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Abstract

This review focuses on current strategies of development of noncanonical synthetic RNA
interference (RNAi) inducers with structural modifications for promoting better gene si‐
lencing with low risk of side effects. A particular focus is on longer RNA duplexes 25–30
nucleotides (nt) in length that mimic Dicer substrates to improve interaction of RNAi in‐
ducers with RNAi machinery. Various design strategies of efficient Dicer substrate small-
interfering RNA (siRNA) are described. It was found that the length, chemical
modifications, and overhang structure influence the gene silencing activity and RNA-in‐
duced silencing complex (RISC) assembly. Special attention is paid to the long double-
stranded RNA duplexes that induce effective gene silencing in Dicer-dependent or Dicer-
independent mode. Some structural variants of shorter siRNAs, including hairpin and
dumbbell siRNAs and fork-siRNA (fsiRNA) with several nucleotide substitutions at the
3′ end of the sense strand, are also analyzed. These structural modifications provide effi‐
ciently increased gene silencing of targets with unfavorable duplex thermodynamic
asymmetry. Recent data remove the length and structure limits for the design of RNAi
effectors, and add another example in the list of novel RNAi-inducing molecules differ‐
ing from the classical siRNA, which is discussed in this chapter.

Keywords: RNAi, siRNA, fsiRNA, dsiRNA, tsiRNA, structural modifications, mechanism
of action

1. Introduction

RNA interference is a conserved mechanism of a sequence-specific posttranscriptional gene
silencing triggered by double-stranded RNAs homologous to the silenced gene [1, 2]. Long
double-stranded RNA(dsRNAs) are cleaved in the cell by RNase III class endonuclease Dicer
into short fragments 21–22 nucleotides (nt) in length with 2–3-nt 3′ overhangs at both ends [3,
4]. These fragments (small-interfering RNAs, siRNAs) enter RNA-induced silencing complex
(RISC) and associate with core proteins belonging to Argonaute (AGO) family [5]. AGO
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unwinds the duplex and cuts one of the strands in the middle, and then this strand (designated
as “passenger”) dissociates from the complex and is degraded by cellular ribonucleases. The
other strand (designated as “guide”) remains in activated RISC and recognizes the cellular
mRNA complementary to the guide strand. The configuration of the complex determines
which strand remains in the complex and which strand leaves and degrades. Active RISC
complex containing the guide strand binds to the complementary mRNA and induces its
cleavage. When the cleaved mRNA is released, RISC is recycled for a new round of cleavage
[4, 6]. The details of the RNAi mechanism are well reviewed in literature [7–9].

Synthetic small-interfering RNAs have become an advanced and powerful tool for specific
gene silencing and could be considered as promising class of therapeutics for the treatment of
diseases associated with overexpression of specific genes [10–12]. However, therapeutic
applications of canonical non-modified siRNAs are limited by their sensitivity to ribonucleas‐
es, possibility of unfavorable guide strand selection, and activation of innate immune system
by siRNA containing immunostimulatory motives in the sequence, which can lead to poor
gene silencing efficiency [13, 14]. Different structural variations of the RNAi inducers together
with chemical modification were developed to overcome these problems.

This review focuses on current strategies of development of siRNA structural modifications
for promoting better gene silencing with low risk of side effects, with particular focus on longer
siRNA duplexes 25–30 nt in length that mimic Dicer substrates (Dicer substrate siRNA
(dsiRNA)) [15–20]. Special attention has been paid to the long double-stranded RNA duplexes,
which induced effective gene silencing and did not require Dicer-mediated processing of the
substrate into smaller units: trimer RNA (tsiRNA) with 63 nt in length and tripartite-interfering
RNA (tiRNA) with 38 nt in length [21, 22]. Applications of some structure variations of shorter
siRNAs and the potential of different synthetic RNAi inducers in different applications have
also been reviewed and summarized.

2. Dicer substrate interfering RNAs

Long dsRNAs homologous to the targeted mRNA were successfully used for silencing of gene
expression in nonmammalian species [1, 4]. Early attempts to use long dsRNAs in mammalian
cells triggering of RNAi failed due to activation of innate immune system by dsRNA [15].
Although activation of innate immunity may be beneficial for the therapy in some cases,
uncontrolled induction of the interferon response results in global changes in gene expression
profile and, in some cases, in cells death [23–25]. It was found that chemically synthesized 21-
mer RNA duplexes with 2-nt 3′ overhangs at both ends, which directly mimic the products
produced by Dicer, efficiently suppressed gene expression in mammalian cells [4, 26]. These
duplexes, referred to as canonical siRNAs, are widely used in biomedical research [11]. Later,
it was found that RNA duplexes, smaller than 30 nt in length but longer than siRNAs, were
significantly more efficient than canonical siRNAs and did not induce interferon response in
a variety of cell lines [15]. It was established experimentally that 27-mer duplexes possess
maximal silencing activity, longer duplexes demonstrated reduced silencing activity, and 40–
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45-mer duplexes were inactive. At the same time, 27-mer duplexes, named as Dicer substrate
siRNA (dsiRNA), were efficiently cleaved by Dicer producing a variety of 21-nt-long distinct
products. High potency of 27-mer duplexes initially was explained by the formation of siRNA
pool containing functional siRNAs with extremely high silencing activity. Some of 27-mer
duplexes were significantly more potent at nanomolar or picomolar concentrations than the
specific 21-mer siRNA selected according to the current computational algorithms [15].
However, further experiments demonstrated that none of the synthetic 21-nt siRNAs, included
in the corresponding set to all possible products of Dicer processing of 27-mer duplexes,
demonstrated the same level of silencing activity as 27-mers at low concentrations [15].

Based on the earlier observations that Dicer participates both in the cleavage of dsRNAs
and  in  the  incorporation  of  the  products  of  cleavage  into  RISC  complex  in  Drosophila
melanogaster, it has been suggested that Dicer could participate in direct loading of siRNA
into  RISC and in  RISC assembly  [16,  27].  It  has  been experimentally  proved that  dsiR‐
NAs form the RISC loading complex (RLC) in vitro more efficiently than the canonical 21-
mer siRNA duplexes [18]. Because Dicer does not form complexes with 21-base pair (bp)
duplexes, it was assumed that Dicer facilitates RLC formation after dsRNA cleavage without
dissociation from the  cleavage product.  These  findings  become a  basis  for  the  develop‐
ment of a new class of RNAi inducers [16, 17, 28].

The silencing activity of dsiRNA depends on its structure. At the first step of recognition,
PAZ (Piwi Argonaut and Zwille) domain of Dicer predominantly “anchors” two ribonucleo‐
tides  on 3′  overhangs because  those  blunt  27-mer  duplexes  are  not  good substrates  for
Dicer. PAZ domain plays a vital role in the orientation of bound RNA in the active site of
the enzyme and determines the cleavage position on RNA for AGO protein.  Unlike 21-
mer  siRNA,  where  two-base  3′-deoxynucleotide  overhangs  are  often  used regardless  of
their complementarity to the target mRNA sequence (mostly dTdT), the overhang sequen‐
ces are important for the properties of dsiRNA. Incorporation of deoxynucleotides at the
3′  ends  of  dsiRNA  strands  has  an  adverse  effect  on  dsiRNA  processing  [19].  The  se‐
quence  of  3′  terminal  overhangs  could control  dicing polarity  and strand selection into
RISC.  Thus,  Dicer  preferentially  binds  with  purine/purine  (GG,  AA)  nucleotides  [19].
Protruding  nucleotides  added  to  the  3′  terminal  of  the  antisense  strand  facilitate  its
preferential  loading into  RISC [19].  Hence,  asymmetric  duplexes  with  one  2-nt  3′  over‐
hang and DNA residues on the blunt end of the duplex provide a single favorable PAZ
binding site and reduce heterogeneity of cleavage products (Figure 1) [16–18, 29, 30].

The stability of dsiRNA in physiological fluids is extremely an important factor for its
applications in vivo [31]. Although dsRNAs are more stable in comparison with single-
stranded RNAs and 21-bp siRNA, they still rapidly degrade in the serum [32]. It was found
that bonds with 3′ pyrimidine nucleotides are cleaved faster than bonds with 3′ purines. Kubo
and his colleagues demonstrated that degradation rate of dsiRNAs correlated with the amount
of pyrimidines at the 3′ end [31]. At the same time, degradation rate of dsiRNAs also correlates
with the presence of AU-rich domains that might be related to low thermal stability, easy
dissociation, and faster cleavage by both endo- and exonucleases. Chemical modifications can
improve nuclease stability and reduce off-target effects [33–36]. Fluorescein modification of 3′
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end of 27-mer RNA duplexes significantly reduces RNAi activity because 3′ ends are important
for interaction with Dicer and should be available for the proper recognition [15]. On the other
hand, dsiRNAs with chemical modifications of the 5′ end possess high nuclease stability and
RNAi activity in the cell-cultured medium. Thus, 5′-end amino-modified dsiRNA demon‐
strated improved RNAi activity and stability in the cell-cultured medium [31].

Incorporation of 2′-O-methyl modifications is an efficient and inexpensive method to improve
nuclease resistance of synthetic RNA duplexes [33, 37–40]. However, dsiRNA duplexes with
modifications of all or the majority of nucleotides in both sense and antisense strands are
practically inactive, because extensive modification blocks the cleavage of duplex by Dicer [17].
Limiting the modifications to incorporation of only 9–11 modified bases into the antisense
strand and avoiding modifications in the site of Dicer cleavage prevents this undesired effect
[17]. Mass spectrometry analysis of in vitro dicing reactions showed that modified duplexes
produce a mixture of 21- and 22-nt species, whereas unmodified duplexes are processed only
into 21-mer species. If modifications were spaced further away from the dicing site, a prefer‐
ential accumulation of 21-mer species was observed [17]. However, it was noted that in some
cases, usually, a good modification pattern may decrease the silencing activity of dsiRNA. This
phenomenon has been related to the newly unidentified sites in the sequence context of some
chemically modified dsiRNAs, contributing to impairment of dsiRNAs silencing effect [17].
These observations could explain differences in the efficiency of various dsiRNAs and made
possible the creation of the modification patterns compatible with dicing.

Accumulation of experimental data revealed that 27–30-bp dsRNAs, including dsiRNA and,
in some cases, even 21-bp siRNA, could stimulate innate immune system and induce interferon
response in certain cell types [23]. Toll-like receptors (TLRs) 7 and 8 appear to be the main
molecules responsible for the immune recognition of siRNA and dsiRNA, whereas toll-like
receptor 3 recognizes longer than 30-bp dsRNA [41, 42]. Activation of innate immune system
through TLRs results in the production of interferon α, tumor necrosis factors α, and inter‐

Figure 1. The scheme of dsiRNA design (according to [17]). N – ribonucleic acids, d - deoxyribonucleic acids, short
arrows – the site of Dicer cleavage.
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leukins IL6 and IL12 [42]. Immunostimulatory properties of siRNA are sequence dependent;
TLR7 and TLR8 receptors recognize GU-rich sequences of siRNA [43]. Moreover, several
immunostimulatory motifs of siRNA enriched in GU nucleotides were identified [44, 45]. It is
recommended to avoid these motives in siRNA and dsiRNA design; unfortunately, not all
immunostimulatory motifs have been discovered that complicate the design procedure.
Earlier, it was demonstrated that chemical modifications involving 2′ position of the ribose
ring in siRNA could block the immune response [46]. Incorporation of 2′-O-methyl U and G
bases into siRNA significantly reduced immunostimulatory activity of siRNA in vitro and in
vivo, containing immune-stimulating motives in the sequence [41]. Moreover, the effective
suppression of immunostimulatory activity could be reached by using only a small percentage
of modified nucleotides (<10%). Collingwood and his colleagues [17] applied this approach to
dsiRNA and demonstrated that limited 2′-O-methyl modifications of uridine and guanosine
into antisense strand of dsiRNA efficiently prevent induction of innate immune response in
different cell lines.

Another option to reduce nonspecific effects of dsiRNA is to use enzymatically produced pools
of Dicer substrate RNA [20]. Dicer from the protozoan parasite Giardia intestinalis was used to
obtain enzymatically produced dsiRNAs. It cuts long dsRNA into fragments from 25 to 27 nt
in length. The sequences-related side effects were decreased in the pool of enzymatically
produced dsiRNAs due to the low concentration of individual dsiRNAs with undesirable
sequence.

In the cases when silencing of more than one gene is required, the transfection of siRNA
mixture is used. Co-transfection of different siRNAs may result in different knockdown
efficiency of individual targets due to competition between siRNAs for RISC loading depend‐
ing on the thermodynamic asymmetry of the duplexes [30]. Therefore, preliminary testing is
required to assess the degree of competition between various siRNAs. Competition between
RNAi inducers aimed at different mRNAs could be avoided by using Dicer substrate RNA.
Entry of dsiRNAs into RNAi pathway is not limited by RISC loading step, and discrimination
of canonical siRNAs based on RISC incorporation is reduced. These beneficial properties of
dsiRNAs can provide an effective tool for targeting multiple mRNAs.

Currently, siRNAs have become a powerful tool for effective suppression of expression of
target genes in vitro and in vivo applications. Moreover, several compounds are already used
in clinical trials. However, the examples of Dicer substrate RNAs usage in vivo are fewer in
number. Several studies use dsiRNA to silence therapeutically relevant genes in vivo (Table
1). Frequently, cancer-related genes and genes of viruses [50, 51, 56–59] are chosen as targets
for dsiRNAs [47–49]. Several researchers used TNFα gene as a target for the treatment of
inflammatory and autoimmune diseases [52–54]. Murine models are the most popular animal
models among various studies that used dsiRNA in vivo [47–54]; however, there are studies
where other animal models, for example, rats, were used [53, 55]. An exciting example of
dsiRNA application was described by Doré-Savard and his colleagues, who demonstrated, for
the first time, the efficient suppression of target genes in central nervous system (CNS) of rats
by dsiRNA [55]. In this study, 27-mer dsiRNAs were used to reduce expression of neurotensin
receptor-2 (NTS2) involved in ascending nociception. dsiRNAs were formulated with cationic
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lipid i-Fect and used in intrathecal spinal cord injection. Extremely low doses of dsiRNA (0.005
mg/kg) efficiently silenced NTS2 mRNA and protein levels for 3–4 days. It is known that
administration of high doses of non-modified siRNA increases the risk of activation of innate
immune system, especially when siRNA is used together with cationic lipids. Low doses of
highly active dsiRNAs could minimize this adverse effect. No apparent toxicity and other off-
target effects were found during the experiment [55]. The dose–response experiments per‐
formed in another study [28] also show that 27-mer Dicer substrate RNA provide improved
gene silencing when used at lower concentrations [28]. The silencing activity of canonical 21-
mer siRNAs was compared with that of dsiRNA at 1 and 5 nM concentrations. The 27-mer
dsiRNA displayed more potent gene silencing at 1 nM concentration, while at 5 nM concen‐
tration, the difference in silencing was less pronounced [28].

Experimental
system

Structure Target (gene) Disease Concentra-
tion/dose

Biological effect Reference

MDA-MB-435
cells

25D/27-mer cdc20 (mouse) Breast
cancer

20 nM >80% cell growth inhibition [47]

Mice 2 μg/mouse Tumor growth inhibition
after second injection

Huh7.5 cells 25D/27-mer 5' UTR and
coding regions of
hepatitis C virus:
NS3, NS4B,
NS5A, NS5B

Hepatitis C
virus
infection

5 nM 99.5% inhibition in luciferase
assay

[57]

PC-3 cells 25D/27-mer HSP27 (human) Prostate
cancer

50 nM >50% reduction of both
mRNA and protein

[48]

Mice Hsp27 (mouse) 3 mg/kg >50% reduction of both
mRNA and protein

HAE cells
obtained from
bronchi and
lungs

25D/27-mer
2’OMe

N gene of
respiratory
syncytial virus
(RSV)

Respiratory
syncytial
virus
infection

250 nM > 100-fold decrease of viral
titer

[57]

Hela cells 25D/27-mer
2’OMe

CTNNB1
(human)

Liver cancer 1 nM >90% mRNA level reduction [49]

Mice Ctnnb1 (mouse) 5 mg/kg Significant reduction of
tumor weight

AY-27 cells 25D/27-mer Mki-67 (rat) Bladder
cancer

10 nM 50% mRNA reduction [53]

LLC-MK2 cells 25D/27-mer N, D,L genes of
human

Human
metapneum

0.65 nM 50% reduction in plaque
assay

[50]

RNA Interference94



Experimental
system

Structure Target (gene) Disease Concentra-
tion/dose

Biological effect Reference

metapneumoviru
s (hMPV)

ovirus
infection

Mice 4 mg/kg Reduction of virus titers in
lungs of infected mice

RAW264.7 cells 25D/27-mer Tnf (mouse) Inflammator
y diseases
(sepsis
model)

5 nM >50% reduction of the
number of TNFα positive
cells

[52]

Mice 10 mg/dose 4-fold reduction of the
number of TNFα positive
peritoneal macrophages

keratocytes
from rabbit
corneal stroma

25/27-mer JKAMP (rabbit) Corneal
wound
healing

10 nM 70% - JNK1 mRNA level
reduction
50% - JNK2 mRNA level
reduction

[58]

CCRF-CEM
cells

25/27-mer TNPO3
CD4
(human)
Tet/rev
(viral)

HIV-1 50 nM 50% TNPO3
mRNA level reduction
75% CD4
mRNA level reduction
60% Tet/re mRNA level
reduction

[51]

Mice 0.15 mg/kg Prolonged antiviral effect

Kupffer cells 25D/27-mer Tnf (rat) Inflammator
y diseases

10 nM 80% reduction of TNFα level
after LPS stimulation

[53]

Rat 100 μg/kg 50% reduction of TNFα level
in blood

CHSE-214 cells
(fish)

25/27-mer N gene of
hemorrhagic
septicemia virus
(HSV)

Hemorrhagi
c septicemia
virus
infection

15 nM 99% mRNA level reduction [59]

Murine
peritoneal
macrophages

25/27-mer
2’OMe

Tnf (mouse) Rheumatoid
arthritis

50 nM 66% protein level reduction [54]

Mice 5 μg/dose Block the development of
inflammation after second
dose

NTS2 cells 25D/27-mer Ntsr2 (rat) Pain states 10 nM >90% mRNA level reduction [55]

Noncanonical Synthetic RNAi Inducers
http://dx.doi.org/10.5772/61685

95



Experimental
system

Structure Target (gene) Disease Concentra-
tion/dose

Biological effect Reference

Rat 0.005 mg/kg 86% and 62% mRNA level
reduction in lumbar dorsal
root ganglia and in spinal
cord, respectively

Table 1. Application of dsiRNA for silencing of disease-related genes (summarized from PubMed). 25/27-mer –
dsiRNAs with 25 - base sense strand and 27 – base antisense strand; 25D – 2 bases at the 3’-end are substituted with
DNA; 2’OMe – 2’ – O methyl modifications as described in [17].

In another study, potent 2′-O-methyl modified dsiRNAs targeted to β-catenin were designed
[49]. It is known that β-catenin acts as the transcription factor and its overexpression causes
the development of several types of cancer, including liver cancer. At the first step, large-scale
screening of 488 dsiRNAs for in vitro mRNA knockdown activity was performed to choose
the most efficient dsiRNAs for targeting β-catenin. Then, the absence of immunostimulatory
activity attributed to selected dsiRNA was confirmed using the assay based on the ability of
an oligonucleotide to induce the production of antibodies to the PEGylated components of the
lipid nanoparticles containing oligonucleotides. dsiRNA was administered to mice intrave‐
nously twice a week during 3 weeks after implanting Hep 3B tumor cells. dsiRNAs induced
strong β-catenin mRNA knockdown and efficient tumor inhibition. Other examples of
dsiRNAs applications as potential therapeutics for inhibition of the disease-related overex‐
pressed genes in vivo and in vitro have been summarized in Table 1.

Beneficial properties of dsiRNAs make these structures popular inhibitors of target genes. At
first, dsiRNAs induce more potent silencing of the target genes at lower concentrations than
canonical siRNAs. The next advantage of dsiRNAs is longevity of silencing: In some cases, it
lasts up to 10 days. Then, the usage of dsiRNAs enables to minimize off-target effects such as
toxicity and heterogeneity of processed products. An additional benefit is the high potency of
dsiRNAs in silencing of multiple mRNAs where canonical siRNAs due to competition during
RISC loading step appear to be less effective. The main disadvantage of dsiRNA is the higher
cost of synthesis in comparison with canonical siRNA. However, low dosage of dsiRNA used
in experiments eliminates this drawback. On the other hand, dsiRNAs share with siRNAs the
same problems in therapeutic applications. The major challenge lies in the delivery of these
structures into desired cells, tissues, and organs. To overcome this problem, various ap‐
proaches are developed; however, this question has not been completely answered yet.
Nevertheless, dsiRNA as potent inducers of RNAi offers promising strategies for efficient
therapy.

3. Interfering RNA with noncanonical duplex structure

Different variations of siRNA duplex structures were proposed to improve their silencing
activity. Here we will consider three types of the most frequently used siRNAs with structural
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modifications of duplexes: short hairpin RNAs (shRNAs)/microRNA (miRNA) mimics,
dumbbell RNAs, and fork-siRNA (Figure 2).

Figure 2. The different types of interfering RNAs with non-canonical duplex structures.

The identification of a large class of endogenous regulatory RNA molecules – microRNAs
(miRNAs) arouse interest in constructing the similar synthetic structures for efficient silencing
of target genes. miRNA precursors are generated in the cell as long primary transcripts that
are cleaved in nucleus by RNase III class nuclease Drosha [60–62]. Then, they are exported to
the cytoplasm and cleaved by Dicer, which is active at processing of complex hairpin structures
[63]. It is known that Dicer substrates more effectively enter RISC complex than canonical
siRNA and induce more potent RNAi [15–17, 28]. Moreover, shRNAs could interact with
particular chaperones that promote recognition of shRNA by Dicer [64]. miRNAs form
imperfect complementary complexes containing bulges with 3′ untranslated region of the
target mRNA, wherein the position of the loops defines the mechanism of action: target
cleavage or the block of translation. In the first case, synthetic miRNA mimics have no
advantages over shRNA, and in the second case, they do not act in a catalytic mode. Therefore,
synthetic miRNA applications are restricted to exploring the miRNA-regulated pathways
involved in the natural processes, or development of replacement therapy for the diseases
associated with mutation in specific miRNA. The use of shRNA seems to be more promising.

Although long dsRNA hairpins are prepared synthetically, enzymatically, or endogenously
expressed, plasmid or viral vectors could be used in nonmammalian organisms. Long RNA
hairpins cannot be applied in mammals for the specific gene silencing because they also induce
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interferon response in mammals via the same mechanism used by long RNA duplexes [3, 65,
66]. Therefore, length of hairpin RNAs for application in this type of species is limited by 30
bp. shRNAs expressed by different vectors under control of RNA polymerase III and CMV
promoters were proved to efficiently trigger RNAi [67, 68].

Applications of viral vector-based expression of shRNAs are limited because of some obstacles
such as possibility of insertional mutagenesis, malignant transformation, and host immune
response [69]. At the same time, an application of plasmid vectors is safe, but inefficient
delivery into cells limits its use only for experimental purposes, where antibiotic resistance
genes included in the vector is used for the selection. In contrast to expressed shRNA, synthetic
shRNA seems to be more attractive for RNAi-based therapies. It was found that chemically
synthesized short hairpin RNAs (shRNAs) with 19–29-base-pair stem, at least 4-nucleotide
loop and 2-nucleotide 3′ overhangs are more potent inducers of RNAi than the canonical small-
interfering RNAs targeted to the same sequence in mRNA [64, 70–73]. Two main types of
shRNAs with opposite positions of the loops were designed (Figure 3). The right loop
structures (R-shRNAs) have sense strand at the 5′ end of the hairpin, whereas the left loop
shRNAs (L-shRNAs) have antisense strand at the 5′ end of the hairpin (Figure 3) [71–74]. The
majority of studies were carried out using R-hand loop structure.

Figure 3. General structures of L-shRNAs and R-shRNA (according to [71]). Red color: sense strand, blue color: anti‐
sense strand.
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It was clearly demonstrated that the silencing activity of shRNAs depends on stem length, loop
length, sequence, and terminal overhangs [70]. Dicer efficiently cleaves shRNA with certain
minimum stem of 19 nt in length forming 22-nt products starting from the free 3′ end of the
RNA.

Correct 3′ overhangs increase the efficacy and specificity of processing, whereas blunt-end
shRNAs produce a set of products [64]. In the case of endogenously expressing regulatory
RNAs, 3′ UU overhangs of miRNA precursors generated by Drosha cleavage determine
subsequent proper recognition and processing by Dicer [75]. Synthetic shRNA with similar
overhangs and mimicking the products of Drosha preprocessing is used. The presence of a 3′-
UU overhang improves silencing activity of 19-mer shRNAs as 3′-UU overhangs might
provide additional site for PAZ domain of Dicer [70].

The loop length also plays a crucial role in the silencing activity of shRNAs. Thus, it was found
that 29-nt stem and 4-nt loop inhibited the target gene expression more efficiently as compared
with shRNA with 19-nt stem and loop [76, 70]. In contrast, when 9-nt loop was used for 19-nt
stem shRNA, it demonstrated more potent silencing of target genes than longer shRNA with
the 4-nt loop. Brummelkamp and his colleagues also demonstrated that shRNAs with 19-nt
stem and 9-nt loops possessed the maximum silencing activity as compared with shRNAs with
7-nt loops, while shRNA with 5-nt loops were inactive [68]. All observed differences in the
silencing activities of shRNA, divergent in the length of the stem and loop, were more
pronounced under low or intermediate concentrations. The silencing activity of different
shRNAs, used at high concentrations, did not depend substantially on the loop length [70].

These results may be explained by the fact that the loop length influences the efficiency of
processing by Dicer. [64]. Indeed, 4-nt loops of shRNA with 19-nt stem have poorer confor‐
mation flexibility at the junction between the duplex stem and a single strand of the loop. As
short loops are set close or at the Dicer cleavage site, the restriction-associated conformational
changes made shRNAs stems poor substrates for Dicer. Therefore, shRNAs with short loops
and 19-nt stem enter RISC complex in the later stages and remain not processed by Dicer [64].
It was suggested that another single-strand-specific ribonuclease, independent from Dicer,
cleaved this type of shRNA. On the other hand, shRNAs with 19-nt stem and longer loops (9–
10 nt) are efficiently processed by Dicer [76].

The potency of 19-nt stem shRNAs, targeted to the same sequence, depends on the position of
the loop. Right (R)-shRNAs 19 nt in length are significantly less active than left (L)-shRNAs of
the same length [71, 72]. However, the position of the loop (left or right) in longer shRNAs did
not affect their activity. It was suggested that low potency of R-shRNA form is related to the
fact that 5′ end of the antisense strand must be readily available for the efficient binding of
AGO2 in the RISC complex. Otherwise, the 5′ end of sense strand would enter RISC and the
target mRNA would not be cleaved. [77]. L-shRNAs with a short loop of 1–2 nt in length could
be active. Moreover, L-shRNAs without any loop, where sense strand is directly connected
with antisense strand, may be also active. In this case, the sense strand is shorter than antisense
strand and the loop is formed by 3′ end of the antisense strand [71].

Noncanonical Synthetic RNAi Inducers
http://dx.doi.org/10.5772/61685

99



Moreover, the nature of nucleotides in 3′ overhang does not influence the activity of L-shRNA
and 3′ overhangs could be substituted for deoxyribonucleotides [71]. The high efficiency of L-
shRNAs may be explained by the high energy of binding of antisense strand with AGO2 due
to availability of 5′ end of antisense strand in L-shRNA, dominated over the influence of
overhangs and loop length. [71].

shRNAs have similar but not identical sequence preferences with siRNAs. Thus, the functional
shRNAs have mainly AU nucleotides at position 9 and GC nucleotides at position 11, while
these preferences are less significant in functional siRNA. At the same time, the functional
shRNAs have the similar thermodynamic asymmetry as functional siRNAs. The computer
algorithms for selection of potent shRNAs have been developed [76].

Short hairpin RNAs are a little more resistant to nucleases than siRNAs due to the protection
of one end; however, shRNAs still quickly degrade in biological fluids [78]. The elegant method
to stabilize non-modified RNA strands was described by Abe et al. [79]. Abe and his colleagues
constructed dumbbell-shaped RNA structures and demonstrated their potency as RNAi
inducers with stability in the biological fluids [79]. Dumbbell-shaped RNAs were designed by
analogy with DNA dumbbells consisted of double-helical stem and closed by two hairpin
loops. Dumbbell-shaped RNA structures are used as models for the analysis of local structures
in DNA [80]. Local unwinding of duplexes facilitates enzymatic cleavage by nucleases. Two
loops at the both ends of dumbbell RNA stabilize the duplex and limit its enzymatic cleavage
[79, 81]. Dumbbell structures get processed by Dicer much more slowly in comparison with
their linear analogues due to inefficient recognition by Dicer. The rate of processing depends
on the stem length, too. For example, dumbbell RNAs with 27-bp-stem length were processed
more quickly than the same sequence with 15–19-bp stem length. RNA dumbbells with 23-bp
stems and 9-nt loops were found to be the most active. Indeed, 9-nt loops are commonly used
in shRNAs as the most effective hairpin loops [67]. The stem length was optimized to keep
high potency and reduce interferon response. Silencing activity of these dumbbell RNAs was
significantly higher than that induced by linear counterparts and was retained for longer
period even at lower concentrations [81]. The introduction of deoxynucleotides into the loop
of dumbbell RNAs further significantly increases shRNA stability in biological fluids without
loss of silencing activity. Moreover, the loop of dumbbell RNAs can be modified by carriers
such as aptamers and peptides [81]. All benefits of dumbbell RNAs make them new potent
RNAi inducers. The main disadvantage of these structures is the high cost of their synthesis
in comparison with canonical siRNAs. At the same time, the low dosage and prolonged
silencing effect can reduce expenses. The detailed scheme of RNA dumbbell synthesis is
described by Abe and his colleagues [82].

Another type of RNAi inducer, fork-siRNA, was first introduced by Hohjoh [83]. Fork-siRNAs
contain base substitutions in the 3′ end of the sense strand of siRNA, resulting in destabilization
of the duplex [83–85]. The effect of fork-siRNAs is explained by the fact that thermodynamic
asymmetry of the duplexes determines the orientation of siRNA in RISC. Thermodynamic
stability of the terminal regions of the duplex defines which strand is cleaved and dissociated
during RISC activation, and another strand remains in the activated RISC and guides target
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mRNA recognition and cleavage [86]. Antisense strand of siRNA must be included in activated
RISC for efficient gene silencing, if activated RISC contains the sense strand no silencing occur.

The selection of active siRNAs may be complicated if a target mRNA is mutated or is a
chimerical gene. To address this issue, the favorable asymmetry can be achieved by the
introduction of several base substitutions at the 3′ end of the sense strand. Mismatches at the
3′ end of the sense strand, resulting in the formation of unpaired or destabilized regions,
increase the silencing activity of siRNA with low or moderate concentrations [83]. The number
of mismatches in fork-siRNA also plays a crucial role in its silencing activity [85]. Fork-siRNAs
with one to two mismatches at the 3′ end possess silencing activity similar to that of canonical
siRNAs, indicating that this number of mismatches is not enough for the efficient silencing.
Fork-siRNA with four mismatches is the most potent, whereas fork-siRNA with six mismatch‐
es possesses reduced silencing activity [85].

An optimal number of mismatches depend on the overall thermodynamic stability of the
duplex. Computational algorithms for siRNA sequence selection determine the recommended
range of Tm difference between the terminal regions, and four mismatches could work for
sequences within the range. On the other hand, mismatches in the 3′ part of the sense strand
and long unpaired ends increase the sensitivity of fork-siRNA to nucleases. Consequently, the
application of non-modified fork-siRNAs in vivo is limited by the fact that they have reduced
stability in biological fluids due to the increased degradation by nucleases [83, 85]. To solve
this problem, the algorithm for designing nuclease-resistant fork-siRNAs that contain 2′-O-
methyl modifications in nuclease-sensitive sites was developed, which allows obtaining fork-
siRNAs whose stability is comparable to that of canonical siRNAs [85].

Thereby, fork-siRNAs may improve unfavorable asymmetry of siRNA with low or moderate
silencing activity, especially when the selection of functional siRNA is restricted by the
sequence content of the corresponding mRNA. It makes sense to use them for silencing of
uneasy or precisely located targets.

4. Short noncanonical RNA

siRNA shorter than canonical siRNA could also induce efficient silencing of target genes in
mammalian cells acting via RNAi mechanism [87–90]. Short siRNAs have some benefits as
inducers of RNAi such as reduction of immune response and decreased cost of the synthesis
[76]. Various strategies have been used to design the minimal length for inducing RNA
interference. As A-form helix of RNA plays an essential role for inducing RNAi, Chiu and Rana
[91] found minimal length of dsRNA A-form helical structure required to enter active RISC
complex. They demonstrated that siRNA with 16 bp in length and 2-nt 3′ overhangs repre‐
senting ~ 1.5 helical turns efficiently assembles into catalytically active RISC and was sufficient
for silencing of target genes. Indeed, 16-mer siRNAs were more potent in comparison to 19-
mer siRNAs, while 15-mer siRNAs silenced gene expression at lower efficacy than 16-mer
siRNAs, and 14–13-mer siRNAs were practically inactive [87]. It was demonstrated that the
mechanism of target cleavage was different: cleavage sites in 16-mer siRNAs were shifted to
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3 nt in comparison with 19-mer siRNAs (Figure 4). The 16-bp siRNAs induced the silencing
faster than canonical siRNA due to the higher efficacy of RISC formation [87, 91]. Moreover,
asymmetric duplexes with 3′ overhang on the antisense strand only demonstrated reduced
off-target silencing in comparison with symmetric duplexes of the same length due to
preferential incorporation of the guide strand into the RISC complex [91]. Thus, considering
the benefits of 16-mer siRNAs, they possess high potential for using in biomedical studies, but
new examples of their use are not available.

Figure 4. The mechanism of Dicer cleavage for 19 bp siRNA and short siRNA 16 bp in length. Arrows indicate cleav‐
age sites defined by the 5’-end of guide strand (according to [87]).

Antisense siRNA also have been proposed as RNAi triggers. The sense strand of siRNA
duplex is degraded and antisense strand remains in the active RISC to target complemen‐
tary mRNA. Early studies demonstrated that 5′-phosohorylated antisense siRNAs with 22–
40 nt in length were able to induce gene silencing in Caenorhabditis elegans [92, 93]. Several
studies investigated the possibility of using antisense strand of siRNA 19–29 nt in length
for  transient  knockdown  of  target  genes  in  mammalian  cells  [88–90].  Antisense  siRNA
entered  the  RISC  complex  and  provided  mRNA  cleavage  but  with  lower  efficiency  in
comparison with canonical siRNA. Antisense siRNA and canonical siRNA possess similar
mRNA target position effects, cleavage fragment production, and tolerance to mutational
and chemical modifications. However, antisense siRNA modified at 3′ end by fluorescein
group or deoxyribose showed reduced silencing activity compared with canonical siRNA,
where  silencing  activity  remained  at  the  same  level  in  spite  of  3′  modifications  [89].
Moreover, the velocity of mRNA degradation induced by antisense siRNA is higher than
that provided by canonical siRNA, but the duration of silencing effect is shorter. Thus, it
was assumed that  antisense siRNA induces  RNAi through similar  pathways as  double-
stranded siRNA but enters the pathway at the intermediate stage [89].

The differences in the silencing activity between antisense and canonical siRNAs may be
explained by the low intracellular stability of the single-stranded RNA and by low efficacy of
association with RISC [89]. Among the advantages of siRNAs, a lower price of synthesis and
no side effects associated with the induction of interferon response should be considered [88].
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Partial boranophosphate backbone (BP) modifications were designed to increase the stability
and the silencing activity of the antisense siRNA [88]. BP-modified antisense siRNAs possess
silencing activity comparable to unmodified double-stranded siRNAs. Partial 2′-O-methyl
modification was used for the stabilization of antisense RNA, the activity resulting in single-
stranded siRNA was comparable with the activity of double-stranded siRNA when used in
high or intermediate concentrations, where in low concentration, canonical siRNAs were more
active [85].

Overall, in spite of lower silencing activity compared with canonical siRNA, antisense siRNA
may be used in specific situations, for instance, to eliminate off-target silencing of genes in the
case when the sense strand has substantial homology to nontarget genes [88].

5. Long-interfering RNAs

Long dsRNAs >30 nt in length efficiently silence the expression of target gene in nonmamma‐
lian cells [1, 4]. The early attempts to use the similar structures for efficient knockdown of target
genes in mammalian cells failed due to activation of interferon response [4, 94]. Later, various
design strategies have been developed to prevent the induction of interferon response and
construct new potent RNAi inducers [21, 95, 96]. Depending on the architecture of duplexes,
all long dsRNAs may be divided into linear and branched structures.

Partial 2′-O-methyl modification effectively prevents the activation of interferon response by
Dicer-substrate RNAs [17]; therefore, it was proposed to use similar approach for longer linear
duplexes [21]. Longer siRNAs containing the sequence of canonical siRNAs repeated two and
three times are called dimer (42 nt in length) and trimer (63 nt in length) small-interfering RNA.
Selective 2′-O-methyl modifications were introduced into nuclease-sensitive sites of both sense
and antisense strands of dimer and trimer siRNAs, the modifications in the sites of potential
Dicer cleavage were omitted. Selectively modified dimer and trimer siRNAs, unlike the
unmodified ones, did not induce interferon response in cultured cells. The trimers (called
tsiRNA) were significantly more active at lower dose-equivalent (per moles of 21 bp) concen‐
trations than their canonical analogues but the silencing effect develops more slowly [21] and
acts in a Dicer-independent mode, presumably via direct RISC loading. Although the Dicer
cleavage sites were free from modifications, modifications in flanking regions of tsiRNAs could
inhibit the Dicer cleavage. The observed mechanism may be associated with a specific pattern
of modification, used by the authors, which cannot be excluded such that the change in the
pattern will allow the tsiRNA to be processed by Dicer and act through a canonical mechanism.

Targeting single mRNA by RNAi inducer for therapeutic purposes has several limitations: (1)
the presence of mutation in the target site reduces the efficiency of silencing, which is especially
important for viral genes, and (2) signal pathways involved in cancer cell growth contain
duplications of regulatory elements and bypass regulatory pathways [97–99]. Thus, simulta‐
neous inhibition of several genes seems to be an effective strategy. Co-transfection of several
siRNAs may be not effective due to competition between siRNAs [30]. Therefore, long linear
synthetic siRNAs targeted two or more genes hold great promise in these cases.
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Peng and his colleagues designed long linear siRNA at least 30 nt in length (multi-siRNAs) for
dual-gene silencing [95]. To avoid undesired interferon response and improve RNAi potency,
2′-O-methyl modifications and gap in either sense or antisense strands were used. 2′-O-methyl
modifications were introduced into every second nucleotide of both strands. The gap divided
the complementary strand into two equal segments. It was demonstrated that multi-siRNAs
with the gap provided more efficient simultaneous silencing of two target genes in comparison
with corresponding single-target siRNAs (Figure 5). Interestingly, the simultaneous silencing
of two target genes by long siRNA without gap was ineffective. It was supposed that the gap
may provide sites for Dicer or facilitate Dicer processing. Because the Dicer substrates have
preference in RISC loading, multi-siRNAs could possess more efficient silencing activity than
canonical siRNAs [16, 18]. The experiments demonstrated that silencing effects of multi-siRNA
was eliminated when AGO2 was downregulated confirming the action through the same
RNAi pathway as canonical siRNAs [95]. However, further experiments are required to clarify
the exact mechanism of increased activity of these siRNAs.

Figure 5. Design of long linear duplexes with gap in either sense or antisense strands. Red color: sense strand, blue
color: antisense strand.

Long unmodified siRNAs up to 42 nt in length were used for silencing of gene expression in
some specific cell lines without the induction of interferon response [96–101]. For example,
direct fusion of two 17- and 19-bp long non-modified siRNAs resulted in efficient silencing of
two target genes [96]. Two RNAs were merged "head-to-head" in a way that the 5'-ends of both
antisense strands would look outside from the duplex allowing efficient and stereospecific
AGO2 binding and efficient silencing of both targets [96]. Heterologous duplexes merged
“head-to-tail” of antisense strands demonstrated reduced silencing activity [96]. Similar results
were obtained for tandem siRNAs of 40–42 nt in length consisting of 21+21 and 21+23 units
[101] as well as 40-nt long duplexes [100]. These results may be explained by the fact that the
induction of interferon response depends on the cell type [23]. Indeed, some cell lines may
possess reduced immune-sensitivity to the siRNA treatment and the results obtained on the
cell cultures cannot be unacceptable for in vivo experiments.
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Another class of long siRNAs are various branched structures (Figure 6). Initially, branched
oligonucleotides were applied to study mRNA splicing [102–104]. Then diverse branched
structures were used as building blocks for self-assembling nanostructures [105–107]. More‐
over, nanostructures of different shapes and sizes have been proposed as an effective delivery
system for siRNA, ribozymes, etc. [106, 107]. Recently, it has been demonstrated that branched
small RNA structures may also be effective RNAi inducers. Thus, these duplexes can simul‐
taneously inhibit two or more genes and possess improved silencing activity and intracellular
delivery properties [96–109]. Different strategies are developed to form branches. Symmetric
doubler phosphoramidites are used to construct branches with two or four strands [108]. In
another variant, trebler phosphoramidite structure with extended short DNA linker is used as
a core for branched small RNA with three arms [110]. Direct annealing was used to design
RNAs with three and four arms [111, 109]. However, base pairing close to the junction region
may be disturbed and single-stranded nuclease-sensitive region may be formed.

Figure 6. The architecture of various multi-target branched siRNAs. Different colors indicate siRNA units targeted to
various genes.

Chang and his colleagues introduced tripartite RNA structure without any linker containing
three 19-bp-duplex regions obtained by annealing of three 38-nt single-stranded RNAs [111].
The 5′ end of each antisense strand was directed outside, making seed regions of all antisense
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strands accessible for AGO2 loading. Single-stranded regions near the strand junction were
defended by 2′-O-methyl modifications affecting six nucleotides. It was demonstrated that
tripartite small RNA more efficiently silences the expression of three target genes in compar‐
ison with a mixture of corresponding canonical siRNAs due to a more efficient intracellular
delivery by Lipofectamine [111]. Specifically, tripartite small RNA was not processed by Dicer
possibly due to the influence of 2′-O-methyl modifications introduced into the single-stranded
region of tripartite RNA [111]. Similar structures without any modifications, designed by
another group of scientists, were efficiently processed by Dicer into 20-nt products [109]. On
the other hand, tripartite small RNA without any modifications was unstable in biological
fluids and quickly degraded.

Tetramer RNA consisted of four arms 23 bp in length proved to be more stable and also acts
in a Dicer-dependent mode. Both trimer and tetramer siRNAs provided prolonged RNAi effect
and efficiently inhibited the expression of three or four genes simultaneously. The influence
of the structures on the interferon response was not reported [109].

Overall, long linear and branched siRNAs could be efficiently used for simultaneous inhibition
of multiple genes. Selective 2′-O-methyl modifications and specific elements of the structure
(gaps, nonnucleotide insertions) could reduce undesired interferon response. The application
of long RNAi inducers is restricted by the complexity of the design (in the case of branched
molecules) and the higher cost of synthesis in comparison with canonical siRNAs; however,
recent advances in the synthesis of oligoribonucleotide allows overcoming these problems.
Long linear and branched siRNAs could be useful for the development of anticancer and
antiviral therapeutics targeting multiple genes.

6. Conclusion

Small-interfering RNAs provide universal and effective method for the silencing of target
genes because almost all genes could be targeted by siRNAs. A large number of diseases,
associated with hyperexpression of certain genes or expression of their chimeric or mutated
variants, could be treated by inhibition of gene expression; therefore, siRNA has a great
potential as a new therapeutic drug. Different design strategies have been used to improve
properties of siRNAs and reduce off-target effects. Structural modifications can expand the
boundaries of siRNA applications.

At present, synthetic siRNAs structurally mimicking the Dicer substrates (dsiRNAs) are
widely used as potent RNAi inducers. The use of dsiRNA may prevent the development of
undesired toxicity associated with off-target effects of both the inducer and the transfection
reagent or any type of carrier due to the lower effective concentrations and the increase in the
longevity of silencing. Therefore, application of dsiRNAs is considered to be extremely
promising in anticancer and antiviral therapeutics as well as for the treatment of chronic
diseases where multiple administrations are necessary to reach the desired silencing effect.
Chemical modification patterns compatible with Dicer processing were designed and suc‐
cessfully applied for prevention of undesired stimulation of immune system and for acquiring
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nuclease resistance. Single-stranded structured synthetic siRNAs, such as Dicer-processed
short hairpin RNA and dumbbell RNA, possess all benefits as Dicer substrates and exhibit
additional flexibility in fine-tuning of the stability, kinetics, and silencing duration. Long RNAi
inducers, acting in a Dicer-dependent or Dicer-independent mode, effectively silence target
genes at low concentrations. Multi-target siRNAs have a great promise in the treatment of
complex diseases such as cancer and immune-inflammatory disorders or viral infections [108].
Long linear or branched structures with selective chemical or structural modifications could
successfully inhibit the expression of several genes without undesired off-target effects.
Currently, however, the complexity and high cost of the synthesis restrict the biomedical
application of long small RNAs. Some structural modifications in siRNAs have specific
applications. Fork-siRNA are successfully being used for the silencing of genes with restricted
selection of sequence content such as chimeric or point-mutated genes.

siRNAs with various structural modifications find a wide application in biomedical research
and therapeutics. Some of them have already been used in clinical trials. The great success was
achieved in the multi-target therapy that may increase treatment effectiveness. However, the
therapeutics applications are limited by the inefficient delivery of these compounds into
organs, tissues, and cells. Problem of low bioavailability of siRNA in vivo could be overcome
by two ways: the better delivery and the higher activity. Future expansion of the repertoire of
RNAi inducers contributes to resolving of both challenges. Although many approaches are
developed, more efforts are still needed to improve safety and efficiency of siRNA in vivo.
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