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Abstract

The generation of singlet oxygen (SO) in the presence of specific photosensitizers (PS) or
semiconductor nanoparticles (NPs) and its application in photodynamic therapy (PDT)
has great interest for the development of new cancer therapies. Our work focused on the
identification of factors leading to the enhancement of B-Chronic Lymphocytic Leukemia
(B-CLL) intracellular SO production and cell killing using Manganese (Mn) doped and
undoped Zinc Oxide (ZnO) NPs as potential photosensitizers with and without PDT. Mn
can enhance ZnO NPs generation of SO by targeted cells. Multi drug resistant B-Chronic
Lymphocytic Leukemia (B-CLL) cells spontaneously produce high amounts of Reactive
Oxygen Species (ROS) having an altered redox state in relation to that of normal B lym‐
phocytes. These little variations of its SO intracellular concentrations could allow ZnO
NPs to execute specific deadly programs against these leukemic cells with no significant
damage to normal lymphocytes. A 0.5% Mn Doped ZnO NP was finally selected for fur‐
ther probes as it had the best killing activity in fludarabine resistant B-CLL cells, especial‐
ly when combined with PDT. This could be an innovative specific therapy against
resistant B-CLL probably contributing in the near future for the definitive benefit of these
bad prognostic patients.

Keywords: ZnO, Naoparticles, PDT, Leukemia

1. Introduction

B-chronic lymphocytic leukemia (B-CLL) and other chronic indolent hematologic malignan‐
cies like B lymphomas are diseases that usually originate from hematopoietic B cells with
abnormal alterations in the processes of development, maturation, and/or apoptosis. They
usually manifest as progressive accumulations of morphologically mature B lymphocytes
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although immunologically dysfunctional [1, 2]. B-CLL is the most common adult leukemia in
the western world, and currently it has no available curative strategy [1]. Beside many new
discoveries for its treatment, advanced stages of B-CLL usually derived in drug resistance and
aggressive progression with the death of the majority of patients [3, 4]. Chemotherapy is still
a valid alternative for its temporary improvement or just for tumor mass reduction but not for
a definitive healing treatment modality as it has been said [3]. The gold standard of any
antineoplastic drug should be to submit the malignant cells to an apoptotic or cytotoxic
program, without involving healthy ones, thereby minimizing adverse effects and maximizing
the expected results, especially in those situations where drug resistance has developed [5, 6,
7]. Therefore, it is essential to have new treatment modalities in order to increase the anti-B-
CLL effects, providing greater biological activity and much more specificity for this kind of
disease. New drugs as well as monoclonal antibodies and other biologics have shown real
improvements as antineoplastic therapies [8, 9]. However, in general, the side effects are also
frequent, and the development of resistance or relapse is usually inevitable for these kind of
diseases [3, 5, 10, 11]. In order to minimize adverse effects, new drug delivery strategies should
be designed for therapeutic or diagnostic purposes in oncology. Thus, when such an agent is
desired to be specifically delivered inside a tumor mass, innovations are needed. In our present
state of knowledge, the systemic administration of antineoplastic drugs usually faces problems
related to nondesired effects in healthy tissues and incomplete distribution inside the targeted
tumor [12]. Then “specific targeted therapies” (STT) could be the new hope for solid and
hematological tumors [13]. Advancements in materials science and the ever-increasing
miniaturization of technology have led to the development of nanotechnology, a discipline
concerned with the development and utilization of nanomaterials, structures with dimensions
in the 1- to 100-nm range [14, 15, 16]. Nanoparticles (NPs) are increasingly being recognized
for their utility in the field of medicine, including use as drug carriers and imaging tools [17,
18, 19]. Investigations of reactive species (free atoms, clusters, and reactive particles) through‐
out the 1970s and 1980s, coupled with new techniques and instruments (innovations in mass
spectrometry, vacuum technology, microscopes, and more), brought nanotechnology to
different fields, including chemistry, physics, material science, engineering, and biology [20].
Today, nanoscale materials represent real and widespread possibilities for interesting funda‐
mental science as well as useful technologies [21, 22]. Nanotechnology and nanoscience are
multidisciplinary fields between chemistry, which deals with atoms, molecules, and con‐
densed matter physics, which deals with solids of an essentially infinite array of bound atoms
or molecules of dimension no greater than 100 nm [23]. We have now the unique opportunity
to change some properties of materials through the management of size and shape. This is a
central point of nanoscience that will permit us the control of some electronic as well as
magnetic conditions of matter by which it can become much more active and useful for cancer
treatments [24, 25, 26, 27, 28, 29]. Although the 8 physical and chemical properties of substances
have been well characterized, an intriguing facet of nanotechnology is that materials reduced
to the nanoscale in size begin to display different physical and chemical properties. This can
include changes in optical properties, such as color and light diffraction, solubility, hardness
and strength, magnetism, heat, and electrical conductivity, and surface reactivity [21, 30]. As
NP size is reduced, the surface area-to-volume ratio increases, and a large number of the atoms

Leukemias - Updates and New Insights278



composing the particle are found on the particle surface [31]. This can render substances
previously thought inert suddenly highly reactive. These changes in properties mean that
researchers cannot rely upon expectations of chemical behavior based on the previously
understood characteristics of these substances [20, 32]. In NPs made of semiconducting
materials, the band gap can be modified with NP size [33, 34, 35]. The band gap is the amount
of energy required for an electron in the material to be liberated from the allowed valence band
and become a charge carrier. If enough energy is supplied, an electron jumps from the valence
band to the conductance band, leaving behind a vacancy called an electron hole in the valance
band. In NPs, a large portion of the atoms are found at the surface, and consequently so too
are the highly reactive valence electrons and holes. This has strong implications for the
potential of NP to have toxic reactivity in biological systems [36, 37, 38, 39]. The formation of
vesicles or capsules that are small enough to be delivered into the human body by means of
inhalation, injection, or permeation through the skin has received significant attention [40].
The outer shell of the vesicles may be chemically functionalized with receptors and other
species to selectively target certain organs [41]. In this way, it is possible to think between some
other strategies, in the use of delivery/antineoplastic systems that could be delivered easily
straight into the tumor's cells. By using nanoparticle systems, it is possible now to provide
more precisely many drugs and peptides specifically inside the tumors [7, 42, 43]. These
nanoparticles can be made of biodegradable as well as nonbiodegradable materials. Some of
their effects could be derived from its abilities to transport and deliver drugs, reducing toxicity
as well as increasing bioavailability or even by a direct effect of their molecular and electrical
properties as it is the case for some metallic nanoparticles [8, 44]. When they are designed to
transport drugs, it is clear that they can specifically deliver them in huge amounts and very
specifically inside neoplastic cells without much harm to healthy ones [9, 45]. This has been
described for cisplatin in which a higher apoptosis process was observed than with a free drug
[10]. These nanopharmaceuticals as multifunctional drugs and imaging agents with a very
wide repertoire of action will surely be the next generation of antineoplastic therapeutic and
diagnostic agents [11, 46]. There is some previous but limited published experience with NPs
in lymphomas, including in vivo studies in lymphoproliferative diseases [42–44]. We have
already published [47] the possibility of using these pharmaceutical new systems to overcome
drug resistance of B-chronic lymphocytic leukemia (B-CLL) cells. Nanotechnology, the science
that studies, develops, and employs nanometer-scale complex systems, has claimed to be the
key to improve treatment outcomes in oncology [33, 48, 49]. Then NPs, objects of a size of tens
to hundreds of nanometers as it has been said, constructed with different materials such as
natural or synthetic polymers or even metals, could be custom designed for almost every
disease, including B-CLL and other lymphomas [47, 50]. These elements when made of zinc
oxide (ZnO) are plausible to be coated and modified by other metals like manganese (Mn) and
could generate apoptotic and/or cytotoxic changes in malignant cells, especially in the shape
of autophagy. This specialized way of tumor cell death seems to be the specific result of metal
NPs action and could be an interesting and innovative mechanism to be full discovered and
achieved in cancer treatment [51, 52]. ZnO NPs doped with metals such as Mn may have their
optical and electronic properties modified as Mn is known to increase metal NP’s surface
defects, thus generating photooxidation reactions that could be enhanced by PDT [53, 54, 55].
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In this way, we thought that these NPs made of Mn-doped ZnO could be used in the treatment
of B-CLL and other indolent lymphomas, alone or in combination with PDT. These NPs, by
itself or even more if excited by light emission, may generate ROS especially one of its kind,
singlet oxygen (SO), which could lead to an induced apoptotic process or some other kind of
death pathway like autophagy in B-CLL cells, including those with resistant phenotypes to
conventional therapies [56, 57]. This strategy could be a very specific one, considering that the
oxidative stress found in leukemic cells is supposed to be a lot much higher than that of normal
B lymphocytes [6, 7]. Based on a growing body of evidence, ROS production is proposed as a
key cytotoxic mechanism mediated by ZnO NPs leading to cell death [58, 59]. The photoacti‐
vation of these ZnO NPs is predicted to induce greater levels of ROS, including intracellular
SO release which, if effectively targeted to cancer cells, could produce their selective final
destruction [48, 60]. The use of ZnO nanoparticles (NPs) for biomedical applications, particu‐
larly PDT, relies on the fact that semiconductor nanomaterials could generate reactive oxygen
species (ROS) and are promising candidates to become the new generation of photosensitizers
(PS) [61]. ZnO is an excellent PS candidate due to its nontoxicity and ability to biodegrade [62,
63]. Moreover, it displays high thermal and chemical stabilities [64]. Furthermore, ZnO is a
high-quality semiconductor material with a band gap of 3.37 eV, is transparent in the UV
region, and has a large excitation binding energy at room temperature (60 meV) [65]. ZnO has
the hexagonal wurtzite structure with lattice parameters a = 3.29Å and c = 5.24 Å) [65]. Cancer
disease has been one of the principal causes of death worldwide for many years [66, 67].
Photodynamic therapy (PDT) has been successful in the treatment of skin tumors and super‐
ficial skin health conditions [68, 69, 70]. We propose to expand the applicability of PDT for
therapeutic purposes on other cancer types, which involve internal organs, including the
hematological system, and in this respect, NPs possess various physical characteristics, which
make them ideal for cancer targeting and treatment using them as PS with PDT [48, 71]. Some
of these physical characteristics are size in the nanometer scale for cell membrane internaliza‐
tion, intense emission for illumination, and stability. In addition, they can be prepared with
absorption at definite wavelengths to tune them to penetrate into deep seated tumors.
Nanotechnology, in fact, has recently been utilized for specific targeting to tumor cells [60,
71] as opposed to current technology based on drug diffusion upon systemic drug uptake,
which only reaches a maximum of 30% to the intended site and with the added secondary
harmful effects on health. In PDT, a nanoparticle sensitizer is excited at its maximum absorp‐
tion wavelength, thereby being promoted to its singlet excited state, which then is converted
into its triplet state by intersystem crossing [72, 73]. Then the triplet state of the NP transfers
energy to the ground state triplet oxygen, which is converted to singlet oxygen (SO) [74, 75].
The search for efficient sensitizers for in situ SO generation is currently of utmost importance
for use in PDT [73, 74]. Diverse organic molecules have been synthesized, incorporating
different structural features that have been identified with enhanced SO production. NPs have
recently been identified as potential sensitizer candidates for SO generation due to their high
extinction coefficients, and a few reports have been published [48, 71]. We proposed to use
nontoxic functionalized water-soluble ZO and zinc sulfide (ZS) NPs as enhanced SO photo‐
sensitizers and to identify factors for their enhanced SO production for improved cancer
treatment especially for B-CLL.
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2. PDT and metal NPs for cancer treatment

Photodynamic therapy (PDT) is a form of phototherapy using nontoxic light-sensitive com‐
pounds that are exposed selectively to light, whereupon they become toxic to targeted malignant
and other diseased cells [21, 22]. It is used clinically to treat a wide range of medical condi‐
tions, including wet age-related macular degeneration and malignant cancers [23] and is
recognized as a treatment strategy, which is both minimally invasive and minimally toxic. Most
modern PDT applications involve three key components: [21] a photosensitizer, a light source,
and tissue oxygen. The combination of these three components leads to the chemical destruc‐
tion of any tissues, which either have selectively taken up the photosensitizer or have been
locally exposed to light [22]. The wavelength of the light source needs to be appropriate for
exciting the photosensitizer to produce ROS [22]. These ROS generated through PDT are free
radicals (Type I PDT) generated through electron abstraction or transfer from a substrate
molecule and highly reactive state of oxygen known as SO (Type II PDT) [22, 70]. A photosen‐
sitizer is a chemical compound that can be promoted to an excited state upon absorption light
and undergo intersystem crossing with oxygen to produce SO. The photosensitizer should not
be harmful to the target tissue until the treatment beam is applied and preferential uptake in
target tissue. Some of these physical characteristics are size in the nanometer scale for cell
membrane internalization as well as intense emission for illumination and stability [21, 22]. In
PDT, a nanoparticle sensitizer is excited at its maximum absorption wavelength, thereby being
promoted to its singlet excited state, which then is converted into its triplet state [23]. Then the
triplet state of the nanoparticle transfers energy to the ground state triplet oxygen, which is
converted to singlet oxygen (SO) [22]. Metal oxides (MO) play a very important role in many
areas of chemistry, physics, and materials science. MO NPs can exhibit unique physical and
chemical properties due to their limited size and a high density of corner or edge surface sites
[23]. MO NPs include materials such as TiO2, CeO2, Al2O3, Fe2O3, and ZnO and are already found
in many products. TiO2 and ZnO nanomaterials are used in topically applied products such as
sunscreens and cosmetics, as are pure gold NPs [76]. Their remarkable physical properties form
the basis for motivation of metal NPs synthesis and large effort has especially been focused on
the design, characterization, and medical applications of ZnO nanomaterials [77]. Inorganic
semiconductor nanocrystals have unique properties resulting from quantum confinement [78].
For semiconductor nanocrystals,  the energy gap increases with decreasing size [79].  The
excitation tracks the absorbance, resulting in a tunable fluorophore that can be excited efficient‐
ly at any wavelength shorter than the emission peak but will emit with the same characteris‐
tic narrow, symmetric spectrum regardless of the excitation wavelength [80]. ZnO, also known
as zincite, is an inorganic compound, nearly insoluble in water that occurs rarely in nature. It
is mostly produced synthetically for its commercial used [65,81]. ZnO is actually a wideband
gap semiconductor of the II–VI semiconductor group [76]. At a nanoscale, size exhibits quantum
confinement as its electrons are contained in discrete energy bands. In this way and when
sufficient energy is supplied, electrons can move from the valence to the conductance band,
being able to act as powerful reductants in aqueous solutions as well as mobile charge carri‐
ers donating electrons to oxygen to generate superoxide radicals [81, 82]. When this electron
movement into the conductance band occurs, there are electron vacancies that can produce
powerful oxidation reactions in water. This production of hydrogen peroxide and photocatal‐
ysis of ROS by NP-sized ZnO in water can be 100–1000 times faster than bulk ZnO [83, 84].
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2.1. Methodology and experimental procedures

2.1.1. Synthesis of NPs

Eight different types of Zn NPs were synthesized by different methods as described here: NP1
ZnO, NP2 ZnO:Mn+2 0.5%, NP3 ZnO:Mn+2 1.0%, NP4 ZnO:Mn+2 1.5%, NP5 ZnO:Mn+2 2.0%,
NP6 ZnS, NP7 ZnS:Mn+2 1.0%, and NP8 ZnO/ZnS. NPs were finally diluted and prepared for
all experiments by vigorous sonication and addition of human serum albumin.

a. Synthesis of ZnO and Mn-doped ZnO NPs: These NPs were synthesized via wet-chemical
techniques [53, 85]. The different Mn doping percentages applied on the surface of NPs
were 0.5%, 1.0%, 1.5%, and 2.0%. Undoped ZnO NPs were synthesized with a similar
procedure except for the addition of manganese acetate [53].

b. Synthesis of colloidal ZnS semiconductor nanocrystals capped with PVP and prepared
using 1% concentration of Mn+2 ion as a dopant: The NPs were synthesized via wet-
chemical techniques [86]. Undoped ZnS NPs were synthesized with a similar procedure
except for the addition of manganese acetate [87].

c. Synthesis of ZnO/ZnS core shell NPs: The preparation of ZnO/ZnS core shell NPs was
performed by the thermal decomposition of Zn-MPA complexes [88, 89]. ZnS shell was
grown on ZnO nanoparticle by the decomposition of the complex Zn-MPA(3-mercapto‐
propionic acid) at 100°C. The S atoms originating from the thermal decomposition are
deposited slowly.

2.1.2. Characterization of NPs

We characterized all NPs by transmission electron microscopy (TEM) (JEM-2100F, JEOL Inc.)
and scanning electron microcopy (SEM) (JEOL-JSM 6500 instrument and a Philips/FEI, XL30s,
FEG SEM/Phoenix EDAX) observation after the deagglomeration of NPs with human serum
albumin (HSA) 1.5 mg/mL and intense sonication, as well as by elemental composition analysis
by energy-dispersive X-ray spectroscopy (EDS). Also, X-ray diffraction (XRD) measurements
were carried out with a diffractometer (D500/Siemens) using Cu-Kα radiation with λ = 0.154315
nm to determine the crystalline nature of the selected NPs. A UV-Vis spectrophotometer (DU
800, Beckman Coulter) was used to study the optical absorption of NPs. Luminescence properties
and SO generation by NPs were determined by photoluminescence (PL) spectroscopy, using a
spectrofluorometer  (FluoroMax-2/Horiba Scientific)  at  room temperature with a  150-mW
continuous ozone-free Xe lamp. Fourier-transformed infrared (FTIR) spectra was recorded
using an attenuated total reflection Fourier transform infrared (FTIR-Varian 3100 FTIR/Bio-
Rad) to evaluate and characterized the presence of functional groups on the surface of these
NPs. The excitation wavelength for photoluminescence measurements was set at 350 nm for
ZnO and manganese-doped ZnO NPs, and the excitation wavelengths for ZnS NPs were 320
and 340 nm for manganese-doped ZnS NPs. The excitation wavelength for ZnO/ZnS core shell
nanoparticles was 310 nm. For book space reasons, we will only describe here the characteriza‐
tion in full detail only of that type of NP with the best B-CLL cytotoxic effects when applying
PDT and tested in vitro for viability and mortality of leukemic cells as later will be described.
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2.1.3. Penetration of cells by NPs

Amounts of 0.1, 0.2, and 0.3 mg/mL of each of the eight NPs produced were incubated with 4
million cells in 2 mL of culture medium for a maximum period of 3 h, under conditions already
described. NP penetration of cells was determined by TEM and by fluorescence microscopy
(Motic Inverted Microscope AE30-31 with Episcopic-Fluorescence Attachment EF-INV-II)
using a DAPI filter. The degree of penetration was determined by 3 independent pathologists
observers trained in cell observation with TEM by evaluation of 5 pictures taken at every each
time point (0, 30, 60, 120, and 180 min) of incubation of the cells with the different NPs and its
selected concentrations mentioned before. For this purpose, cells with NPs were submitted to
two washing cycles and finally to a resuspension step in PBS before TEM observation was
performed. Results were the mean of the penetration scores given by all the observers to the
5 pictures for each specific NP and its different concentrations at every time point. Finally, the
level of penetration was ranked in relation of the total cell surface covered with NPs as none
(0–5%), discrete (6–45%), moderate (46–75%), or intense (76–100%), as seen in each TEM picture
by each observer. The time at which the highest level of cell penetration by NPs occurred was
later used as the best time point for all laser irradiation experiments. When maximum NP
penetration of cells was determined by TEM, the confirmation of these data was done by
observation of cells under fluorescence microscopy using a DAPI filter in which the cells were
supposed to fluorescence when penetrated by NPs.

2.1.4. Enhanced singlet oxygen production by PDT

Since we wanted to have a simple, precise, and reproducible energy source, our approach was
to first evaluate different light sources with diverse characteristics in the following order, i.e.,
broad wavelengths of excitation, unique wavelengths, tailored to requirements of the specific
photosensitizer. We wanted to evaluate the robustness of the light sources, so we chose two
well-known sensitizers to assess the accuracy and reproducibility of the measurements by
calculating the rate of photooxidation and the quantum yield of SO production. Thus, we
undertook the task of optimizing the SO production by varying the reaction parameters, such
as, concentration of PS, concentration of quencher, solvent, nature and potency of irradiation
source, and irradiation time. We used the most commonly quenchers described in the speci‐
alized scientific literature: 1,3-diphenylisobenzofuran (DPBF), 2,5-dimethylfuran (DMF), and
2,5-diphenylfuran (DPF) [90, 91]. After optimizing the conditions for PSs to produce SO, we
moved to experiments with NPs in order to quantify the production of SO for all the NPs
mentioned before, using three methods: spectrophotometry, fluorometry analysis of DPBF
oxidation, and analysis of fluorescent probe: singlet oxygen sensor green (SOSG). We choose
the standard with the highest production of SO (RB) and a laser on a wavelength of 532 nm
because excited nanoparticles and RB are found at this wavelength to trigger photochemical
reactions, which produced reactive SO. We measured the intracellular production of SO after
the internalization of NPs with and without PDT by a fluorometric analysis of DPBF and
analysis of fluorescent probe: singlet oxygen sensor green (SOSG) using a novel method first
described by us, which measured the efficiency of the intracellular production of SO by the
use of the different NPs with and without PDT. All experiments were made in triplicate.
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2.1.5. Apoptosis and cytotoxicity assays of NPs on B-CLL cells

Each of the NPs was tested for apoptotic and cytotoxic effects on B-CLL cells by flow cytometry
and propidium iodide/acridine orange vital staining with fluorescent microscopy observation
as well as MTT assays, with and without PDT.

2.1.6. Measurement of free ion Zn

Free levels of ion Zn in ultrapure distilled water after incubation with NPs for 24 and 48 h were
evaluated by a classical method.

2.1.7. Morphological cell changes after treatment

B-CLL cells and normal lymphocytes were evaluated by light and TEM observation after
treatment for cell morphological changes.

3. Results and discussion

3.1. UV-Vis NPs absorption

The optical absorption spectra were recorded in the wavelength region of 200–800 nm. Doping
with Mn could increase surface defects of NPs affecting the optical and electronic properties
of nanoparticles as well as improving the action of PDT when visible light is used as source.
UV-Vis absorption of undoped ZnO and 0.5% Mn-doped ZnO showed a difference in the
optical absorption of both the undoped and the Mn-doped ZnO NPs, which could indicate
that Mn generates more active sites for reaction at energy level lower than the conduction band
of undoped ZnO, and thus absorbs more visible light via these defects sites. Absorption
wavelength varies according to the different percentages of doping (Table 1) the optical band
gap of undoped and Mn-doped ZnO NPs. Doping ZnO NPs with 0.5% of Mn would contribute
with tail states in the vicinity of the valence band owing to the defect sites and reduces its
effective band gap.

NPs Estimated optical band gap (eV)

ZnO 3.5

ZnO:Mn+2 0.5% doping 3.4

ZnO:Mn+2 1.0% doping 3.6

ZnO:Mn+2 1.5% doping 3.54

ZnO:Mn+2 2.0% doping 3.50

Table 1. Optical band gap of undoped ZnO and Mn-doped ZnO NPs at different percentages
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3.2. Photoluminescence measurements

The emission spectra of all these NPs had one weak band in the UV region around 397 nm that
could be attributed to their band gap as well as another broad one at 542 nm in the visible
region, which could be related to oxygen defects. The visible emission is the dominant feature
of the luminescence of ZnO and Mn-doped ZnO NPs and results from recombination involving
trap states [92]. This increase of fluorescence intensity probably indicates that the incorporation
of Mn ions into ZnO NPs may suppress some nonradioactive recombinations of free excitation
that is near the band gap emission [92].

3.3. Infrared analysis

An FTIR spectrum of ZnO NPs showed an absorption band centered at 451 cm–1 corresponding
to the stretching vibration of Zn-O, confirming the formation of a ZnO bound [53, 93], and a
vibration band at 1021 corresponding to a C-O bond. The O-H broad stretching band at 3438
cm–1 is shown in the spectrum [92, 94]. The intense absorption bands at 1405 cm–1 and 1586
cm–1 were due to C-C and CH3COO– stretching vibrations of carboxylic acid, respectively [95].
The strong presence of those bands at 1405 and 1586 could be attributed to the formation of a
zinc acetate solution complex in ethanol, occurring during the synthesis process [96]. The
Fourier transform infrared (FTIR) spectrum of the 0.5% Mn-doped ZnO NPs has an intense
band at 446 cm–1. This peak confirms substitution of Zn+2 ions by Mn+2 ions in the crystal
structure. The photoluminescence studies illustrated that the doping with Mn modifies the
emission properties of ZnO NPs.

3.4. XRD analysis

The average crystalline size of NPs was 7.78 ± 0.9 nm and was determined using the Debye–
Scherrer formula [97, 98]. The average crystallite sizes are presented in Table 2. From the results
of the XRD analysis of Mn-doped ZnO NPs, we observed that the crystal size increases with
doping up to 0.5%, indicating the incorporation of Mn in the ZnO lattice. This phenomenon is
shown in Table 4, where the lattice parameters of Mn-doped NPs at different atomic percen‐
tages in the 0–2 at.% range were slightly higher than those of undoped ZnO NPs. Any other
impurities were detected. In Table 3, the average crystallite sizes of Mn-doped ZnO NPs
synthesized at all the different dopant atomic percentages in the 0–2 at.% range are presented.

Percentage of Mn doping of ZnO NPs Average crystallite size ± standard deviation (nm)

ZnO undoped 7.78 ± 0.9

0.5% Mn+2-doped ZnO NPs 14.41 ± 0.8

1.0% Mn+2-doped ZnO NPs 13.25 ± 0.8

1.5% Mn+2-doped ZnO NPs 11.45 ± 0.7

2.0% Mn+2-doped ZnO NPs 10.95 ± 0.6

Table 2. Average crystallite size of ZnO NPs doped at different Mn atomic percentages in the 0–2 at.% range
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Lattice Constants
(A°)

ZnO ZnO:Mn 0.5% ZnOMn 1.0% ZnO:Mn 1.5% Zno:Mn 2.0%

a=b 3.231 3.232 3.245 3.260 3.271

c 5.092 5.174 5.193 5.212 5.236

Table 3. The lattice constants calculated from XRD data of ZnO and different Mn atomic cm–1 with percentages in the
0–2 at.% range

3.5. TEM, SEM, and EDS analysis of NPs

By scanning electron microscopy (SEM) and transmission electron microscopy (TEM) after
being well deagglomerated using human serum albumin (HSA) and intense sonication [99],
most of the nanoparticles had spherical shapes and a well-ordered morphology. Highly
monodispersed NPs with an average size of 22.4 ± 1.6 nm were clearly observed (Figures 1 and
2). The resulting ZnO and 0.5% Mn-doped ZnO NP morphology was quite similar when
observed by both analysis (TEM and SEM), constituting a homogeneous population of NPs of
that mentioned size (Figures 1 and 2). TEM and SEM images showed that the NPs appeared a
little larger in size than the same estimated result from Scherrer analysis [100]. In Table 4, the
experimental Mn concentration was compared to that obtained by the EDS analysis; being
quite similar, this confirms the atomic percentage of Mn present in the ZnO nanoparticles.

% Mn (Theorical) %Mn (EDS)

0 0

0.5 0.4

Table 4. Theoretical Mn content of 0.5% Mn-doped ZnO NPs and that determined by EDS in the same NPs.

Figure 1. TEM picture of 0.5% Mn-doped ZnO NPs, where they are seen with strong black color, with spherical mor‐
phology and uniform size. The gray background is produced by the human albumin used to disperse the particles.
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Figure 2. SEM observation of 0.5% Mn-doped ZnO NPs with a counting grid of 1000 × 1000 nm with small square sec‐
tions of 100 × 100 nm to characterize NPs distribution and size.

3.6. Analytical methods for determination of SO production

Similar results were obtained by the three analytical methods for NPs of 1.0 Mn-doped ZnO.
Comparing the spectrophotometric method and fluorometry analysis of DPBF oxidation,
similar results were obtained for NPs of 1.0% and 1.5% Mn-doped ZnO and 1.0% Mn-doped
ZnS NPs. Core shell ZnO/ZnS did not produce SO at all (Table 5). The measurement of singlet
oxygen was similar for ZnO nanoparticles and 1.0% and 2.0% Mn-doped ZnO NPs by both
fluorescence methods. Comparing the spectrophotometric method and analysis of fluorescent
probe, singlet oxygen sensor green (SOSG), similar results were obtained for NPs of 1.0% Mn-
doped ZnO and ZnS.

NPs Ф∆  SO by 
Spectrophotometry 
analysis 

Ф∆  SO by 
fluorometry analysis 
of DPBF oxidation 

Ф∆  SO by analysis of 
fluorescent probe: 
SOSG 

ZnO N.R 0.71 p˂0.05 
             * 

0.66 p˂0.05 
             * 

ZnO:Mn 0.5% doping 0.60 p˂0.05 
             * 

0.48 0.74 

ZnO:Mn 1.0% doping 0.32 0.28 0.32 

ZnO:Mn 1.5% doping 0.17 0.17 0.30 

ZnO:Mn 2.0% doping N.R 0.1 0.17 

ZnS 0.36 0.22 0.39 

ZnS:Mn 1.0% doping 0.20 0.23 0.52 

Table 5. SO quantum yield of NPs by spectrophotometric and fluorometric analysis of DPBF oxidation and by analysis
of fluorescent probe: singlet oxygen sensor green (SOSG) in water
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We measured the generation of SO in all experiments using NPs and laser irradiation at a
wavelength of 532 nm following three different analytical methods: spectrophotometry and
fluorometry analysis of DPBF oxidation as well as by the use of a fluorescent probe: singlet
oxygen sensor green (SOSG). A standard photosensitizer, RB, of a known SO quantum yield
was used to calculate the SO QY of the NPs. Singlet oxygen quantum yield of rose bengal was
always significantly higher compared with the QY of any of the NPs used. Anyway, as NPs
could have several advantages, that will be explained later on when compared to PSs such as
RB. Our results will surely be of great importance for the future clinical application of ZnO
NPs. It was clearly demonstrated that the decomposition of DPBF by SO induced by 1.0% Mn-
doped ZnO and ZnS NPs at 1.0 mg/mL under laser irradiation conditions was always a time-
dependent phenomenon. Comparing both the spectrophotometric method and the
fluorometry analysis of DPBF oxidation, similar results were obtained for NPs of 1.0% and
1.5% Mn-doped ZnO and 1.0% Mn-doped ZnS NPs. Our core shell ZnO/ZnS NPs did not
produce SO at all. The measurement of SO generation was similar for ZnO nanoparticles and
1.0% and 2.0% Mn-doped ZnO NPs by both fluorescence methods. Comparing the spectro‐
photometric method and singlet oxygen sensor green (SOSG) routes, similar results were
obtained for NPs of 1.0% Mn-doped ZnO and ZnS NPs. In all the other experiments performed
in similar conditions, we always found a significant higher generation of SO when 0.5% Mn-
doped ZNO NPs were used, and these results seem to indicate that this kind of NP could be
the most appropriate to use in living models when SO generation could be needed as a
therapeutic strategy. Then the most interesting sample tested in order to use in further
experiments with living cells, animal models, or even patients as a potential intracellular SO
generator should be 0.5% Mn-doped ZnO NPs, which generated the highest amounts of SO
compared to the other Mn-doped samples at 1%, 1.5%, and 2%. These features make 0.5% Mn-
doped ZnO nanoparticles potential potent photosensitizers for a combine treatment with PDT.
Results for all NPs by the three analytical methods are presented in Table 6. The highest values
of SO QY was 0.60 by the spectrophotometric method and 0.74 by SOSG using 0.5% Mn-doped
ZnO NPs (p < 0.05) and 0.71 by the fluorescence method of DPBF oxidation using ZnO NPs
(p < 0.05). When a dopant is introduced into a nanoparticle like the ones presented here, a range
of percent doping may be most effective in a specific desire clinical action like anticancer
selective activity. Additionally, it may be the case that the most effective percent range depends
on the nanoparticle composition and the dopant composition. In our case, 0.5% Mn+2-doped
NPs had the highest effectiveness in the production of SO. This may be explained in terms of
their optical properties with the presence of this doping. Higher fluorescence in the visible
region as compared to those Mn+2-doped NPs at 1.0%, 1.5%, and 2.0%. 0.5% Mn+2-doped ZnO
NPs generated more SO due of the special transitions in the d orbitals of Mn+2, favoring the
photocatalytic processes. At this percentage, the optical and electronic properties of the NPs
were favorable for PDT. In this way, there is more energy transfer between the excited NPs
with triplet oxygen to produce SO. It is known that these NPs have a good capacity to donor
energy and can act as novel PSs in the use of PDT for cancer treatment [28, 50, 101]. The QY of
SO by spectrophotometry was 0.60 and 0.48 by fluorometry analysis of DPBF oxidation and
0.74 by analysis of fluorescent probe, respectively. With increasing doping of ZnO NPs from
1.0% to 2.0%, the production of SO decreased in all methods. ZnS NPs without Mn doping
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when compared to 1.0% Mn-doped ZnS NPs showed an increased SO production by the
spectrophotometric method. The results were similar for ZnS and 1.0% Mn-doped ZnS by the
fluorometric method using DPBF oxidation. In the SO detection method using the Sensor
Green, Mn-doped ZnS NPs show a considerable increase in the production of singlet oxygen
compared to undoped NPs. In general, all NPs have a good production of SO and can be used
as efficient PS in PDT except ZnO/ZnS core shell. We made a comparative extensive study with
3 different analytical methods: spectrophotometry, fluorometry analysis of DPBF oxidation,
and analysis of fluorescent probe: singlet oxygen sensor green (SOSG), using a novel method
first described by us, which measured the efficiency of the intracellular production of SO by
the use of the different NPs with and without PDT. There is no current scientific literature of
this kind doing comparative studies of the intracellular production of SO, making our group
the pioneers worldwide. For the results obtained with our 0.5% Mn-doped ZnO NPs, we
certainly believe that this specific doping level generates new unique electrical and lumines‐
cence properties in our ZnO NPs for this particular concentration of Mn most probably related
to a specialized way of tumor cell death called autophagy, which seems to be the specific result
of the intracellular action of metal ZnO NPs at this Mn doping level. The Mn+2 dopant atomic
percentage of 0.5% for ZnO NPs should be interacting with the molecular and electrical
configurations of these Zn NPs in such a way that SO generation is clearly enhanced especially
when PDT is used. This could be an interesting and innovative mechanism to be fully discov‐
ered and achieved in cancer treatment, especially when low concentrations of Mn doping are
used in ZnO NPs associated to PDT [33, 48]. It could be important to look in future studies into
the behavior of ZnO NPs when doped with concentrations lower than 0.5% especially at the
mitochondrial cell level where many of the respiratory and energy generation processes of the
cell are taken place. As shown in our experiments, higher concentrations over 0.5% seem not
to improve SO generation or leukemic cell death. In this way, it was thought that these NPs
made of Mn-doped ZnO could be used in the treatment of B-CLL and other indolent lympho‐
mas, alone or in combination with PDT. These NPs, when excited by light emission, may
generate ROS, especially SO, which could lead to an induced apoptotic process or some other
kind of death pathway like autophagy in B-CLL cells, including those with resistant pheno‐
types to conventional therapies [57]. This strategy could be a very specific one, considering
that the oxidative stress found in leukemic cells is supposed to be a lot much higher than that
of normal B lymphocytes [102, 103]. Based on a growing body of evidence, ROS production is
proposed as a key cytotoxic mechanism mediated by ZnO NPs leading to cell death [104,
105]. The photoactivation of these ZnO NPs was predicted to induce greater levels of ROS,
including intracellular SO that we measured by an innovative method developed in this
research. This enhanced intracellular generation of SO, if effectively targeted to cancer cells by
our Mn-doped ZnO NPs, could produce their selective final destruction [106, 107].

3.7. Intracellular measurement of so production after treatment with NPs with and without
PDT

Each of the NPs was tested for apoptotic and cytotoxic effects in B-CLL cells as assayed by
flow cytometry and propidium iodide/acridine orange staining as well as MTT assays. It is
clear by the results of our experiments that the lowest concentration of Mn doping (0.5%) could
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play the most important role in enhancing the cytotoxic effects of our NPs of the present
research. These NPs seem to be very selective in their cytotoxic effects toward diseased B-CLL.
Our most effective NPs have been synthesized or modified by a method that affects its
biological behavior by the addition of a dopant in a concentration that basically could change
their redox potential [85, 108]. These parameters could allow for influence same NPs and/or a
preferential association of the NPs with a diseased cell. Fluorescence spectra photooxidation
of DPBF in the presence of NPs inside B-CLL cells and DPT treatment showed that DPBF reacts
with SO, causing a progressive decrease in the intensity of the quencher again. This decom‐
position of DPBF by SO produced by the use of 1.0% Mn-doped ZnO NPs 3 and ZnS NPs 6 in
B-CLL cells was a time-dependent phenomenon (Figures 3 and 4) with an increased production
of intracellular SO in B-CLL cells when PDT was delivered. The intracellular singlet oxygen
QY of RB was significantly higher compared with QY of NPs (Figures 3 and 4; p < 0.05). The
quantum yield of SO for B-CLL cells was 0.16 for NPs3 and 0.21 for NPs6 using DPBF as the
chemical quencher (Table 6).

SO QY B-CLL Lymphocytic cells 

NP 3 0.16 

NP 6 0.21 

Table 6. Singlet oxygen (SO) quantum yield (QY) of NPs in B-CLL lymphocytic cells

Figure 3. Time-dependent decomposition of DPBF at 6.0 × 10–5 M by SO produced by ZnS NPs at 15 µg/mL and RB at
1.0 × 10–5 M and incubated with B-CLL cells (4 million/2 mL PBS) and irradiated with a green laser 532 nm at a distance
of 40 cm up to 16 s every 2 s compared to that produced by RB under same experimental conditions.
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Figure 4. Time-dependent decomposition of DPBF at 6.0 × 10–5 M by SO produced by 1.0% Mn-doped ZnO NPs at 15
µg/mL and RB at 1.0 × 10–5 M and incubated with B-CLL cells (4 million/2 mL PBS) and irradiated with a green laser
532 nm at a distance of 40 cm up to 18 s every 2 s compared to that produced by RB under same experimental condi‐
tions.

3.8. Penetration of cells by NPs

We first evaluated the effect of three different doses (0.1, 0.2, and 0.3 mg/mL) of each of the 8
NPs produced by testing them in their penetration capacity into B-CLL cells as well as into
normal B lymphocytes during a total culture period of 3 h (Fig 5). The results of these experi‐
ments indicated that 0.2 mg/mL of each of the analyzed NPs resulted in an intense cell
penetration activity that was not further increased by its rising to a higher concentration of 0.3
mg/mL. Because of this, the concentration of 0.2 mg/mL of NPs was used in all further
experiments. At zero time, no particles were seen inside any of the cells (Fig 6a), but at 2 h time
point, all observers agreed that there was a maximum “intense” similar penetration of all NPs
in both types of cells (Figure 6b). Normal lymphocytes as well as B-CLL cells were well and
maximally penetrated by NPs at 0.2 mg/mL concentration when cultured at 37°C during 2 h
and observed under TEM (Figure 6b). At 3 h culture time, no further significant increase in the
amount of total NP penetration into cells was observed in either leukemic or normal ones. B-
CLL cells as well as normal B lymphocytes when incubated during this time period with 0.2
mg/mL of each of the NPs and observed under TEM and fluorescent microscopy were clearly
and intensively penetrated by all of these NPs tested as described by the 3 observers, and no
increment of NP penetration in cells was found after this time point as it was said. In this way,
an incubation period of 120 min with 0.2 mg/mL of NPs was selected as the best conditions for
NP penetration into cells.
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Figure 5. Effect of three different doses of each of the 8 NPs tested on the viability of B-CLL cells at 48 h of incubation
after PDT. The dose 0.2 mg/mL produced the most intense killing activity. Increasing this dose up to 0.3 mg/mL did
not produce further significant increase in cell mortality as seen with 0.2 mg/mL.

 
                           (a)                                                                   (b) 
 

Figure 6. (a) B-CLL cell in culture with no NPs observed with TEM at time 0. Penetration degree: none. (b) B-CLL cell
penetration by 0.5% Mn-doped ZnO NPs observed at 2 h by TEM. Penetration degree: intense. As panel b suggests, the
NPs also penetrated the cell nucleus.

3.9. Cell viability and mortality testing

Then we evaluated the effect of those same three different doses (0.1, 0.2, and 0.3 mg/mL) of
each of the 8 NPs produced on the viability of B-CLL cells at 24 and 48 h of incubation after
PDT (Fig 5). In these probes, 0.2 mg/mL of each of the NPs tested again resulted in the best B-
CLL cell killing activity. Normal lymphocytes also had the greatest mortality rates at this NPs
concentration but were always significantly lower and mostly insignificant in relation to that
observed for B-CLL cells. It was also seen that 0.1 mg/mL of each NP had almost no significant
difference in the viability of B-CLL cells in relation with that of the control samples without
NPs. In this way, this concentration did not seem to be the best one to be tried in further
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experiments. Scaling up the NPs concentration to 0.3 mg/mL did not either significantly
improved the cell killing activity of those same NPs in relation to that concentration of 0.2 mg/
mL. Then this concentration of 0.2 mg/mL was selected and used for all other experiments.
From the 8 NPs especially designed and produced for this study, 0.5% Mn-doped ZnO NPs
were chosen as the most powerful killing NPs against B-CLL cells when associated with PDT
but with minimum impact on normal lymphocytes. At the mentioned concentration of 0.2 mg/
mL, NPs2 (0.5% Mn-doped ZnO NPs) were the most effective NPs in relation to its killing
activity of B-CLL cells (Fig 7). In this way, NP2 was selected for the performance and cytotox‐
icity procedures.

Figure 7. Cytotoxicity levels of B-CLL cells (L) from 5 patients and normal B lymphocytes (H) from 5 healthy donors
for each NP at 24 and 48 h with and without laser irradiation. Clearly, the most intense mortality is observed in B-CLL
cells exposed to NPs2 at 48 h and laser irradiated.

3.10. Intracellular so production determinations

Changes in the production of intracellular SO were determined in both normal and B-CLL cells
after being penetrated by NPs and laser irradiated. The increase of intracellular SO was
significantly higher in B-CLL cells than in normal B lymphocytes. Measurements of the
intracellular SO generation quantum yield after PDT was done by fluorometry quantitative
analysis of photooxidation reactions using either DPBF as the quencher or SOSG as a fluores‐
cent probe for singlet oxygen, as previously described. B-CLL cells as well as normal B
lymphocytes when incubated during 2 h with SOSG and observed under fluorescent micro‐
scopy were clearly penetrated by this fluorescent probe. The measurement of the intracellular
fluorescence spectra of SOSG in the presence of 0.5% Mn-doped ZnO NPs inside B-CLL cells
and normal B lymphocytes was possible by using our described method and by recording its
changes every minute up to 7 min upon irradiation (Figure 8). A selective increase in the
intensity of the fluorescence of SOSG especially in B-CLL cells as a result of the larger pro‐
duction of intracellular SO induced by the action of light when these 0.5% Mn-doped ZnO NPs
have already penetrated these cells was recorded. SO quantum yields were determined with
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the graph of time dependent of SOSG in the presence of NPs inside cells after PDT (Figure 9).
A quantitative comparison of the intracellular SO generation between normal lymphocytes
and B-CLL cells, both treated with Mn 0.5%-doped ZnO NPs and PDT, using this SOSG
fluorescent probe, showed a significant increase in SO generation in malignant leukemic cells
rather than in normal ones (Figure 10a and b). The quantum yield was calculated using
Equation (1) [91], and the values were 0.88 in B-CLL cells and 0.49 in normal lymphocytes
using SOSG as a fluorescent probe for singlet oxygen, as previously described.

500 520 540 560 580 600

2

4

6

8

In
te
n
s
it
y

λ(nm)

 0min

 1min

 2min

 3min

 4min

 5min

 6min

 7min

SOSG

λ526

Figure 8. Intracellular PL spectra of SOSG at 5 µL/mL from B-CLL cells (4 million/2 mL PBS) penetrated by of 0.5%
Mn-doped ZnO NPs at 0.2 mg/mL, while the cellular suspension was irradiated with a green laser 532 nm at a distance
of 40 cm every minute up to 7 min. The excitation wavelength was 488 nm. The increase in the fluorescence intensity of
SOSG as a function of time irradiation is clearly observed. There was no interference in the measurements produced by
the cells.

Figure 9. Time dependent of SOSG at 5 µL/mL by SO produced by 0.5% Mn-doped ZnO NPs at 0.2 mg/mL and RB at
1.0 × 10–5 M and incubated with B-CLL lymphocytic cells (4 million/2 mL PBS) while irradiating with a green laser 532
nm at a distance of 40 cm up to 7 min every 1 min.
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(b) 

Figure 10. (a) Quantitative comparison of the intracellular SO generation after PDT by a fluorescent probe SOSG be‐
tween normal lymphocytes and B-CLL cells from 5 healthy donors and 5 CLL patients treated with 0.5% Mn-doped
ZnO NPs. (b) Singlet oxygen sensor green (SOSG) quantum yield (QY) of Mn 0.5%-doped ZnO NPs inside normal
lymphocytes and B-CLL cells.

B-CLL cells as well as normal B lymphocytes when incubated during 2 h with SOSG and
observed under fluorescent microscopy were clearly penetrated by this fluorescent probe. The
measurement of the intracellular fluorescence spectra of SOSG in the presence of 0.5% Mn-
doped ZnO NPs inside B-CLL cells and normal B lymphocytes was possible using our
described method and recording its changes every minute up to 7 min upon irradiation (Figure
8). A selective increase in the intensity of fluorescence of SOSG especially in B-CLL cells as a
result of the larger production of intracellular SO induced by the action of light when these
0.5% Mn-doped ZnO NPs have already penetrated these cells was recorded. SO quantum
yields were determined with the graph of time dependent of SOSG in the presence of NPs
inside cells after PDT (Figure 9). A quantitative comparison of the intracellular SO generation
between normal lymphocytes and B-CLL cells, both treated with 0.5% Mn-doped ZnO NPs
and PDT, using this SOSG fluorescent probe, showed a significant increase in SO generation
in malignant leukemic cells rather than in normal ones (Figure 10a and b). The quantum yield
was calculated using Equation (1) [91], and the values were 0.88 in B-CLL cells and 0.49 in
normal lymphocytes using SOSG as a fluorescent probe for SO, making this difference
significant (p < 0.04) (Figure 10a). In Equation (1), ΦΔsample = ΦΔref Ksample / Kref, where ΦΔref is the
SO quantum yield of rose bengal (RB) and Ksample and Kref are the slopes of the plot of the time-
dependent increase of SOSG, expressed as the increase of fluorescence at 526 nm of the
measured 0.5% Mn-doped ZnO NPs and the RB, respectively (Figure 9). The other method
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used to calculate the production of intracellular SO was that in which DPBF performed as the
chemical quencher in a decomposition reaction. In the analysis of DPBF oxidation by SO,
Ksample and Kref are the slopes of the plot of the time-dependent decomposition of DPBF,
expressed as the decrease of fluorescence at 453 nm of the measured 0.5% Mn-doped ZnO NPs
and the RB, respectively (Figure 11). In this way, SO production was significantly higher in B-
CLL cells compared to normal lymphocytes when both types of cells were treated with NPs
and PDT [6, 18, 51] (Figure 12a and b). Fluorescence spectra photooxidation of DPBF in the
presence of 0.5% Mn-doped ZnO NPs inside B-CLL cells showed that DPBF reacts with SO,
causing a progressive decrease in the intensity of the quencher (Fig 13). This decomposition
of DPBF by SO produced by the use of RB and 0.5% Mn-doped ZnO NPs in B-CLL cells was
a time-dependent phenomenon, and again there was an increased production of intracellular
SO much higher in B-CLL cells than in normal lymphocytes when PDT was delivered (Figure
12a and b). The quantum yield of SO for B-CLL cells was 0.21 and 0.10 for normal lymphocytes
using DPBF as the chemical quencher. Then it is clear that a similar phenomenon was observed
in both cases when SOSG or DPBF were used.

Figure 11. Time-dependent decomposition of DPBF at 6.0 × 10–5 M by SO produced by 0.5% Mn-doped ZnO NPs at 0.2
mg/mL and RB at 1.0 × 10–5 M and incubated with B-CLL cells (4 million/2 mL PBS) and irradiated with a green laser
532 nm at a distance of 40 cm up to 14 s every 2 s.

SO production was found to be increased in both normal and B-CLL cells when cultured with
0.5% Mn-doped ZnO NPs and laser irradiated, but this increase in SO production was always
significantly higher in B-CLL cells compared to normal lymphocytes.

3.11. Cytotoxicity levels produced by NP treatment with and without PDT

Cytotoxicity levels produced by each of the NPs described before on B-CLL cells compared to
that on normal B lymphocytes at 24 and 48 h with and without laser irradiation was in all cases
significantly higher (Figure 14). At the 0.2 mg/mL concentration, NP2 (0.5% Mn-doped ZnO
NPs) was the most effective NP in relation to killing activity of B-CLL cells while having a
minimum effect on normal B lymphocytes. The 0.5% Mn-doped ZnO NPs effectively elimi‐
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nated the largest amount of fludarabine-resistant B-CLL cells with almost no lost produced in
the viability of normal healthy lymphocytes. The intracellular increase of SO production
correlated well with cell mortality, as will be described later. After 24 h in culture, both healthy
(H) and leukemia (L) cells without NPs had a spontaneous cell death of 5% and 20%, respec‐
tively (Figure 14). Cell irradiation with lasers showed no statistical difference in terms of
apoptosis or mortality in both cell populations at this time, when no NPs were used. However,
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Figure 12. (a) Quantitative comparison of the intracellular SO generated after PDT by fluorometry quantitative analy‐
sis of photooxidation reactions using DPBF as quencher between normal lymphocytes and B-CLL cells penetrated by
0.5% Mn-doped ZnO. (b) Singlet oxygen (SO) quantum yield (QY) generated in normal lymphocytes and B-CLL cells
penetrated by 0.5% Mn-doped ZnO after PDT.
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Figure 13. Intracellular PL spectra photooxidation of DPBF at 6.0 × 10–5 M from B-CLL (4 million/2 mL PBS) cells pene‐
trated by 0.5% Mn-doped ZnO NPs at 0.2 mg/mL. The suspension was irradiated with a green laser 532 nm at a dis‐
tance of 40 cm every 2 and up to 14 s. The excitation wavelength was 410 nm. DPBF reacts with SO, which causes a
decrease in the intensity of the quencher. There was no interference in the measurements by the cells.
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when cultured during the same period of time, but exposed to Zn NPs, B-CLL cells without
irradiation showed an important loss of viability, especially if culturing time is prolonged to
48 h. Percentages of cytotoxicity increased significantly with PDT at 24 and 48 h in B-CLL cells
cultured with NPs. The maximum increase in mortality of B-CLL cells was achieved with NPs2
at 48 h when PDT was applied. Our NPs have distinct effects on cell viability by killing B-CLL
cells, but it had very few effects on normal lymphocytes. The marked differences observed in
cytotoxicity between B-CLL cells and normal lymphocytes especially using the 0.5% Mn-doped
NPs suggest a very exciting potential for these NPs as a novel alternative for leukemia
treatment, especially when PDT was applied simultaneously. These NPs induce autophagy in
B-CLL cells, which is mediated by SO. B-CLL cells are known to have elevated levels of ROS
[1, 6, 56]. We aimed to test a novel ROS-mediated strategy to eliminate fludarabine-resistant
B-CLL based on this redox alteration. Our study demonstrated that the Mn-doped ZnO NPs
with PDT are effective in eliminating fludarabine-resistant B-CLL cells through SO mechanism
with low toxicity to normal lymphocytes. Apoptosis levels for irradiated and nonirradiated
cells cultured with NPs2 at 24 and 48 h detected by flow cytometric analysis (annexin V/PI
double staining) were always significantly higher in B-CLL cells compared to normal lym‐
phocytes (Figure 14). Apoptotic normal B lymphocytes and B-CLL cells at 24 h cultured with
NPs2 were 14% and 49%, while these percentages moved up after laser irradiation (PDT) to
28% and 90% (p < 0.001), respectively (Figure 14). Comparison of the mean IC50 of 0.5% Mn-
doped ZnO on B-CLL cells (n = 5) and normal lymphocytes (n = 5) clearly showed a significant
difference when NPs2 were used to treat B-CLL cells. Fludarabine-resistant B-CLL cells were
clearly much more sensitive to NPs2, with an IC50 value of 0.1 mg/mL, while normal lym‐
phocytes had an IC50 value a lot above and significantly higher for that same NP2 of (Figure
15). MTT assays comparing primary B-CLL cells isolated from the blood samples of the 5 CLL
patients (L), which were considered clinically fludarabine resistant with unmutated Ig VH and
that of normal B lymphocytes from healthy subjects (H) sensitivity to the action of NPs, clearly
showed that the dose response to NPs2 in the fludarabine-resistant B-CLL cells was signifi‐
cantly greater than that observed in normal lymphocytes (Figure 14). SO production was found
to increase in both normal and B-CLL cells when cultured with NPs2. This increase in SO
production was significantly higher in B-CLL cells compared to normal lymphocytes. This
increased intracellular SO production correlated well with cell mortality (Figure 16).

Figure 14. Apoptosis levels for irradiated and nonirradiated B-CLL cells and normal B lymphocytes cultured with 0.5%
Mn-doped ZnO NPs (NPs2) at 24 h detected by flow cytometric analysis (annexin V/PI double staining)
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Figure 15. Comparison of the mean IC50 of 0.5% Mn-doped ZnO NPs on B-CLL cells (n = 5) and normal B lymphocytes
(n = 5).

Figure 16. Mortality/viability levels of B-CLL cells incubated with 0.2 mg/mL of 0.5% Mn-doped ZnO NPs for 48 h and
PDT. Observed under fluorescence microscopy with FluoroQuench (acridine orange/propidium iodine: 95% mortali‐
ty).

Mortality/viability levels of B-CLL cells incubated with different NPs were tested using our
FluoroQuench method as well with MTT and flow cytometry techniques, as explained before.
The results were similar no matter the technique used; the incubation of B-CLL cells with 0.2
mg/mL of 0.5% Mn-doped ZnO NPs for 48 h and PDT produced the highest level of cell
mortality (Figure 16). Also, as it has been described in Chapter 4.1.10, in every case, cells were
used for cell viability testing normal and B-CLL cells without NPs were always used as blanks
or controls samples.
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3.12. Measurement of free ion Zn after incubation of cells with NPs

No dosable free ion Zn was measured in the ultrapure water with NPs2 after 72 h of incubation.
Tests of cytotoxicity with the possible amount of free ion Zn that could have been determined
in these measurements were not further necessary as no free Zn was detected at all in the
analyzed ultrapure water.

3.13. Morphological cell changes after treatment with NPs with or without PDT

As observed by optical and fluorescent microscopy, but especially by TEM, and photograph‐
ed (Figure 17),  both types of cells could undergo a process of cell  death after 0.5% Mn-
doped ZnO NP treatment with or without PDT, corresponding to features of autophagy,
but this phenomenon was always stronger when PDT was applied. This autophagic cell
death was especially pronounced, much more advanced, massive, and faster on B-CLL cells,
affecting  almost  all  of  them  treated  in  this  way  (Fig  17).  In  the  other  hand,  normal  B
lymphocytes only suffered autophagic changes in a very lesser degree and basically in the
form of an isolated pattern in which only few cells went through this dying pathway besides
being treated in  the same way and during the same period of  time.  In  this  scenario of
autophagy, the formation of double membrane-bound organelles predominated in B-CLL
cells when treated with 0.5% Mn-doped ZnO NPs alone but predominantly when PDT was
simultaneously applied. These organelles were clearly autophagosomes, and by this specific
detail,  the observed dying process can undoubtedly be considered as autophagy (Figure
17), which denotes any cellular pathway involving the delivery of cytoplasmic material to
the lysosome for degradation [109, 110, 111].

 

Figure 17. Thin-section TEM images of formation of double membrane-bound organelles in a B-CLL cells when treated
with 0.5% manganese-doped ZnO NPs and PDT. These organelles are autophagosomes, and the cell dying process is
undoubtedly autophagy

4. General conclusions

In this study, light parameters were primarily evaluated (e.g., intensity of light, broad vs.
specific wavelength, and coherent vs. noncoherent nature of light source) for the PSs and
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quenchers selected to enhance their effect on SO production. The indirect method using DPBF
and DPF as quenchers of SO was tested with different light sources incorporating variations
in their intensity. Different coherent and noncoherent light emissions with broad and specific
wavelength characteristics were used, finding useful and reliable correlations with enhanced
generation of SO species in methanol and water. All this information was of great importance
for the in vitro studies later on performed as the corresponding SO quantum yields in each
case were elucidated and confirmed. Our results clearly suggest the strong influence of the
LED lasers and light power intensities on the quantum yield of SO in the presence of different
PS–quencher photooxidation pairs under simultaneous aeration in methanol and water. The
best results in these circumstances were obtained with specific wavelength LED lasers, which
allowed the exact selection of wavelengths and the precise application of light in contrast to
lamps, LED flashlight, and fluorescent light bulbs. Considering that PDT depends largely on
the light source, the choice of the emission wavelength could usually range from 350 to 1100
nm, depending on the area of the tumor to be treated. In our case, after performing many
systematic experiments on the effects of LED lasers of different intensities as excitation sources
on SO quantum yields, we choose a laser on a wavelength of 532 nm because at this wavelength
are excited nanoparticles to trigger photochemical reactions, which produced reactive SO that
killed BCLL by autophagy. Important data between fundamental physical properties of light
sources and enhanced SO production using standard sensitizers and inorganic NPs have also
been found and analyzed in order to characterize for the reliable, precise, and reproducible
measurement and employment of SO in cancer treatment, especially B-CLL. The quantum
yield of SO production via sensitization may be given by the sum of contributions due to O2

quenching of S1 and T1, the lowest excited singlet and triplet states of the PS. Values of ϕ∆
depend on solvent, reaction conditions, light source, measurement technique, and concentra‐
tion of O2. Values obtained here are very consistent with the literature for RB and MB using
different quenchers or scavengers. We obtained very good results in agreement with the
literature, where the QYs of SO were 0.75 for RB and 0.5 for MB using RNO with L-histidine
or imidazole as chemical scavengers in both cases. SO reacts with L-histidine or imidazole via
a Type II mechanism, in which SO is generated via an energy transfer process. As a very
interesting and novel contribution, NPs were found to be able to participate in the actual
mechanisms of PDT, mainly by acting as photosensitizers themselves and clearly enhancing
SO generation extra- and intracellularly. We produced and tested a variety of metal Zn NPs
with good properties for SO generation, of which one made of 0.5% Mn-doped ZnO (0.5% Mn-
doped ZnO) had the best killing activity in fludarabine-resistant and unmutated Ig VH B-CLL
cells, especially when combined with PDT. Some nanomaterials like this last one can generate
and enhance SO inside and outside the cells, with and without PDT, but especially if it is used.
Although this area has not received as much attention as the application of nanomaterials to
electronics or catalysis, it represents a promising route to overcoming many of the difficulties
associated with traditional PDT. Quantum dots meet the first five criteria for good PSs: they
are compounds with constant composition, are not cytotoxic in the absence of light, but have
a potential to induce cytotoxicity with and even without UV irradiation. The intracellular
delivery of QDs can be facilitated by surface coatings, and they can be functionalized to be
both water soluble and biocompatible. The synthesis of different immunocompatible QD
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bioconjugates (e.g., QD-cluster-of-differentiation (CD) antibodies) can guarantee their specific
localization into target tissues. One benefit of their unique optical properties is that they can
be precisely tuned from the UV to the infrared (IR) region of the spectrum by changing their
size and composition. Their emission properties result from quantum-confinement effects and
can be tuned to emit into the near-IR region in contrast to the visible emission of the most
conventional PSs. Furthermore, because of their large transition dipole moment, QDs are
strong absorbers, making them potential candidates for application in photodynamic proc‐
esses, which has been clearly demonstrated in our B-CLL cell tests, also specifically inducing
the autophagic cell death of these malignant cells especially when PDT is delivered simulta‐
neously. NPs seem to offer the best hope for extending the reach of this promising therapy to
regions deep in the body or even the blood in patients with B-CLL. It is clear now that NPs
could provide many advantages over those of traditional PS such as RB. These PS have limits,
especially in their clinical applications, derived from a very low lipid solubility as well as by
their possible intrinsic toxicity due to a high polarity. Then metal NPs, like the ones described
here, could be an optional effective treatment for drug-resistant forms of B-CLL and may also
be for many other types of malignant tumors like lymphomas. As shown in our results, we
measured the generation of SO in all our cell experiments using NPs with and without laser
irradiation at a wavelength of 532 nm by three different analytical methods: spectrophotometry
and fluorometry analysis of DPBF oxidation as well as by the use of a fluorescent probe: singlet
oxygen sensor green (SOSG). A standard photosensitizer, RB, of a known SO quantum yield
was used to calculate de SO QY of the NPs. The singlet oxygen quantum yield of rose bengal
was always significantly higher compared with the QY of any of the NPs. Anyway, as NPs
could have several advantages, compared to PSs such as RB, our results are surely of great
importance especially in the translational use of these new technologies. It was clearly
demonstrated that there was a significant higher generation of SO when 0.5% Mn-doped ZNO
NPs were used, and these results seem to indicate that this kind of NP could be the most
appropriate to use in living models when SO generation could be needed as a therapeutic
strategy. Then the most interesting sample tested in order to use in further experiments with
living cells, animal models, or even patients as a potential intracellular SO generator should
be 0.5% Mn-doped ZnO NPs, which generated the highest amounts of SO compared to the
other Mn-doped samples at 1%, 1.5%, and 2%. These features make 0.5% Mn-doped ZnO
nanoparticles potential potent photosensitizers for a combine treatment with PDT (photody‐
namic therapy). One important aspect that we consider fundamental at the moment of
characterization and in vitro cell testing of NPs of these kinds is its degree of sample agglom‐
eration. For investigations of the in vivo effects of ZnO NPs in the circulation as well as for
measuring their effects in vitro, on different cell types, NPs have to be dispersed and deag‐
glomerated well in physiological solutions. However, particles in solutions with physiological
salt concentrations and pH values usually form greater-sized coarse agglomerates. Coarse
agglomerates of NPs have been shown to exert different biological effects as compared to well-
dispersed NPs and could change some of the characterization parameters. Therefore, investi‐
gating the biological effects of nanoscaled particles with dispersions containing coarse
agglomerates is not appropriate. Previously, different methods have been published on ways
to avoid the formation of these coarse agglomerates of NPs dispersed in physiological
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solutions. The importance of the correct ultrasound energy as well as the use of dispersion
stabilizers should always be emphasized for the optimal deagglomeration of NPs. We tried
several procedures described previously in the literature, making human albumin with strong
sonication as the most effective for this purpose. As agglomeration could be a crucial point at
the moment to perform NPs characterization as well as in vivo cellular probes and its clinical
introduction in living organisms, we suggest to take this point in account very seriously in
order to not interfere with the results. When NPs are delivered into the circulation of living
organisms, they first get in contact with albumin and other serum proteins. These proteins
cover the nanoparticles. Our procedure of deagglomeration uses also albumin; thus, NPs
dispersed with this method are covered with the same proteins NPs encounter in the circula‐
tion. TEM and SEM confirmed our findings as preparation with this optimized method
resulted in an improved dispersion and deagglomeration with any of the NPs studied. Doping
at 0.5% with Mn+2 increases the production of SO, which was attributed to the optical properties
of NPs that were changed, and this fact was closely related to the actions of Mn within the
doped NPs. The surface traps of these NPs were eventually quenched by the incorporation of
Mn and was confirmed by PL emission, a phenomenon that correlated well with the reduction
in the surface traps. At higher concentrations of Mn+2 than 0.5%, the generation of SO was
lower due the greatest loss of fluorescence of the NPs, inducing higher density of defects not
favoring energy transfer processes that enter the NPs and oxygen needed in the SO production.
When a dopant is introduced into a nanoparticle like the ones presented here, a range of percent
doping may be most effective in a specific desire clinical action like anticancer selective activity.
Additionally, it may be the case that the most effective percent range depends on the nano‐
particle composition and the dopant composition. In our case, 0.5% Mn+2-doped NPs had the
highest effectiveness in the production of SO. This may be explained in terms of their optical
properties with the presence of this doping, higher fluorescence in the visible region as
compared to those Mn+2-doped NPs at 1.0%, 1.5%, and 2.0%. At this percentage, the optical
and electronic properties of the NPs were favorable for PDT. Mn-doped ZnO NPs have distinct
effects on cell viability by killing B-CLL cells with low toxicity to normal lymphocytes. These
NPs induced a predominant process of autophagy, leading to the massive death of B-CLL cells
related to a higher production of SO. This type of NPs could selectively and rapidly increase,
just by themselves, the intracellular levels of SO in B-CLL cells conducting them to an auto‐
phagic death program that could irreversibly kill them easily but very strongly when delivered
with PDT. Using this kind of treatment, B lymphocytes persist mostly alive and not harmed
at all by these NPs, PDT, or its combination, as it has been proven here. We have seen that very
small variations of intracellular SO concentrations in therapy-resistant leukemic cells could
execute and accelerate these deadly pathways, being these mechanisms potentiated and
increased by the concomitant delivery of PDT, rendering normal cells almost untouched. An
interesting and rapid dying process of the B-CLL cells when incubated with these 0.5% Mn+2-
doped ZnO NPs clearly corresponding to autophagy always occurred. There was double
membrane-bound organelles cell formation known as autophagosomes, seen under transmis‐
sion electronic microscopy (TEM) and correlating well with those intracellular increases of SO,
that we have measured by a novel method first described by us, which was again more intense
when PDT was applied. SO is believed to be the major cytotoxic agent involved in PDT. B-CLL
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cells are known to have elevated levels of ROS. We aimed to test a novel ROS-mediated strategy
to eliminate fludarabine-resistant B-CLL based on this redox alteration. The measurement of
SO in biological environments has been a major task, especially when intracellular values,
without interferences from the external medium, are required. Near-infrared (NIR) lumines‐
cence at 1270 nm in cell environments is confounded by the strongly reduced SO lifetime and
probably had never been achieved until a research group developed an NIR-sensitive photo‐
multiplier tube probe that allowed to clearly identify and measure a true intracellular com‐
ponent of SO signal. However, these few described methods are expensive and required of a
complex technology to be performed. We developed a comparative extensive study with 3
different analytical methods: spectrophotometry, fluorometry analysis of DPBF oxidation, and
analysis of fluorescent probe: singlet oxygen sensor green (SOSG), using a novel method first
described by us, which measured the efficiency of the intracellular production of SO by the
use of the different NPs with and without PDT. There is no current scientific literature of this
kind doing comparative studies of the intracellular production of SO, making our group the
pioneers worldwide. We synthesized a series of ZnO nanoparticles with varying concentra‐
tions of Mn dopant. Each of the nanoparticles were tested for cytotoxic effects in B-CLL cells
as assayed by flow cytometry and propidium iodide/acridine orange staining as well as MTT
assays. It is clear by the results of our experiments that the lowest concentration of Mn doping
(0.5%) could play the most important role in enhancing the cytotoxic effects of our nanopar‐
ticles of the present research. Our intracellular SO measurement method proved to be good
enough, inexpensive, and quite simple that it could easily soon be introduced as a routine but
very important diagnostic tool. PDT is a clinically tested promising technique to treat cancer
and can be associated therapeutically with NPs. Visible emission processes should involve
transitions in which the photogenerated holes at the surface of NPs could be trapped by O2

ions as they are responsible of this phenomenon. Doping with Mn could increase these surface
defects of NPs and improve the processes of PDT. The 0.5% Mn+2-doped ZnO NPs2 were able
to produce the highest level of cytotoxicity and apoptosis in unmutated B-CLL cells as
compared to normal lymphocytes that were quite resistant to this type of therapy, especially
after being irradiated with a green laser (p < 0.01). This differential effect could be due to
changes observed by several authors in the redox state of leukemic and other neoplastic cells
respect to normal ones. The fact that unmutated B-CLL cells responded strongly to the
cytotoxic effect of these 0.5% Mn-doped ZnO NPs after PDT is also very important, suggesting
that this novel therapy with modifications could be used may be soon, as an alternative
effective treatment especially under the occurrence of B-CLL-resistant phenotypes. The 0.5%
Mn-doped ZnO NPs combined with PDT show much promise as a new anticancer therapy,
given the specific autophagic responses triggered in these leukemia cells. It is also interesting
to mention the fact that the best killing results were obtained with the lowest Mn doping
concentrations. This fact could open the door to future studies with even lowest amounts of
this doping agent in the search of the best NP design. NPDT uses light to activate light-sensitive
drugs (photosensitizers) to produce short-lived cytotoxic species such as SO to destroy
malignant cells. We investigated the mechanisms of cell death during PDT using fluorescence
microscopy and imaging and performing fluorometric measurements to help design the better
treatments for resistant forms of B-CLL. We can envision external devices for blood irradiation
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by PDT after NP treatments, although “intelligent” ZnO NPs with self-assemblies for energy
discharge and light emission from their same structure or “hybrids” of biodegradable shell
nanoparticles coated with specific monoclonal antibodies are being loaded in their core with
Zn nanoparticles. As this therapy seems to be very specific to fludarabine-resistant B-CLL cells,
without much or any damage made at all to normal lymphocytes, it could contribute as a new
innovative targeted strategy in the near future to be delivered in the clinical setting for the
definitive benefit of these bad prognostic patients. As normal B lymphocytes are much more
resistant than B-CLL cells to the cytotoxic effect of NPs with PDT, we could call this new
therapeutic approach as a very specific one with very low toxicity for nonleukemic cells and
probably very useful not only for B-CLL but also for all the other indolent lymphomas as well
as for all types of cancer.
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