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Abstract

The field of plant genome assembly has greatly benefited from the development and
widespread adoption of next-generation DNA sequencing platforms. Very high sequenc‐
ing throughputs and low costs per nucleotide have considerably reduced the technical
and budgetary constraints associated with early assembly projects done primarily with a
traditional Sanger-based approach. Those improvements led to a sharp increase in the
number of plant genomes being sequenced, including large and complex genomes of eco‐
nomically important crops. Although next-generation DNA sequencing has considerably
improved our understanding of the overall structure and dynamics of many plant ge‐
nomes, severe limitations still remain because next-generation DNA sequencing reads
typically are shorter than Sanger reads. In addition, the software tools used to de novo
assemble sequences are not necessarily designed to optimize the use of short reads. These
cause challenges, common to many plant species with large genome sizes, high repeat
contents, polyploidy and genome-wide duplications. This chapter provides an overview
of historical and current methods used to sequence and assemble plant genomes, along
with new solutions offered by the emergence of technologies such as single molecule se‐
quencing and optical mapping to address the limitations of current sequence assemblies.

Keywords: Sequencing, Plant, Genome, Assembly

1. Introduction

Genome sequencing, assembling and annotation have been major priorities in plant genetics
research during the past 20 years. The release of draft reference genomes have typically
constituted major milestones and have proven to be invaluable for the analysis and charac‐
terization of genome architecture, genes and their expression, diversity and evolution [1–5].
The expansion of sequence information in a growing number of taxa has contributed to
comparative studies and the implementation of molecular breeding and biotechnology
approaches for crop improvement [6, 7]. The construction of the first plant genomes was made
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possible by applying considerable resources, coordination and effort to enabling automated
Sanger-based sequencing technologies and computational algorithms. Starting in 2005, a series
of technological revolutions in DNA sequencing, driven in large part by the goal of affordable
personalized genome sequencing, radically changed the sequencing model. First, new
technologies drastically increased throughput while reducing costs and times in data collec‐
tion. Additional technologies then enabled long single-molecule reads and algorithms that
were more suitable to resolve complex genomes [8, 9].

In addition to these advances, the genomics community has benefited from the development
and implementation of complementary mapping technologies and methods that have
facilitated the scaffolding of sequences and integration to genetic maps. This review provides
a historical and technical perspective of methods and technologies applied to genome reference
assembly in plants as well as current advances and future directions.

2. The development of Sanger sequencing for de novo assembly of plant
genomes

The construction of reference genomes was initially enabled by technological advances in
sequencing using the Sanger method [10]. During the 1980s and 1990s, the introduction of
thermal cycle sequencing, single-tube reactions and fluorescence-tagged terminator chemistry
[11] facilitated the development of high-capacity sequencing platforms. Additional improve‐
ments in parallelization, base quality assessment, read length and cost-effectiveness were
achieved by the development of automatic base-calling and capillary electrophoresis [12, 13].
With no major modifications made in the past years, automated high-throughput Sanger
sequencing is performed by parallel reactions that include a mixture of the DNA template,
primer, DNA polymerase, and deoxynucleotides (dNTPs). A proportion of dideoxynucleotide
terminators (ddNTP) are included in the reaction, each labelled with a different fluorescent
dye. DNA molecules are extended from templates using a thermal cycling reaction and
terminated by random incorporation of the labelled ddNTPs, which are detected by laser
excitation of the fluorescent labels after capillary-based electrophoresis. The differences in dye
excitation profiles are recorded and translated by a computer to generate the sequence. Primary
analysis software then calls nucleotides from the raw sequences, assigning a corresponding
quality score at each position [6, 14].

The complete sequencing of the first bacterial genomes [15,16] as well as the creation of
initiatives aimed at sequencing the genomes of Sacharomyces cerevisae, Caenorhabditis elegans,
Drosophila melanogaster and Homo sapiens provided the technical and technological framework
for the initial sequencing of genomes in plants [17–21]. These projects validated the idea of
applying a scaled-up form of shotgun sequencing [22]. Shotgun sequencing relied on computer
algorithms to enable in silico assembly of overlapping sequencing reads derived from ran‐
domly-generated subclones. The development of software suites such as Phred, Phrap and
Consed [23] allowed calling bases, setting individual base quality, assembling overlapping
reads, assigning assembly quality scores, viewing final assemblies and extracting consensus
sequences. Two major genomic shotgun sequencing strategies were defined at that time: (1)
whole-genome shotgun sequencing (WGS) and (2) clone-by-clone, also referred to as BAC-by-
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BAC sequencing. In WGS, genomic DNA is randomly sheared and the ends of the cloned
fragments are directly sequenced and assembled. This strategy is the simplest, and it was
initially used in small bacterial and yeast genomes. Later, it was also used in D. melanogaster
and one of two initiatives aimed at sequencing and assembling the reference human genome
[19, 21]. Major improvements to de novo WGS assembly came from using strategies that relied
on paired-end reads from multiple libraries with different average insert sizes and the
optimization of software with algorithms that use end-sequence distance information from
these libraries.

The second Sanger sequence assembly strategy, clone-by-clone, was successfully deployed in
projects aimed at complex eukaryotic genomes. In clone-by-clone genome assembly, shotgun
sequencing is performed in libraries derived from individual genomic large-insert clones,
selected in a minimum tile path according to physical and genetic map information [24, 25].
The most common type of large-insert clone is the bacterial artificial chromosome (BAC), which
can stably carry genomic inserts ranging from 100 to 300 kb and is relatively easy to maintain
and purify. Accordingly, this method is usually referred to as BAC-by-BAC, although
additional vector systems have been used in assembly projects, including yeast artificial
chromosomes (YACs), P1 artificial chromosomes (PAC), transformation-competent artificial
chromosomes (TACs), cosmids and fosmids. The two major genomic shotgun-sequencing
approaches, WGS and BAC-by-BAC, had advantages and disadvantages when applied to
Sanger-based sequencing platforms, depending on the genome of interest. The clone-by-clone
approach benefited from working in small units, effectively reducing complexity and compu‐
tational requirements. This approach minimized problems associated with the misassembly
of highly repetitive DNA and therefore provided a better, more complete assembly in plants
and other complex eukaryotic genomes. WGS projects were computationally intensive and
were less effective bridging repetitive regions in complex genomes but benefited from
considerably lower cost, time and logistics [14].

The first completed reference plant genome was from the model system Arabidopsis thaliana,
accession Columbia [26]. At that time, it was only the third multicellular eukaryotic genome
to be published, after C. elegans and D. melanogaster. The nuclear genome of Arabidopsis is
distributed in five chromosomes, and it is only approximately 4% the size of the human
genome. The A. thaliana genome initiative used multiple types of available large-insert libraries
including cosmids, BACs, PACs and TACs. Shotgun clones were constructed and then mapped
by restriction fragment fingerprinting as well as screening with hybridization or polymerase
chain reaction (PCR) markers. End sequences for 47,788 BAC clones were further used to
anchor clones, integrate contigs and help select a minimum tiling path. Each of 1,569 clones in
a minimum tiling path were selected, sequenced bidirectionally and assembled at estimated
error rates of less than 1 in 10,000 bases. Direct PCR products were used to close some gaps
and YACs allowed the characterization of telomere sequences. As initially published, the total
length of sequenced regions was 115.4 Mb, in addition to an estimated 10 Mb nonsequenced
centromeric and rDNA repeat regions. Since the original publication, the Arabidopsis genome
sequence reference has been subjected to several rounds of improvements, each time reducing
gaps and extending the sequence towards the centromeric regions [27].

The second published plant genome reference was rice (Oryza sativa). While the rice genome
is more than 2-fold the size of Arabidopsis, approximately 390 Mb, it is one of the smallest
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genomes of any major crop, less than 15% the size of the human genome. Like Arabidopsis,
the rice genome was completed using a Sanger-only clone-by-clone approach [28] that required
the initial construction, fingerprinting and physical mapping of a large number of random
BACs and PACs. In total, 3,401 mapped clones in a minimum tiling path were selected from
the physical map, randomly sheared and individually end-sequenced to approximately 10-
fold coverage. Clone sequences were assembled and low-quality regions were finished using
targeted sequencing. Gaps were closed and low-quality regions resolved by sequencing PCR
fragments, plasmids and fosmids.

The draft reference genome of Maize, one of the most important crops in the world, is
considered the last major published plant genome project based primarily on a Sanger BAC-
by-BAC strategy [29]. At 2.3 Gb and spanning 10 chromosomes, the nuclear genome of maize
is considerably larger than that of rice and Arabidopsis, approximately 3/4 the size of the
human genome. A set of 16,848 minimally overlapping BAC clones, derived from an integrated
physical and genetic map, were selected and end-sequenced. The assembly was performed
after adding additional data derived from cDNA sequences and sequences from subtractive
libraries with methyl-filtered DNA and high C0t techniques, resulting in a whole-genome
assembly (B73 RefGen_v1) made of 2,048 Mb in 125,325 sequence contigs and 61,161 scaffolds
[29]. Unlike the completed genomes of rice and Arabidopsis, most sequenced BACs in the first
version of the maize draft genome are unfinished. Gaps and low-quality regions in BACs were
not systematically closed by PCR sequencing or other target approaches. Therefore, while the
BACs used in the minimum tiling path were mapped, the order and orientation of individual
contigs within a single BAC could be incorrect. Subsequent versions of the genome have been
improved by targeting gaps and adding alternative sequencing strategies described later in
this review.

Finally, it is important to mention that a significant number of plant genome sequencing
initiatives have used WGS strategies, which provide a considerable reduction in time and cost
associated with cloning, construction, mapping and selection. Sanger WGS genome projects
included those of poplar tree, grape, and papaya [30–32]. Later refinements to the process
enabled the sequencing of Brachypodium distachyon [33] as well as the larger genomes of
Sorghum bicolor (~730 Mb) [34] and soybean, an ancestral tetraploid (1.1 Mb) [35]. It should be
noticed that, as demonstrated by the Maize genome project, the two Sanger shotgun assembly
approaches, as well as later sequence technologies, are not mutually exclusive and may be
complementary to increase quality and coverage.

The high cost and logistics of plant projects based on clone-by-clone Sanger sequencing
required extensive funding, the creation of large collaborative consortia and several years of
fingerprinting and sequencing work. The cost of the project by the Arabidopsis Genome
Initiative has been estimated at US$70 million [36]. The International Rice Genome Sequencing
Project (IRGSP), which included groups from 11 different nations, took over 5 years to
complete. During its early stages, IRGSP had estimated that the project would take 10 years
and cost a staggering US$200 million [37]. The Maize draft genome was accomplished by
multiple laboratories at an estimated cost of tens of millions in a joint NSF/DOE/USDA
program. It is worth noticing that, while the cost and time required to accomplish Sanger WGS
projects are in fact lower than those based on a clone-by-clone approach, they are still consid‐
erable for today’s standards. The sequencing of the 1.1-Gb soybean genome, the largest
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published plant genome based on a Sanger WGS approach, provides an example of such a
cost. It was completed in less than two years although it took a group of 18 institutions several
million dollars to generate and assemble more than 15 million Sanger reads from multiple
libraries with average sizes ranging from 3.3 kb to 135 kb [35].

Besides cost and time considerations, these early Sanger-only projects posed considerable
technical challenges. Despite the extensive resources deployed towards the sequencing of the
Arabidopsis and rice genomes, which are usually considered as finished, as well as other
projects mentioned in this review, they all have representation gaps. A considerable number
of gaps correspond to regions that are “unclonable” under the conditions used to prepare BAC
and other genomic libraries. Although many of these regions correspond to tandem repeats
such as telomeric sequences and other repetitive regions, it may also include gene space [29].
Moreover, the maximum length of quality Sanger reads, usually 800–900 bp, as well as
technical issues associated with the sequencing of DNA stretches with strong secondary
structures or extensive homopolymers, create conditions for additional sequencing gaps, even
in regions with physical coverage.

Finally, most plant genomes are characterized by elevated proportions of highly repetitive
DNA and by the presence of segmental duplications or full genome duplications due to
polyploidization events [38], which can be problematic during assembly. The 1C genome
content in Maize, for example, is smaller than in humans but it consists of higher proportions
and larger tracks of high-copy elements such as retrotransposable elements [29, 38]. At least
some of the differences between the assembled and estimated genomes of the Maize line B73
could be attributed to the assembly-based collapse of highly similar long terminal repeats
(LTRs) at the end of retrotransposons. It is important to note that all the Sanger-only initiatives
corresponded to plant species with genomes that were considerably smaller than the average
5.8-Gb plant genome. Plant genomes have a considerably wider size range than in mammals,
and in some important crops (e.g. wheat), nuclear genomes can be more than 15 Gb long, well
beyond the practical realm of Sanger sequencing. Although BAC-by-BAC approaches can
reduce complexity by more than 10,000 fold, Sanger-based assembly remains difficult and
prohibitively expensive in plant genomes of moderate or large size. The WGS approach is even
more sensitive to the complexity of plant genomes as it increases the potential for assembly
artefacts due to haplotype and homeolog collapse in regions with high identity. Reductions in
time and cost in WGS projects are achieved at the expense of assembly fidelity in repetitive
regions and expanded need for computational resources.

3. Next-generation sequencing technologies applied to de novo assembly
of plant genomes

3.1. Second-generation sequencing technologies

As indicated above, successful whole-genome sequencing projects have been achieved with
the use of Sanger technology. However, such projects require dealing with several complicat‐
ing factors, including high costs and relatively long turnaround times to completion. The
emergence of next-generation sequencing (NGS) technologies has changed this paradigm, both
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by reducing costs and increasing sequencing throughputs, while at the same time introducing
complexity related to the relative short reads of NGS reads. Several NGS technologies have
emerged in the past 7 to 8 years [for reviews, see refs. 39–41]. All follow a relatively uniform
approach to library construction and sequencing. To complete sequencing: (1) universal
adapters are ligated at the end of single DNA molecule templates; (2) adapter-ligated DNA
templates are amplified via PCR to create a cluster of identical isoforms and (3) clusters are
loaded on sequencers and nucleotide incorporations occur in parallel on millions of clusters.
These generate an amplified signal that is recognized by the platform and translated into a
base call.

The most widely used NGS technology nowadays is the one commercialized by Illumina [42],
whose high-throughput instrument, the HiSeq4000, can produce up to 1.5 Tb of sequencing
data in approximately 3.5 days.. In the Illumina sequencing platform, sequencing templates
generated during library construction are immobilized on a solid surface, and a “bridge PCR”
approach allows for the localized amplification of millions of single DNA molecules, thus
generating millions of clusters, each containing thousands of copies of the original DNA
molecules [43]. Sequencing then is performed using a sequencing-by-synthesis approach
where single-base extension allows the incorporation of a fluorescently labelled nucleotide (a
blocking chemical moiety at the 3’ hydroxyl end allows the incorporation of one base only).
Once incorporated, the label is detected and the resulting signal subsequently translated into
a base call. Finally, the fluorescent dye and the blocking 3’ agent are cleaved, allowing the next
single base incorporation event to occur. Through the use of alternating cycles of base
incorporation, image capture and dye cleavage, the Illumina sequencing technology can
produce reads that are up to 300 bp in length. The relatively high error rate (~0.1% or 10 times
higher than Sanger sequencing) [39] can be compensated by very high sequencing coverage,
thus allowing random errors at any given base position to be ignored below a certain frequency
threshold. The relative short read of Illumina sequencing reads can be explained by several
noise factors accumulating after each cycle, including phasing, where imperfect single-base
incorporation and imperfect cleavage of the dye and 3’ hydroxyl blocking moiety lead to the
accumulation of copies of various lengths within a cluster, and the subsequent increase of
signal-to-noise ratio after each cycle [44].

3.2. Third-generation sequencing technologies

De novo assemblies of plant genomes have been performed with NGS reads only, either with
reads generated on the Illumina platform alone or with reads generated with the Illumina
platform combined with reads generated on the Roche 454 second-generation sequencing
platform [45]. However, those assemblies generally are fragmented, resulting in low N50
values and a high number of contigs, mostly because of the overall short read length, the
complexity of the genome and the presence of conserved regions whose length exceeds the
length of NGS reads and thus cannot be extended during the de novo assembly process. The
emergence of third-generation sequencing technologies [46, 47] has started to address some of
the inherent limitations of sequencing and assembling large and complex plant genomes.
Those technologies are characterized by the parallel sequencing of single molecules of DNA
(rather than “clusters”), thus avoiding phasing issues, and the resulting sequences tend to be
in the kb range, offering the opportunity to assemble genomes and generating longer contigs
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by encompassing complex and conserved genomic regions and allowing relatively high-
confidence assemblies of overlapping reads. However, single sequencing reads tend to exhibit
relatively high error rates (~15%–25% on average). Deep sequencing coverage or repeated
sequencing of the same DNA fragments therefore are required to offset the presence of a high
number of sequencing errors [48, 49]. As of today, two companies have developed and
commercialized third-generation sequencing technologies, namely, Pacific Biosciences [e.g.,
50] (Menlo Park, CA) and Oxford Nanopore Technologies [e.g., 51] (Oxford, UK). Each
company uses vastly different approaches to sequencing. The Pacific Biosciences (PacBio) RS
II system uses a sequencing-by-synthesis approach to offer up to ~40-kb reads, where base
incorporation is monitored in a real-time fashion. Nanoscale holes, described as Zero Mode
Waveguides (“ZMW”) are located on a chip, where individual polymerases are covalently
attached to the surface of each ZMW. Individual nucleotides with a fluorescent label attached
to the phosphate chain are incorporated to the elongating strand and the excited dye emits a
signal that is captured before diffusion of the released pyrophosphate, and translated into a
specific base call. DNA fragments used as template are ligated to “bell-shaped” adapters at
both ends, thus facilitating the sequencing of DNA fragments through multiple passes and the
creation of a more accurate consensus sequence. The overall stability and activity of the
polymerase remain limited by photo damage and the progressive dissociation of the poly‐
merase/template complex from the surface of the ZMW. It is therefore expected that reads
generated from smaller DNA fragments will exhibit higher consensus accuracy than reads
from larger DNA fragments. Oxford Nanopore Technologies released the MinION sequencing
device in early access mode in 2014. Like the PacBio RS II system, the MinION delivers long
reads in a real-time fashion, from single molecules of DNA. In that particular case, however,
sequencing is performed by measuring the change in ionic current when a single DNA strand
translocates through a protein nanopore located in an insulated membrane. The resulting
signal is measured and translated into a base call. Because no enzyme is involved in the DNA
sequencing process, it is expected that read length will be driven mostly by the physical length
of the DNA strand being sequenced. Library construction involves the ligation of two types
of adapters to DNA fragment, one “Y-shaped” adapter with a bound protein that unwinds the
double-stranded DNA and facilitates the translocation of a single strand through the pore, and
one “bell-shaped” adapter at the other end that allows the translocation, and sequencing, of
both the sense and antisense strands. Sequencing reads then are generated by aligning base
calls from the two strands and producing a higher quality consensus sequence.

3.3. Challenges in assembling plant genomes

De novo assembly of genomes has closely mimicked the trends and improvements in sequenc‐
ing technologies and accompanying sequencing assembly software over the years [45]. The
emergence of next-generation sequencing technologies has allowed a much larger number of
plant genomes to be sequenced and assembled than what would have been deemed possible
with Sanger sequencing alone, mostly because of the costs and labor involved in such projects.
However, the complexity of the majority of those genomes still makes it a challenge to resolve
them with short reads alone [52, 53]. As a result, most plant genome assemblies are highly
fragmented, with large number of contigs and conserved regions of the genome in an unfin‐
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ished state [54]. The presence of highly conserved repeats often exceeding 10 kb in length
represents a major challenge in assembling plant genomes. The most common types of repeats
in plants are type II long-terminal repeat (LTR) retrotransposons and their proliferation within
a genome often explains most of the structural variations between strains [55]. Their movement
also results in genome expansion, where repeats represent, in some instances, more than 80–
90% of the structural content of a particular genome [29]. Repeat expansion also can lead to
very large genome sizes. While NGS technologies can generate enough raw data to cover an
entire genome in a relatively cost-effective manner, assembling such a large amount of data
often represents a major computational challenge. For example, the assembly of the loblolly
pine genome (~22 Gb), which represents the largest genome assembled to date, could be solved
only using condensed sets and read pooling prior to assembly [56]. Assembling large and
repeat-rich genomes can also be facilitated by using supplemental layers of information, such
as the physical distance between “paired” reads (end-sequences generated at both ends of a
particular DNA fragment) in mate-pair libraries. Another challenge for de novo assembly of
plant genome is the issue of polyploidy [57]. Polyploidy is an important force in plant genome
evolution and it is estimated that ~80% of all living plants are polyploids [58], while close to
100% of all plant lineages have a paleo-polyploidy event in their history. As a consequence,
some plants species, including economically important crop species like soybean [35], have
entire gene families consisting of highly similar paralogs. Those gene families are the direct
result of paleo-polyploidization events where the merger of genomes has been followed by
extensive structural rearrangements, including gene loss, and the modification of gene
expression for paralogs within a particular gene family. The diploid genomes of progenitor
species can be used to determine the origin and structure of contigs when assembling large
polyploid genomes [59]. Finally, heterozygosity may represent another important challenge
when assembling plant genomes. Outcrossing species like grape, for instance, exhibit up to
13% sequence divergence between alleles, and the existence of such variation will impact
contig assembly when both alleles are sequenced in a whole-genome assembly project [31].

3.4. Examples of plant genome assemblies

According to Michael and Van Buren [45], over 100 plants genomes have been sequenced since
2000, out of which 63% are genomes from various crop species. As indicated above, different
Sanger sequencing strategies have been applied with varying degrees of success on several
plant genomes. However, the most successful Sanger-based genome assemblies have been
obtained from relatively small genomes (Arabidopsis, rice), while de novo assemblies for larger
and complex genomes, such as maize, remains partial and unfinished (manual improvements
of the maize genome were limited to nonrepetitive regions only). In addition, due to the high
costs and labor associated with such approaches, and the need for (in most cases) an interna‐
tional consortium to complete such projects, a vast majority of the most recent genomes have
been sequenced using either a hybrid approach, complementing Sanger sequencing with NGS
data, or using NGS data alone, from various NGS platforms. Such platforms include Illumina,
454/Roche, and more recently, Pacific Biosciences.
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The domesticated tomato genome [60] represents an example of Sanger/NGS hybrid genome
assembly. A total of 30,800 BAC clones from three different BAC libraries were shotgun-
sequenced and end-sequenced, generating a total of 3.3 Gb of Sanger reads. In addition, 454/
Roche shotgun and mate-pair sequencing was performed, both on BAC pools and whole-
genome DNA preparation, using different insert sizes and generating a total of 21 Gb of NGS
data. The de novo assembly of Sanger and 454 data was performed using the Newbler assembly
software [61] and other sequence assembly and alignment tools. Further scaffolding and
polishing of the assembly were performed when integrating BAC end-sequence data and
additional high-coverage Illumina and ABI/SOLiD data. Taken together, the de novo assembly
resulted in 3,761 scaffolds totalling to 782 Mb, with 95% of the assembled scaffold sequences
present in 225 scaffolds. The predicted tomato genome size is approximately 900 Mb. The
correctness and integrity of the assembly were validated through different means including
the alignment of clone end-sequences, publicly available tomato EST sequences, and alignment
of BAC contigs from a sequence-based physical BAC map. Interestingly comparison of the
tomato, potato and grape genomes supported the existence of two successive whole-genome
triplication events in common ancestors that added new gene family members that mediate
important fruit functions, such as enzymes involved in ethylene biosynthesis (examples of
whole genome duplication or triplication events abound among plant genomes that have been
sequenced to date).

Because of the relatively cheap costs involved, a large number of plant genomes have been
sequenced and assembled using NGS technologies alone. This includes the assembly of the
complex tetraploid genome of cultivated cotton (Gossypium arboreum) [62]. The tetraploid
cultivated cotton genome has a genome size of approximately 1.7 Gb and is thought to have
appeared  1–2  million  years  ago  through  interspecific  hybridization  between  diploid  A
(Gossypium arboretum) and D (Gossypium raimondii) subgenome progenitors. A total of 371.5
Gb of shotgun Illumina data was generated with various insert sizes ranging from 180 bp to
40 kb and complemented with 33,454 BAC end sequences. The assembly was performed with
SOAPdenovo [63], which resulted in 40,381 contigs, anchored and oriented in 7,914 scaf‐
folds, ranging in length from 140 kb to 5.9 Mb with 90% of the contigs included in 3,740
scaffolds.

An example of a smaller, relatively less complex genome assembly is that of the crop species
Brassica rapa [64]. An estimated 72× sequencing coverage of the genome was generated,
corresponding to Illumina shotgun paired-end data from NGS libraries with insert sizes
ranging from 200 bp to 10 kb, and assembled using SOAPdenovo [63]. The resulting assembly
was made of 14,207 contigs larger than 2 kb, further assembled into 794 scaffolds, totalling
approximately 283.8 Mb and estimated to cover more than 98% of the gene space, based on
alignments of 214,425 B. rapa public EST sequences and 52,712 unigenes from the BrGP
database [65]. Further assessment of the integrity of the assembly was performed by aligning
BAC clone Sanger sequences reported in previous studies.

While a large number of genomes have been sequenced with NGS technologies alone, the
relatively short reads of the major NGS platforms that have been used in those assembly
projects, combined with the general complexity of most of those genomes, generally require
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the  use  of  alternative  methods  to  facilitate  the  assembly  or  confirm its  integrity.  These
methods rely on the use of various types of NGS libraries, such as mate-pair large inserts, or
the  use  of  Sanger-derived  sequencing  data  such  as  EST  or  BAC-based  shotgun  reads.
However, scaffolding of NGS contigs, based on using pairing information between NGS reads
originating  from the  same DNA fragment,  generally  leads  to  unresolved  gaps  between
contigs, often due to the presence of large repeat regions whose size exceed the length and
resolution of short NGS reads. As a result, significant portions of any given scaffold contain
large batches of unknown sequences, and of unknown length. To address these issues and
improve  plant  genome  assemblies,  researchers  have  developed  a  series  of  multifaceted
solutions, combining alignment to known public data, such as ESTs or BAC ends, or, when
available, reference genomes from related species, integration of physical and genetic map
data, or new technologies. Some of these approaches have been described in the next chapter.

4. Complementary approaches to de novo assembly of plant genomes

4.1. Long-read assembly

NGS assembly strategies based on the use of short reads cannot solve long and identical
transposable elements abundantly present in most plant genomes. The use of long reads is
expected to address some of those shortcomings and improve the overall quality of de novo
assembly by ordering contigs, closing gaps, and improving scaffolding. As a consequence,
researchers have started to adopt the single-molecule long-read sequencing technology from
Pacific Biosciences in plant genome assembling projects. Spinach is an example of such genome
assembly efforts. Spinach is a diploid species with a genome size estimated at 989 Mb. Van
Deynze et al. [66] sequenced and assembled the Spinach genome using large fragment libraries
of Pacific Biosciences sequence reads. They generated a 60× coverage of the genome, with 20%
of the reads larger than 20 kb. Data were assembled using PacBio’s Hierarchical Genome
Assembly Process (HGAP) [67], which showed that long-read assemblies exhibited a 63-fold
improvement in contig size over an Illumina-only assembly, derived from multiple Illumina
libraries.

A distinct strategy to long-read assembly, namely, the Illumina TruSeq Synthetic Long-Read
(SLR) strategy [68], is also expected to improve the quality of assemblies generated with short
reads only. In SLR libraries, genomic DNA is fragmented to ~10 kb and individual indexed
Illumina libraries are generated in parallel from highly diluted pools of sheared DNA frag‐
ments. After Illumina sequencing and data deconvolution, the original ~10 kb fragments can
be reassembled, effectively reducing the complexity level of the assembly and generating very-
high quality synthetic long reads that can subsequently be assembled together or used for
haplotype resolution.

The use of long reads in de novo assembly is bound to become more prevalent in the near future,
reducing the number of scaffolds while at the same time increasing their average length. The
use of PacBio in smaller genomes, such as microbial genomes, has already demonstrated that
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the assemblies often result in contigs corresponding in most cases to individual chromosomes
or plasmids present in the microbial cells. Likewise, it is likely that future plant studies will
include such long reads, either alone or in combination with short-read NGS data to improve
assembly and coverage in questionable regions, and to confirm the integrity of the assembly
in a manner similar to Sanger data with current NGS assemblies.

4.2. Genetic anchoring

The emergence of NGS technologies has rapidly led researchers to develop methods and assays
for variant discovery in various plant genomes. Some studies have shown that Single nucleo‐
tide polymorphisms (SNPs) can be discovered in parental inbred lines using next-generation
sequencing [69]. Entire mapping populations also have been simultaneously sequenced and
genotyped, in a process known as “genotyping-by-sequencing” (GBS) [70, 71], discovering in
the process extensive lists of segregating markers within the mapped population [72, 73], that
can be completed by using known reference maps or sequences to impute missing marker data
from individual haplotypes. Various reduced-representation methods have been employed
for NGS-derived SNP discovery in plant species where whole-genome shotgun sequencing
still remains too expensive for sequencing more than a few individuals [71]. These methods
include the use of restriction enzyme digestion–based assays with methyl-sensitive restriction
endonucleases [74, 75], or methods based on sequence capture approaches [76], to sequence
and map gene-rich portions of a genome, and allowing the anchoring of SNPs in a relatively
unambiguous manner.

More recently, ultradense linkage maps have been created from genotyping by whole genome
sequencing of a genetic mapping population. It has been used to place whole-genome
sequencing contigs into a map, thus anchoring, and ordering, sequencing of contigs [77]. Such
an approach requires using a genetic linkage map as a framework, into which SNPs derived
from the whole genome sequencing assembly can be integrated into a genetic framework
derived from low coverage whole-genome sequencing data from a segregating population.
The genetic position of the sequence-derived SNPs can then be used to assign chromosomal
locations to the contigs harboring them. Such an approach has been used in the context of a
whole-genome assembly project in barley where genetic anchoring was applied to a whole-
genome assembly [78]. SNPs discovered by sequencing individuals from two mapping
populations at low coverage (~1×) were placed into genetic maps that had been previously
constructed through different means, including SNP array data and GBS, or made from the
whole-genome shotgun sequencing data of the population. Their genetic positions then were
used to assign chromosomal locations, and integrate into the combined physical and genetic
genome framework, approximately two-thirds of all whole-genome shotgun sequencing
contigs. While highly effective in plants, where mapping populations are often readily
available, it must be noted that such an approach is limited by the overall recombination
landscape, and the subsequent relationship between physical and genetic distance within a
particular region of the genome [76]. Recombination events in plants often occur in distal
regions of the chromosomes, and peri-centromeric regions may require very large mapping
populations to improve their resolution. In addition, recent studies have suggested that
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specific features of the genome, such as chromosomal inversion, translocation and duplication
varying between the two parents used to generate the mapping population, may lead to errors
and potentially confound genome assemblies.

4.3. BAC pool sequencing in gene-rich regions

A large number of genome assemblies have been generated with the help of physical maps
and the use of a BAC-by-BAC sequencing approach. While laborious and costly, this approach
still remains relevant as it offers multiple advantages over a whole-genome sequencing
approach, especially in terms of assembling sequencing reads conserved in the context of a
whole-genome assembly but mapping exclusively to a defined portion of a genome in the
context of an individual clone assembly. Lonardi et al. [80] proposed a modified version of
clone sequencing to take advantage of the massive sequencing capacity offered by NGS
platforms. In that study, subsets of overlapping genome-tiling BAC clones were selected and
pooled according to a multidimensional grid design. Each pool then was sequenced on an
Illumina HiSeq2000 instrument. The resulting paired-end reads were deconvoluted by
determining, for each read the intersection between the pool it originates from and the
individual BAC clone(s) within that same pool covering the portion of the genome the read
corresponds to, based on physical map information. Once deconvolution is achieved, reads
can be assembled using an NGS assembler (Velvet) [81], to recreate the sequence of the original
BAC clone. Such an approach was successfully tested in barley BAC clones selected based on
BAC-unigene associations described in that same study, thus suggesting that BAC pool
sequencing can be used in correlation with existing physical maps to complement or correct
whole-genome sequencing assemblies, offering in the process the likelihood of higher quality
contig sequence assemblies in gene-rich regions of complex plant genomes.

4.4. Optical mapping

Optical mapping is a single-molecule approach that produces fingerprints using ordered
restriction maps [82] or specific nick sites [83]. After enzymatic treatment and subsequent
incorporation of fluorescent labels, the DNA molecules are stretched on a glass surface or in
a nanochannel array and directly imaged to locate regions corresponding to the restriction
sites or nick sites within the molecule. Distances between those sites are then inferred to
produce an optical map of the DNA molecule. Two commercial platforms currently are
available, namely, the Opgen Argus [84] and the BioNano Genomics Irys [85] systems. Using
such techniques, very large DNA molecules, in the Mb range, can be interrogated for the
presence and location of short recognition sites (whose sequence will vary with the enzyme
being used to treat the DNA). Consensus optical maps then can be created by determining the
overlap, under highly redundant conditions, between optical maps of single DNA molecules.
Such consensus maps have to take into account the possibility of errors inherent to this type
of technology, including star activity and false enzyme cuts, or the possibility of chimeric maps
when joining, for example, optically mapped molecules containing paralogous genomic
regions.
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Optical maps can be used for multiple applications, including comparative genomics and
structural variation detection, as well as the development of optical map-guided genome
assemblies, where the optical map is aligned and compared to in silico digested contig
sequences. Optical map-guided genome assemblies can assist in building high-quality genome
assemblies by providing evidence of the ordering of adjacent contigs and scaffolds, or by
assessing the overall sequence accuracy of contigs and suggesting potential errors in an
assembly, such as inversions, translocations or chimeric contig or scaffold sequences. The
addition of optical maps to a genome assembly often results in a significant increase in the
scaffold N50 value. For example, Hastie et al. [86] used the mapping of tiling BAC clones in a
2.1 Mb highly repetitive region of Aegilops tauschii (the D-genome donor of hexaploid wheat)
to correct several misassemblies and improve the assembly from 75% to 95% complete. In
another study [87], a high-resolution optical map, spanning 91% of the maize genome, was
built, and used to characterize gaps within contigs, the maize genetic-physical (FPC) map and
the reference pseudomolecules. Results also suggested that the placement of 12 FPC contigs
on the maize genetic-physical map required re-evaluation.

4.5. Long-range Hi-C interactions

High-throughput Chromosome capture (Hi-C) is a method that uses cross-linking of DNA-
binding protein to DNA followed by restriction digestion and self-ligation of protein-bound
DNA fragments, to probe genome-wide three-dimensional chromatin interactions between
chromosomal regions bound to the same proteins (such as enhancer and promoter regions)
[88]. There is a statistically higher probability that those regions are located on the same
chromosome rather than on different chromosomes, as expected within the context of chro‐
mosomes located in distinct three-dimensional spaces within the nucleus. As a result, a vast
majority of Hi-C read pairs (where each paired reads correspond to reads that may be millions
of bases apart from each other on the same chromosome) can be used to determine what two
contigs can be linked together on the same chromosome, based on the Hi-C paired reads they
each contain.

Burton et al. [89] evaluated the use of Hi-C datasets for long-range scaffolding of de novo whole-
genome assemblies. This approach works, first, by aligning Hi-C reads to de novo assembly
contig sequences and indexing each contig to their respective chromosomes, ordering contigs
within each respective chromosome group by using higher Hi-C interaction densities expected
between closely located contigs, and orienting ordered contigs using the location and orien‐
tation of Hi-C reads within each contig. The approach tested on existing human and mouse
contig datasets generated from next-generation shotgun and mate-pair sequencing reads
showed that a vast majority of the contigs could be grouped (98.2% and 98% of all sequences,
in human and mouse, respectively) and ordered (94.4% and 86.7% of all grouped sequences,
in human and mouse, respectively) within individual chromosomes when combined with Hi-
C sequencing reads. Similar studies, where Hi-C datasets were used to complement de novo
assembly generated with next-generation sequencing reads have been performed in human
and mouse by Kaplan and Dekker [90] and Selvaraj et al. [91].
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4.6. Long-range scaffolding

Two companies, namely, 10X Genomics [92] (Pleasanton, CA) and Dovetail Genomics [93]
(Santa Cruz, CA), recently presented new ways to assemble short reads delivered by the
Illumina technology. The GemCode instrument from 10X Genomics is a microfluidic device
used to partition very long DNA molecules (typically 50 kb or more) into oil-based droplets
and to prepare Illumina-compatible libraries in combination with “gel beads”, each containing
a unique 14-bp indexing barcode. Once sequencing is performed, in-house software decon‐
volutes the barcodes and reconstructs the sequence of the original DNA subfragments as to
where they originate from on the original long DNA molecule. In contrast to 10X Genomics,
Dovetail Genomics approach does not necessarily require an instrument but requires larger
amount of starting material for preparing samples. Dovetail’s approach works essentially by
in vitro making a Hi-C library from chromatin-free purified DNA, thus recreating intramolec‐
ular interactions while reducing intermolecular ones. The resulting fragments can then be
selected for mate-pair sets capturing long-range intramolecular interactions for genome
scaffolding. While not yet applied on plant genome assemblies, it is presumed that the
strategies and technologies highlighted above could potentially assist in grouping and
ordering contigs and scaffolds from gene-rich regions of diploid plant genomes.

5. Conclusion

Reference genomes are now available for a significant number of plant species. The emergence
of NGS technologies has made it possible to sequence genomes not only from economically
important crop species but also from nonstandard model and special plants whose genomes
otherwise might not have been sequenced due to the requirements for large funds, instru‐
mentation and personnel that was witnessed in earlier pre-NGS days. While great progress
has been made, assembling such genomes still remains challenging due to their inherent
complexity and the relative absence of long-range connectivity, lost during DNA fragmenta‐
tion and short-read sequencing. As a result, plant genome assemblies tend to be highly
fragmented, and focused essentially on unique “gene-rich” regions, while large fractions of
the genomes, namely, complex repeat and conserved regions, remain unassembled. Research‐
ers have come up with creative ways to address those shortcomings, including the use of mate-
pair NGS libraries, the complementation of physical assemblies with genetic maps, or the use
of new technologies for sequencing, physical mapping or scaffolding. It is hoped that the
routine use of such novel approaches will help in elucidating the biological aspects of genomes
by allowing true comparative and structural analysis between species, strains, tissue or
environment.
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