cavity radiation [5]:
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Figure 2. Experimentally measured (red) and simulated (blue) spectra and ACFs for three different lasing regimes: sta‐
ble single-pulse (left column), intermediate (middle column) and noise-like generation (right column) [24].
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where Ax and Ay are the polarisation components of the field envelope, z is the longitudinal
coordinate along the fibre, t is the time in the retarded frame of reference, γ and β2 are non-
linear and dispersion coefficients correspondingly, g0 and Psat stand for unsaturated gain
coefficient and saturation power for the active fibre.

Equations (1, 2) describe propagation of radiation along an active fibre. Taking g0 =0, we can
use the same equations to model laser pulse propagation inside passive resonator fibre. The
fibre-optical polarisation beam splitter is represented in the model by the following matrix:

PBS

1 0ˆ
0 0

T
æ ö
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è ø

(3)

Unitary 2 × 2 matrices must be used to describe polarisation controllers. In particular, a
polarisation controller based on the principle of fibre compression in the direction at an angle
ϕ can be represented by a matrix introducing phase delay α rotated by angle ϕ by multiplying
it by the corresponding rotation matrix:
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Parameter α in Eq. (4) stands for phase delay introduced by the polarisation controller and
depends on the transverse fibre deformation. Similarly, a polarisation controller utilising fibre
torsion can be expressed through its eigenvector projections: T̂ PC2 = e iα/2P̂+ + e −iα/2P̂−, where
circular polarisation state projections can be written as
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In order to model the propagation of laser pulses around the fibre cavity, Eqs. (1, 2) can be
integrated numerically by the step-split Fourier method [26]. At the required points along the
optical path, the polarisation transformations (3–5) are applied and losses corresponding to
the intra-cavity elements are taken into account.

This modelling step is carried out repeatedly until a stationary state is reached. As a rule,
anywhere between several hundred and several thousand modelled cavity round trips are
needed, depending on the system parameters and the initial conditions, mostly taken as white
noise or seed pulses. In certain cases, a laser may exhibit bistability: the limit cycle of the
propagation equations may depend on the initial conditions. It is relevant to mention here that
a similar phenomenon is observed in the experiment as hysteresis in switching between
generation regimes [27]. If the limit cycle of the propagation equations corresponds to the
'conventional' pulse generation regime, the generation parameters (power, pulse duration,
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spectrum width, etc.) of the limit cycle are highly stable (of the 10–3 order and higher). Con‐
versely, when the laser generates double-scale pulses, the pulse parameters in the generated
train fluctuate around their average values by a few per cent or even more between two
successive cavity round trips. This circumstance can be used in modelling as a basic criterion
to distinguish between generation regimes. We need to point out as well that the average
generation parameters must be insensitive to variation within reasonable limits of the 'non-
physical' modelling parameters, such as the mesh node count, mesh width and the step of
numerical integration of Eqs. (1, 2). This has to be controlled during modelling.

The approach outlined in the foregoing paragraphs is sufficiently powerful and generalised
to adequately model a variety of regimes observed in fibre lasers mode-locked due to NPE (see
Fig. 2 and Ref. [24]), as well as NOLM/NALM and generation of both double-scale and ‘regular’
pulses. Such power and generality come, however, at the expense of very significant amount
of computations necessary to perform in order to compare the model with the experiment.
This downside results largely from the specific nature of fibre laser configurations relying on
fibre-optical polarisation controllers. These controllers introduce a phase shift, which is
impossible to directly measure in regular experimental implementations. As a consequence,
for a valid match between modelling and experiment, it is necessary to perform a large series
of computations for a range of settings of the intra-cavity polarisation controllers correspond‐
ing to a range of parameters α and ϕ in Eqs. (4, 5). For each set of parameters, the entire
numerical modelling sequence has to be carried out, including specification of the initial
conditions, multiple runs of radiation propagation along the cavity and analysis of the
generation regime. In full analogy to the experiment, laser generation only emerges at certain
combinations of intra-cavity polarisation element settings and levels of the pumping power
launched into the active fibre. Therefore, a considerable part of calculations carried for
randomly chosen polarisation controller parameters does not result in a pulsed generation
regime. Nonetheless, this approach gives a fair idea of the great diversity of generation regimes
accessible in an NPE-mode-locked fibre laser through adjustment of its settings. For instance,
in Fig. 3, we present histograms of generation parameter distributions (rms bandwidth and
rms pulse duration) for ‘regular’ and double-scale pulses generated in numerical modelling
[7] at different settings of the polarisation controllers. Evidently, there is a considerable spread
in laser parameter values, up to an order of magnitude and even wider. This result effectively
indicates an opportunity to modify parameters of the output laser pulses (including double-
scale ones) by adjusting the intra-cavity polarisation controllers in order to achieve optimal
values for specific applications.

4. Simplified phenomenological model

Research in efficiency of double-scale pulses in practical applications ideally needs a less
complicated numerical model, which would enable numerical studies at much more affordable
expense of computation resources. With this objective, we have developed a phenomenolog‐
ical model of double-scale pulses relying on superposition of uncorrelated modes. Using this
model, it is comparatively easy to re-create modelling pulses with parameters known from the
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experiment (shape, duration and spectral width) for studying their various applications and
parameter optimisation. The proposed phenomenological approach to modelling requires that
the following function be calculated:

( ) ( )~ ( ) exp .j j
j

A t P t A i tw×å (6)

Here, ωj is the frequency of the j-th mode, t is the time, Aj is the complex amplitude of the j-th
mode and P(t) is the temporal pulse profile. The phases of complex amplitudes arg{ Aj } are
taken as independent random values uniformly distributed over the range of 0–2π.

Figure 3. Rms bandwidth (a, b) and rms-pulse duration (c, d) variability in simulated ‘conventional’ (a, c) and double-
scale (b, d) generation regimes [7].
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In the simplest case, scalar values Aj in Eq. (6) can be assumed constant, while in more involved
implementations of this model, their random character may also be taken into account (|Aj|
fluctuations). It is interesting to observe that the expression of Eq. (6) can be considered as a
model of thermal (incoherent) source with a preset spectral profile. The sum part of Eq. (6) is
multiplied by a specified profile P(t), as a result shaping noise-like incoherent radiation into a
pulse with a shape known from the experiment.

For an illustration, Fig. 4 presents the temporal distribution, spectrum and autocorrelation
function of double-scale pulses generated in the simplified phenomenological model (Eq. (6)).
It can be seen that the diagrams exhibit all the main features of double-scale pulses observed
in both experiment and direct numerical modelling of laser generation (see Fig. 2). For instance,
the temporal distribution of pulses in Fig. 4 looks like a wave packet stochastically filled with
sub-pulses. Single-shot spectrum of the modelled pulses also has a noisy appearance, but the
spectrum averaged over many pulses takes the form identical to that of | Aj(ωj)|  on condition
that the duration of wave packets is much longer than the inverse spectrum width. The pulse
ACF takes the shape of a broad pedestal with a narrow peak in its centre (Fig. 4 (c)). The relative
pedestal magnitude is 0.5, and its width in the case of Gaussian pulses by a factor of 2 exceeds
the duration of the pulse envelope P(t) in Eq. (6)). The width of the central ACF peak, con‐
versely, is equal to the inverse spectral width of pulses (see Fig. 4 (d)).

It should be noted here that although the proposed simplified model (Eq. (6)) is founded on
the assumption of independent phases arg{Aj} of modes (spectral radiation amplitudes),
multiplication by P(t) introduces correlation of neighbouring modes inside a spectral domain
with the width of the order of pulse envelope P(t) width. In reality, the level of an inter-mode
correlation for double-scale pulses observed in the experiment and in direct numerical
modelling may be higher than that of the explained simplified model. This is indicated by the
ACF pedestal magnitude exceeding the 0.5 value in some generation regimes. In particular,
the transient generation regime may be characterised by the maximum value of the central
ACF peak much below unity (see Fig. 2). This corresponds to the strong inter-mode correlation
and/or relatively small fluctuations.

The phenomenological model (Eq. (6)) analysed in the preceding discussion also improves our
understanding of the origin of sub-pulses in the internal filling of double-scale pulses.
According to Eq. (6), sub-pulses are closer in their nature to power oscillations resulting from
interference of incoherent modes rather than to separate femtosecond pulses that are inde‐
pendent of each other. This circumstance leads to radical differences in behaviour of double-
scale pulses undergoing temporal compression or stretching as compared with ‘regular’ laser
pulses. This difference will be given a detailed treatment in the following section.

5. Pulse compression

One of the salient differences of double-scale pulses from ‘conventional’ laser pulses is related
to limited possibilities of their compression. In most experimental configurations, double-scale
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pulses are produced in fibre lasers with a significant positive dispersion of their cavities. If the
laser generates ‘conventional’ pulses, the presence of uncompensated cavity dispersion leads
to the formation of strongly chirped pulses. Such pulses can be subsequently compressed to a
small fraction of their initial duration down to (or close to) the Fourier limit by passing them
through optical compressors based on diffraction gratings, optical prisms and/or optical fibres
with dispersion of different signs. Conversely, double-scale pulses present very limited
possibilities of compression [24]. It has to be stressed that these limitations arise from the
structure of the pulses themselves rather than from non-linear effects in fibre-optical com‐
pressors, which may also constrain compression coefficient of ‘regular’ laser pulses at suffi‐
ciently high-peak-power values [28].

Direct numerical modelling of laser generation based on coupled GNLSE (1, 2) explains the
measured low compressibility of double-scale pulses in the experiment. As calculations
demonstrated [24], unlike that of ‘regular’ pulses, the optical phase of double-scale pulses is
not a smooth continuous function of time but rather is filled with fluctuations, as shown in
Fig. 5. These phase fluctuations lead, in particular, to the lack of phase coherence across the
seemingly regular array of pulses observed experimentally [29]. Fluctuations of the temporal
dependence of the optical phase give rise to jitter of the instantaneous frequency of double-
scale pulses. This, in turn, leads to presence at each moment in time (in each point within a
double-scale pulse) of various frequencies covering the wide spectrum of the double-scale
pulse, as can be readily seen in a simulated FROG diagram of Fig. 6. The fundamental principle
of optical compression is to create a different temporal delay for the front and rear pulse edges,
which have slightly different optical frequencies because of a pulse chirp. Passing along a
phase-delay element, the components of the chirped pulse move closer to each other, produc‐
ing the effect of pulse compression. Since different optical frequencies are present at each
moment in double-scale pulses, frequency-dependent temporal delay of their components
cannot compress such pulses as well as the ‘regular’ ones, as shown in Fig. 6.

Figure 6 showcases pulse spectrograms generated in direct numerical modelling of various
generation regimes (indicated on top). The horizontal axis shows time in picoseconds and the
vertical axis, frequency and wavelength λ (left- and right-hand axes, respectively). Radiation
intensity is colour-coded on a log scale of 0 to –25 dB, as shown in the colour scale at the bottom
of Fig. 6. Pulse duration in the included spectrograms corresponds to the horizontal dimension
of intensity distribution, whereas the spectrum width corresponds to the vertical dimension.
The distribution slant in the diagrams reflects the pulse chirp. Linear compressibility of pulses
in optical compressors is predicated on the existence of chirp. The top row of diagrams
demonstrates pulses exiting the laser and the bottom rows correspond to the result of various
degrees of linear compression (the respective values of the optical compressor dispersion are
specified to the left of the rows).

As seen in the left column of Fig. 6, the duration of ‘regular’ laser pulses may be reduced in a
linear optical compressor almost down to the Fourier limit. The compression degree in this
case is somewhat below the theoretical limit because of the non-linear chirp present at the pulse
edges and clearly visible as pointed deformations of the colour patches of the left column in
Fig. 6. In experiments, this limitation may be overcome by spectral filtration of such pulses:
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when the spectral extremities of chirped pulses are ‘cut off’, the temporal wings of these pulses
containing non-linear chirps are also eliminated.

In contrast, double-scale pulses are not really amenable to compression (see the right column
in Fig. 6). Although they have approximately three times the spectral width of a 'conventional'
laser pulse (measured at –25 dB) in Fig. 6, after a pass through an optical compressor they
retain a duration exceeding that of ‘normal’ pulses by a factor of over 5. Although these
particular calculations indicate the possibility of almost twofold compression, the minimal
achievable pulse duration far exceeds the Fourier limit, as a direct consequence of the pulse
structure. At each moment in time (along any vertical section of the spectrogram), double-scale
pulses contain practically all the components of its spectrum (see the bottom left diagram in
Fig. 6).

The intermediate generation regime, with its comparatively low fluctuations of phase and
other parameters of the generated pulses, takes an accordingly middle position with respect
to linear compression, as indicated by the central column of Fig. 6. It is characterised by
medium compressibility, which is limited by both factors mentioned earlier: the non-linear
chirp (curved ends of the spectrogram) and phase fluctuations, making the spectrogram
considerably wider than the spectrally limited pulses at the same or even at narrower spectrum
width. This can be readily seen when comparing the central and left-hand diagrams in the
bottom row of Fig. 6.
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Figure 6. Simulated FROG of ‘conventional’ (left column), intermediate (at the middle) and double-scale (right col‐
umn) pulses generated by all-normal-dispersion fibre laser passively mode-locked due to NPE and different stages of
compression of these pulses.

Fiber Laser80



6. Pulse stretching

It is clear that the optical phase fluctuations condition the difference of double-scale pulses
from 'conventional' laser pulses not only in relation to compression but also to stretching, i.e.,
to lengthening of the pulse duration as it propagates along a medium with chromatic disper‐
sion (e.g. an optical fibre). Indeed, if we consider the diagrams of Fig. 6 in the reversed order
(i.e. bottom to top instead of top to bottom, as before), we will observe dynamics of stretching
of laser pulses with different levels of phase fluctuations in a dispersive medium. In this case,
the bottom row of diagrams corresponds to the state with the smallest durations (for a given
pulse type with a specific spectral width). Pulse duration increases during the process of
propagation along the medium (see Fig. 6 from bottom to top).

The spectrograms presented in Fig. 6 demonstrate that double-scale pulses are significantly
less stretchable than the ‘regular’ laser pulses of comparable or even narrower width of their
optical spectrum. This circumstance makes double-scale pulses attractive in a number of
applications where low temporal coherence of radiation is required, for example, to achieve
high resolution in optical imaging. Unlike ‘regular’ ultrashort laser pulses with short coherence
time, double-scale pulses may be delivered to the desired location over optical fibres practically
without loss of the system’s resolving power defined by the pulse coherence time.

7. Applications

Until recently, the possibility of practical application of double-scale pulses remained uncer‐
tain because stochastic filling of generated wave packets was understood to result in highly
unstable output parameters. As it was experimentally shown, however, the average output
power of a mode-locked fibre laser generating double-scale pulses remains relatively stable
and pulse-to-pulse average power fluctuations being fairly small (a few per cent, as a rule). It
was further discovered that double-scale pulses exhibit a number of remarkable properties
making them radically different from ‘usual’ laser pulses. Double-scale pulses may carry
relatively high energy (several µJ) directly at the output of a fibre master oscillator [21, 25].
Moreover, peak power of sub-pulses may far exceed the average peak power of the entire wave
packet because of their short duration. It was also established that double-scale pulses feature
comparatively high efficiency of non-linear interaction with the propagation medium in
harmonic generation [8], Raman conversion [9] or super-continuum generation [10–13]. We
analyse these and other promising applications of double-scale pulses in the following
discussion.

The potential of double-scale pulses in configurations with non-linear frequency conversion
is directly related to the high peak power of sub-pulse filling. The sub-pulse peak power may
be several times as high as the average power of the double-scale envelope due to fluctuations
resulting from stochastic nature of double-scale pulses. High peak power leads to relatively
efficient non-linear optical transformation of double-scale pulses, for instance, harmonic
generation, super-continuum generation, etc. As an illustration, let us consider the frequency-
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doubling process in a thin non-linear crystal that we studied both in direct numerical modelling
and in experiment [8]. Second-harmonic generation (SHG) was achieved in a Yb-doped fibre
laser passively mode-locked due to NPE (see Fig. 1 for the optical layout). Through adjustment
of the intra-cavity polarisation controllers, this laser could be switched between generation of
‘regular’ and double-scale pulses as needed during the experiment. Direct numerical model‐
ling was carried out by integrating Eqs. (1, 2) with the following parameters: non-linear
coefficient γ = 4.7×10–5 (cm∙W)–1, dispersion coefficient β2 = 23 ps2/km, small-signal gain g0 =
540 dB/km and saturation power of the active fibre Psat = 52 mW.

Second-harmonic generation was further modelled with the following equation for the spectral
wave amplitudes:
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¶ ¶
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where A1j and A2n are spectral amplitudes of the first- and second-harmonic waves, respec‐
tively, u is the group velocity and σ2 is the non-linear coefficient. Apart from the process of
frequency doubling of the laser modes corresponding to terms with j = k, Eq. (7) also reflects
processes of sum frequency generation (terms with j ≠ k under summation in Eq. (7)). Both
types of processes are schematically shown in Fig. 7 (a) for N = 3 equidistantly spaced laser
modes. Thick solid lines correspond to frequency doubling, and dotted lines show sum
frequency generation. In reality, the number of laser modes N is very large; however, all of
them are separated by the same distance ∆ω from the neighbouring ones. The second-harmonic
radiation, following Fig. 7 (a), will consist of 2N – 1 equidistant modes spaced at the same
spectral interval ∆ω.

Eq. (7) is integrable in the approximation of a thin non-linear crystal and in the absence of the
pumping wave depletion. Assuming A1i = constant along z and A2n = 0 at z = 0, let us integrate
Eq. (7) from 0 to L and divide the full power of the second-harmonic wave I2n = Σ|A2n|2 by (σ2

L P1)2, where P1 is the first harmonic sum power:
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The resulting coefficient ζ is the SHG relative efficiency, which equals to the ratio of two SH
powers, of which the first is obtained when the non-linear crystal is pumped by a double-scale
laser pulse with given mode amplitudes A1j and the second is generated with the use of single-
mode monochromatic pumping of the same power P1 = Σ|A1j|2. An important feature of the
dimensionless relative efficiency ζ is that it does not depend on power and thickness of the
thin non-linear crystal but is sensitive to mode correlations and fluctuations, thus allowing us
to easily compare different lasing regimes from the viewpoint of efficiency of non-linear
frequency. To do that, we simulated the generation of double-scale pulses using Eqs. (1, 2) and
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averaged SHG relative efficiency (Eq. (8)) over multiple successive pulses produced by the
fibre laser.

In our modelling, the parameters of the intra-cavity polarisation controllers were selected
randomly. After 10,000 cavity passes, the generation mode of the modelled laser was analysed.
If the laser generated double-scale or 'regular' pulses, then second-harmonic generation was
modelled, which consisted in calculation of the relative efficiency ζ (Eq. (8)). Both the gener‐
ation parameters and the ζ value were then saved by the program. The modelling cycle was
then repeated with the intra-cavity polarisation controller settings chosen once again at
random.

As a result of a large number of modelling cycles, statistical data were collected on the
generation parameters and relative efficiency of frequency doubling in double-scale and
'regular' generation regimes. These data allowed the comparison of these regimes in relation
to their efficiency for frequency doubling, and they also could be used to study the correlation
between the frequency-doubling efficiency and the generation parameters. The most imme‐
diate link was identified between the relative efficiency of frequency doubling ζ and rms pulse
duration Trms with Pearson’s correlation coefficient ρ(ζ, 1/Trms) = 0.97. The obtained results are
presented in Fig. 7 (b). Each point on the shown diagram was generated as a result of direct
numerical modelling of laser generation at fixed values of the intra-cavity polarisation
controller settings. These values differ randomly between one point and another. The X-
coordinates of the diagram points are proportional to the relative efficiency ζ of frequency
doubling, whereas their Y-coordinates are proportional to the rms pulse width.

As it can be seen from Fig. 7 (b), ζ is roughly inversely proportional to Trms, which means that
ζ grows linearly with the pulse peak power, as it should for a second-order non-linear process.
One can also note in Fig. 7 (b) that for any fixed pulse width Trms, the relative SHG efficiencies
are comparable for both regimes, being slightly higher for double-scale pulses. The experi‐
mental results that we measured in [8] agree with the numerical modelling, featuring higher
efficiency of power transformation into the second harmonics for double-scale pulses in
comparison to ‘conventional’ laser pulses.

Figure 7. (a) Schematic diagram of SHG processes for N = 3 modes. (b) Correlation between relative SHG efficiency
and rms pulse width of double-scale (red points) and conventional (green points) pulses.
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We carried out similar experiments on cascaded Raman conversion of different pulse types in
a long phosphosilicate fibre [9]. It was shown that feeding double-scale pulses into the fibre
produces broader output spectrum as compared with using 'regular' laser pulses. Further‐
more, different statistics of laser radiation in these regimes led to specific spectral features in
the Raman spectrum of double-scale pulses [9]. In general, the results reported in Ref. [9]
corroborate the conclusion made in the foregoing discussion about better efficiency of non-
linear transformation of double-scale pulses.

Super-continuum generation [11, 30] may be also listed among promising applications related
to non-linear frequency transformation. Apart from a relatively higher peak power, double-
scale pulses are also less coherent. As it was demonstrated earlier, this may boost super-
continuum generation and allow one to obtain wider and smoother supercontinuum spectra
[11, 31, 32].

Two other prominent features of double-scale pulses, their very short coherence time and their
broad spectrum [33–36], enable their application in imaging and sensor systems with high
temporal and/or spatial resolution [37–39]. Importantly, double-scale pulses are not strongly
affected by dispersive broadening [1], unlike regular ultrashort laser pulses with comparable
coherence time. This makes it possible to transmit such pulses over optical fibres towards the
target objects without loss of system’s resolving power.

Inner structure of double-scale pulses filled with ultrashort sub-pulses and their significant
spectrum width also make them attractive for applications such as laser-induced breakdown
spectroscopy (LIBS) [6], a type of atomic emission spectroscopy. High-energy laser pulses are
focused on a surface and cause ablation and plasma formation. The radiation generated by
plasma is then registered in an optical system for spectral analysis. Comparison of recorded
spectral lines with the known atomic optical spectra allows relatively easy and fast identifi‐
cation of the chemical composition of the studied sample. This method has the advantages of
needing little or no sample preparation, and the possibility of depth profile generation by layer-
wise ablation of material from the sample surface. This latter circumstance also solves the
problem of surface contamination of the studied samples. Another important benefit of LIBS
is its minimally or non-destructive nature. LIBS features sufficiently high precision and does
not rely on ionising radiation, which is important for biological safety. Double-scale pulses
generated in passively mode-locked fibre lasers present a virtually ideal solution for LIBS,
because they deliver bursts of femtosecond sub-pulses at megahertz repetition rates [6]. High
peak power of their sub-pulses drives correspondingly high efficiency of two-photon proc‐
esses while maintaining low thermal stress of the studied samples.

8. Conclusions

Double-scale pulses offer a number of unique properties, including comparatively high peak
power, broad spectral width and low coherence time. Therefore, such pulses hold much
promise in a number of applications (e.g. non-linear optical frequency transformation,
spectroscopy, material micro-processing and imaging techniques). They furthermore exhibit

Fiber Laser84



a wide variety of generation regimes and an improbable combination of stochastic and
coherent laser dynamics, still far from being understood. Although this factor draws the
attention of researchers to double-scale pulses, it also prevents, for the time being, broader
applications of double-scale pulses in research and technology applications of fibre lasers.
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