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Abstract

This research describes the preparation of membranes with chitosan (CS) as the polymer-
ic matrix and cellulose nanocrystals (CNC) as reinforcement. The aim was to evaluate
their physical, mechanical and biological properties, and to determine their potential for
biomedical use. Membranes were prepared via casting CNC suspensions in CS solution,
at CNC concentrations of 0.5%, 1.0% and 2.0% (w/w) with pure chitosan as a reference.
Analysis of membrane properties was performed using several techniques, such as ATR -
FTIR, SEM, swelling test, maximum water absorption, dynamical mechanical analysis
and in vivo (Winstar rats) biocompatibility and biodegradability assays for biological
evaluation. Experimental results established that CNC reduced swelling rates and in-
creased the maximum water absorption when CNC concentration was higher. Therefore,
the presence of CNC in the matrix reduced Young’s modulus by approximately 50% in
comparison with pure chitosan. All formulations demonstrated biocompatibility and bio-
degradability values ranged between 4% and 21% in the 30 days after implantation.
Based on these results, these membranes may be of use for biomedical applications.

Keywords: Cellulose nanocrystals, chitosan, biomedical, biocompatibility, nanocompo-
sites

1. Introduction

1.1. Nanotechnology in actual context

The advances in nanotechnology for biomedical use are increasing and are at the forefront of
scientific research. In recent years, hot spot areas such as drug transportation, tissue regener-
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ation or nanomaterial development for cell-growth scaffolds have been constantly advancing.
Biomaterials that are considered for biomedical applications must confirm to strict biological,
physical and mechanical characteristics. Some biopolymers in particular, offer advantages in
terms of sustainability and low environment impact compared to ceramics and metals. These
attributes are the biocompatibility (an absence of inflammatory, cytotoxicity or invasive
response in native cells, tissues or organs in vivo), biodegradability and bioabsorbability (the
material and its by-products will degrade and/or be absorbed or safety eliminated from the
body). More suitable properties may be the degradation rate (this rate must match the regener-
ation time of tissue in damaged zones, as well as transfer the mechanical efforts to new tissue
in a timely manner), porosity (directly linked to mass transport and efficient tissue regeneration)
and surface morphology. As drawbacks, the physical and mechanical properties of these
materials make them less suitable than petroleum based plastics and other materials (metals,
alloys and clays). As a consequence, reinforcement of the matrix is an option to counterbalance
some of those drawbacks.

1.2. Biopolymers

1.2.1. Cellulose

Cellulose — the most abundant biopolymer on Earth — has an annual production of 7.5 x
10'° tons. This biopolymer is widely distributed in higher plants, sea animals (tunicates), and
to a lesser degree in algae, fungi, bacteria, invertebrates, and is even found in protozoans such
as Dictyostelium discoideum. In general, cellulose is a hard, fibrous, and water insoluble
substance that plays an essential function in keeping the structure of cell walls in plants [1].
Cellulose can be found in its purest form in plants (i.e. cotton fibers). However, in wood, leaves
and plant stalks, it is found mixed with other materials such as lignin and hemicelluloses.
Cellulose nanofibers have the potential to be used in multiple ways, notably as a reinforcement
material in the development of nanocomposites [2].

Thus, the preparation of biocompatible nanocomposites employing cellulose nanocrystals
(CNC) as a reinforcement is a natural choice based on them being inert, biocompatible,
biodegradable [3], and non-cytotoxic. They also contribute to the regeneration of damaged
tissues or organs [4] and have mechanically desirable properties [5].

1.2.1.1. Types of processes used to obtain CNC

Cellulose nanocrystals (CNC) can be obtained by different techniques and processes:

a. Mechanical processes [6], i.e. using used bleached pulp of softwoods and hardwoods as
a material raw to obtain nanocrystals from. The process begins with the soaking and
grinding of fibers, followed by sieving and refining (for hardwoods this process is
repeated several times). Finally, fibers are submitted to high pressure and homogenization
processes (1000 Bar, 180 min), which are repeated until CNC is obtained. Energy con-
sumption and Young’s modulus (YM) are higher in hardwoods than softwoods. The
tensile resistance in softwoods is better (75 MPa versus 63 MPa respectively).
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b. Enzymatic processes [7], which have the advantage of simplifying the mechanical process
of obtaining cellulose microfibers, mainly in the homogenization and disintegration
stages. Acid hydrolysis was applied as a pre-treatment to the mechanical process. The
sequence begins with refining and enzymatic treatment followed by a second refining and
then homogenization. Endoglucanase was used as the enzyme and microfibers of 10-20
nm diameters were obtained.

c. Biological processes [8], a new method of obtaining nanocellulose using the Dutch elm
disease fungus was established. The technique begins with the soaking and disintegrating
of pulp in 2 liters of water, followed by 20 minutes in an autoclave with added sucrose
and yeast to ensure feeding and growth. The fungus was left for 24 days at room
temperature with mild stirring. Fibers were added to an autoclave to be washed again
and the process finished with refining high speed cutting.

d. Chemical processes [1]. There are two basic methods for chemical modification: The first
changes the surface energy characteristics of nanocrystals allowing an improvement in
compatibility, especially when they are used with hydrophobic or non-polar matrices in
nanocomposites, thereby obtaining a better dispersion in the matrix. The second method
adds electric charges to the nanofibers (positive and negative) allowing a good dispersion.
Acetylation of nanocrystals is an example of the first kind of modification [9], making their
surfaces more hydrophobic. Kenaf fibers (Hibiscus cannabius) were modified using acetic
anhydride before cellulose nanofibers were obtained from acetylated cellulose. This
technique includes processes of disintegration, refining, cryorupture, and high pressure
homogenization.

1.2.1.2. Nanocellulose for biomedical use

Nanocellulose has been called “biomaterials” eyes” due to its potential for numerous applica-
tions in the biomedical field, including skin grafts to burn damage and wounds, growing of
blood vessels, nerve reconstruction, brain membranes, and scaffolds in tissue engineering and
bone reconstruction. Tissue engineering (TE) involves searching for new materials and
artefacts to interact in positive ways with biological tissues. Furthermore, Tl is seeking a primal
artefact to cellular development in vitro, rearrangement and development of tissue when it will
be implanted. The main attribute wanted in biopolymers with a potential biomedical use is a
controllable and specific activity, to be used mainly in cellular scaffolds. Recently, many of
these kinds of materials have been developed, having the required properties (physical/
chemical and mechanical) dependent mostly on the final application (tissue regeneration, drug
releasing, scaffolding, etc.). The success of scaffolds depends mainly on cellular adhesion and
surface growth. The chemical surface of a biopolymer can cause the cellular response to
interfere with the adhesion, proliferation, migration and cellular functionalization. The
interaction in cell surface it’s whole important in the graft, including its rejection. For the
regeneration of tissues, three fundamental aspects are important: the cells, and the bearing and
growing factors. The cells synthetize the matrix to new tissues, the bearing creates a suitable
environment for cell development, and growing factors promote cell regeneration. Further-
more, regeneration must be promoted and if it is necessary, the new material must be absorbed
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or biodegraded. Studies of the interactions of cell bearing are crucial for the feasibility of grafts.
Different responses of cells can be observed from several materials, based on the ability of cells
to distinguish and/or adapt to the surface of the material. This last factor is crucial, because it
drives different responses such as cell proliferation, cell migration or feasibility. With issues
regarding the skin, several laboratories have shown an interest in developing products that
offer advantages such as the immediate mitigation of pain, close adhesion at wound surfaces
and the reduction of infection rates. Nanocellulose has a large surface area that brings a better
capability for water absorption and elasticity, these being the best characteristics for a recov-
ering bandage, as microbial activity is stopped. Indeed, nanocellulose is very effective in
reducing pain and promoting the granulation suitable for wound bandages. Another great
advantage of nanocellulose consists in the capability to be built in any shape and size, making
it ideal for covering extensive and difficult areas of the human body [10].

Hence, cellulose and CNC have been used in biomedicals. Past research has shown them to be
ideal for tissue engineering, producing favorable results [3, 6]. CS membranes with nanorein-
forcement must show a Young’s modulus of 1,500—2,300 MPa to be suitable for biomedical
use [11].

Furthermore, applications with excellent, proven results have been reported as follows [10]:

a. Pharmaceutical. Cellulose has excellent properties of compaction when it is mixed with
other pharmaceutical excipients, forming dense matrices that make the administration of
therapeutic drugs easy. Nanocellulose offers potential advantages as an excipient in drug
release. Its large surface area and negative charge suggest that higher quantities of
therapeutical drugs can be added to the surface of this material, showing the potential for
a large quantity of charge and the optimal control of dosification. The proven biocom-
patibility of cellulose supports the use of nanocellulose for similar purposes. The hydrox-
ide groups on the surface offer a site for surface modification to a broad range of chemical
groups, using different methods. The surface modification can be used to tune the charge
and drug release that are not normally linked with nanocellulose such as hydrophobic
and non-ionized drugs.

b. Odontology. Nanocellulose can be used as biological barrier due to its porosity. This
makes it ideal for use with infections, loss of fluids and it has an analgesic effect that allows
therapeutic drugs be used easily and absorb the residual fluids during inflammatory
stages, can be rejected in a controlled and painless way.

c¢. Ophthalmology [12]. Researchers explored the potential of nanocellulose as a scaffold and
found it suitable for use in the development of tissue engineering for the cornea. They
studied the growth of human stem cells in nanocellulose. The growth of corneal stem cells
inside the scaffold was verified with a scanning laser microscope. The results suggested
the potential of this biomaterial as a scaffold for tissue engineering of artificial corneas.

d. Vascular surgery [13]. Researchers studied artificial vascular implants of nanocellulose in
two cases: The first was a microsurgery study, where nanocellulose implants were used
as an artificial part of the carotid artery of rats for a year. These results showed the
incorporation of nanocellulose under the formation of tissues and internal growth of
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active fibroblasts over a long period. In a second study, the implants were used to replace
the carotid artery of pigs. After three months, the implants were retired and analyzed at
both macro and microscopic levels. Seven implants (87.5%) were found in use and just
one of them was blocked. This data showed that the innovative techniques of nanocellu-
lose engineering have allowed the production of stable vascular conduits and confirmed
the very notable achievement of the use of tissues for blood vessels in vivo as a part of
cardiovascular programs.

e. Reconstructive / aesthetic surgery [14] Ideal for nasal reconstruction. The response of
tissue in the presence of nanocellulose in nose bone was evaluated. In the study, 22 rabbits
were used and in 20 of them a cellulose film was added to the nasal dorsum, with the
remaining two acting as a control. After three and six months, the new bone was extracted
for histopathology studies. Parameters such as blocking of blood flow, inflammation
intensity and inflammation by the presence of purulent liquids were found to be stable,
probably due to the surgical process itself rather than the presence of cellulose. For the
other parameters, the statistical response was not significant. The nanocellulose coverage
showed good compatibility and remained unchanged over time, making this material an
excellent option for rebuilding new bone.

1.2.2. Chitosan

Chitosan (CS) is a biomaterial of proven use in the biomedical field due its biocompatibility,
biodegradability and antibacterial activity, making it ideal for drug transportation, tissue
engineering, wound healing, and antibacterial uses [15]. Furthermore, chitosan is bioactive
and nontoxic. This biopolymer has a wide range of uses such as substance separation due to
its barrier property and sensors, as well as food packing. Other authors describe the prepara-
tion of bionanocomposites using chitosan and different nanoreinforcements with the goal of
obtaining a better mechanical performance, as well as the barrier properties and sensing
detectors [16]. Chitosan is commonly amorphous and can be processed in flexible films. It is
bioactive, non-toxic, and suited to biomedical applications such as pharmaceutical products
like films, pearls or spheres, and gels, powders, etc. Previous works in cellulose-chitosan
nanocomposites showed good results in physical, mechanical and biological tests [17, 18].

Chitosan can form flexible, clean and hard films [19] with a good oxygen barrier [20]. Further-
more, it can be used as packing material, mainly as a covering and edible film [21] extending
the average life of foods [22, 23]. Chitosan can also form a semipermeable covering to modify
the inner atmosphere, thereby reducing the transpiration rate of the product in the packaging
[24]. Despite good results with respect to their mechanical properties, chitosan films can be
brittle, making it necessary to use plasticizers to increase their flexibility [25]. Plasticizers such
as glycerol can improve the processability, as well as the mechanical properties of chitosan [26].
In another study, researchers reported a concentration of 20% (w/w) of glycerol as the
appropriate concentration to improve the flexibility of chitosan films [27]. To prevent this
drawback of rigidity and brittleness of chitosan, the addition of reinforcement has showed to
be useful in enhancing its mechanical, thermal and barrier properties. When the particles are
smaller, the interaction with the matrix is better [28], with the low cost a sign of efficiency [29].
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Fillers on a nanometric scale (called nanoparticles or nanoreinforcements) with good disper-
sion drive an interface matrix/ filler, changing the molecular mobility, relaxation behavior and
thermal and mechanical properties of the material [30].

A positive result in the elaboration of chitosan — CNC nanocomposites was obtained, using
electrospinning for fibers of a derivative of chitosan / cellulose in an ionic liquid (IL). The
chitosan / cellulose composite were electrospun in the ethanol co-solvent, using the IL to
dissolve the chitosan and cellulose at the same time. Furthermore, the IL was capable of
building fibers of pure chitosan / cellulose composite after the IL was removed by the ethanol.
The fibers of this composite were manufactured as a three-dimensional shape, offering
antibacterial activity to treat burns, bedsores and skin ulcers [31].

Nanofibers were obtained from chitosan and cellulose, with chitin used as a reinforcement
material at different concentrations (from 1.25% to 5.0% w/w). This allowed the optimizing of
the process conditions to obtain homogeneous and porous nanofibers. This material has a
potential for use in wound bandages and skin burns [32].

Layer-by-Layer technique (LbL) is a technique to elaborate nanocomposites of chitosan and
cellulose whiskers. The interactions between amine groups (chitosan) and sulfate groups
(cellulose whiskers) ensure the linkages between matrix and nanoreinforcement to elaborate
the films. The average thickness of each bi-layer (whiskers / chitosan) was 7 nm and each film
was formed by 30 bi-layers. These materials have a wide range of uses such as packaging and
biomedicals [15].

Chitosan films used for cell scaffolding in the regeneration of the tympanic membrane (type I
experimental tympanoplasty) were elaborated. These films were grafted in New Zealand
rabbits with successful results of tympanic tissue regeneration [33].

2. Objective

Demonstrate that CNC can improve the mechanical and physical properties of a chitosan
matrix. Furthermore, determine the biocompatibility and biodegradability of CS and CNC
nanocomposites via biological tests and then based on the results obtained, determine a
potential use of these nanocomposites in the biomedical area.

3. Experimental

3.1. Materials

Materials used for this study were Biomedical Grade chitosan from Sigma Aldrich (Deacety-
lation grade 75-85%), acetic acid, alpha cellulose (Neucel Cellulose Ltd.), male laboratory rats
(Wistar), cellulose acetate membranes for dialysis, vacuum oven, high resolution microscopy,
dynamical-mechanical and chemical analysis. The formulations employed in this research are
presented in Table 1.
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Material Reinforcement Formulation (w/w)
Pure CS
CS + CNC (0.5%)
CS CNC
CS + CNC (1.0%)
CS + CNC (2.0%)

Table 1. Formulations of CS + CNC films

3.2. Methodology

* Preparation of CNC

Alpha cellulose was ground and mixed with sulfuric acid (64% concentration) for one hour
under constant stirring and at a controlled temperature (approximately 50° C in a warm bath).
After that, theliquor was added to deionized water, cooled at 8° C1:10 (v/v) to stop the reaction.
The liquor was centrifuged at 4000 RPM for 5 minutes, separating the liquor into two phases:
solid (cellulose gel in the bottom of recipient) and liquid (with acid remainders). The liquid
phase was disposed of and deionized water was added to the recipient to remove excess acid
from the gel (containing CNC), prior to centrifugations (three in total). The washed gel was
put in dialysis membranes in deionized water under stirring until it reached a pH of 5. After
that, the CNC were submitted to ultrasound treatment for 2 minutes and finally vacuum
filtered using 0.45 micron Wharton paper, and kept cooled.

¢ Chitosan — CNC films elaboration

Chitosan (4 g) was dissolved in acetic acid at 2% (v/v) per each formulation, under constant
stirring for 2 hours. Next, CNC in different concentrations were added (0.5%, 1.0% and 2.0%)
and then stirred for two more hours. The substance was cast on Petri plates affording a
concentration of 0.4 mL/cm? to obtain the same quantity of nanocomposite on the plates. The
plates were then put into a vacuum oven (28°C-70 MPa) for 96 hours. After drying, NaOH (1.0
N) was added to the Petri dishes to precipitate the films and then the CS + CNC films were
washed with deionized water until they reached a pH of 7. Finally, films were dried at room
temperature for 48 hours. The thickness of films was measured with a micrometer and
dimensioned for physical and mechanical testing.

* Physical evaluation

When performing swelling tests, modifications in the dimensions of specimens were made to
evaluate swelling changes over time. The dry weight (W,) of each specimen was taken and
then films of each formulation were put in deionized water to control the weight each minute
until a constant value was achieved [34]. For maximum water retention (MWR), the dry weight
(W,) of each specimen (8 per formulation) was taken and it was then added to deionized water.
Weights were controlled at 30, 60, and 120 minutes, and then 24 hours, before the final weight
was obtained (W) [34]. Finally, the MWR was determined by the following formula:

MWR (%) = (W,-W,) / (W,) x 100
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* Mechanical evaluation

Dynamical mechanical analysis was used in static mode to evaluate Young’'s modulus for all
formulations, with the stress-strain test operating in the controlled force mode. Typical testing
conditions were 0.1 N preload, 1 N/min ramp and a gauge length of ca. 10 mm. Strips of 0.075
mm X 5 mm x 20 mm were used. The temperature range was 37.05 + 0.05°C and the moisture
content was 98%, determined by a TA Instruments DMA 800 used in wet conditions.

* Biological evaluation

The best way to test our material was in living specimens. Biocompatibility and biodegradabil-
ity tests were carried out. For these, the dry weight (W)) of films was controlled. The biologi-
cal subjects for testing were 16 Lab rats (of the Wistar breed). The animals were submitted to a
surgical procedure involving grafting two portions of films for each formulation (4 rats per
formulation). Each animal had two sub-cutaneous cuts (in the middle of back, on the right side
for biocompatibility and on the left side for biodegradability). Every three days, the rats were
controlled to prevent any infection or adverse reaction to the nanomaterial. Specimens were
euthanized 30 days after surgery and the two portions of membrane were retired, lyophilized
and controlled for dry weight (W;) in order to obtain the biodegradability value:

Biodegradability (%) = (W; - Wy) / (W;) x 100

Biocompatibility was proved by SEM images at the moment the grafts were retired, the
mortality rate of specimens and the non-presence of encapsulation, fibrillation or any rotten
portion of membrane after 30 days.

* Characterization of nanocomposites

To characterize the morphology of films, the response and the different levels of biocompati-
bility and biodegradability, a JEOL JM 6300 with a double gold layer to avoid the electrical
charge of the sample was used. The magnification was from around 500x up to 35,000x and
the voltage employed was between 7kV and 20kV.

* IR spectroscopy

This technique was used to determine changes in functional groups of nanocomposite as a
consequence of the presence of CNC in the chitosan matrix, or previous chemical treatment.
Portions of thin films of all formulations were analyzed in an IP Spectrometer in transmittance
mode (4,000 to 500 cm™). Other parameters were: 16 scans per spectrum, ATR mode and a
resolution of 0.4 cm™. A Perkin Elmer Spectrum GX FT-IR System was used.

4. Results

4.1. CNC + chitosan films

The films obtained from the combination of chitosan and CNC showed a transparent aspect
with a slight yellow color. Transparence in the films suggests a good distribution of CNC in
the CS matrix. At the same time, the slight yellow color is due to the natural presence of
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3.1 CNC + chitosan films
impurities in this biopolymer [35]. The average thickness of films was 30 microns and the
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Fig. 1a. Film of CS + CNC (0.5%). 1b. Film of CS + CNC (1.0%) and 1c. Film of CS + CNC (2.0%)

Figure 1. a. Film of CS + CNC (0.5%). b. Film of CS + CNC (1.0%) and c. Film of CS + CNC (2.0%)

3.2 Morphology of CS + CNC films
4.2. Morphology of CS + CNC films

SEM images showed a good dispersion of CNC in the nanocomposites due to the affinity between the
SENhéraingesehen edddheqoairiki fpatisig sinoflaC MNi€ininat b uchere eowh pydioghidic eaturehea s ffali oy a
betpeeinternstinn b AegHbTe chieats shtherpdidHeasrarPeRRGRE- srililhe améngigHIuBeRfchIrBOkmihe
hydrophilic nature), as well as a good interaction of negative charges of the sulfate groups of
CNC with the amine groups of CS [35]. The presence of nanoparticles was observed in different
formulations of nanocomposites, as can be seen in Figure 2. These bundles formed by several
tens of CNC, with dimensions of between 150-200 nm up to 500 nm on average, and in some
cases up to 1 or 2 microns, mainly in CS + CNC (2.0%). The phenomenon was common when
the CNC concentration was higher (over 5% and 10%) and even when working with concen-
trations of 5% and 10% it was possible to see white punctuations in the matrix surface via SEM
images, seen in the cross section of CNC [36]. Another possible phenomenon linked to a higher
concentration of CNC in the matrix, is the formation of a polyelectrolyte macroion complex
between CS and CNC. The size of these complexes could reach several microns in length. These
particles are formed by CNC and surrounded by CS chains. The shape of these complexes
depends on the quantity of NH, in CS. When the concentration of NH, is high, the shape of
the complex tends to be spherical [37]. These particles could have potential in biomedicals for
drug transportation and controlled release due to the charges on cellulose and the linkage that
can be achieved with other substances and active composites.
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Fig. 2a. SEM image of a cross section of CS + CNC (1.0%) film at 950x. 2b. SEM image of CS film at 4,300x. 2c. SEM image of
clusters of CS + CNC (0.5‘{9) film at 8,500x (circled in red& 2d. SEM.image of clusters of CS + CNC Egg%%g at 35,000x (circled in red).
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image of clusters of CS + CNC (0.5%) film at 8,500x (circléd in red), d. SEM image of clusters of CS + CNC (0.5%) at

35,000x (circled in red). e CS — CNC (2.0%) macroion at 5,500x and 2f. CS + CNC (2.0%) at 15,000x.

3.3 Physical Properties

Swelling capability is presented in Figure 3. Swelling capability showed an evident change with the
presence of CNC in the matrix. For water swelling, pure CS films showed saturation times of 3—4 minutes.
With formulations of CS + CNC (0.5%) saturation times reduced to 1-2 minutes, while for formulations
with CNC of 1% and 2%, the saturation time was 1 minute. These results show that CNC allow water
entrance between CS chains as an unstructuring element, making the material more hydrophilic. This
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4.3. Physical properties

Fig. 2a. SEM image of a cross section of CS + CNC (1.0%) film at 950x. 2b. SEM image of CS film at 4,300x. 2c. SEM image of clusters

Swellingfcapaloidity fis pfeseq(rt@eh imed]igieee @aﬁvv@litm bid ity ashsowedcaninestidesst change
.CNC {2.0%) macrojon at,5,500x and 2f. CS + 2.0%) at 15,000
with the presence of CNC in the matrix. For water swel mg, pure S films showed saturation

times of 3—4 minutes. With formulations of CS + CNC (0.5%) saturation times reduced to 1-2
minuted WS4 SRS lations with CNC of 1% and 2%, the saturation time was 1 minute.

These regulis, shomuihal GRNGaAlkawire tersaairancs Raky eeny &S, chains as a3 unatisturing
elemenpreseakd niCtieimthd eriabafioredey dwelfingpord ¢ §lbekaoriet swvau&tﬂpposistef tedthatuebserved
in anot}‘(@fhsfc‘ﬁwawm%%se&%%%?l%@@é?f&%&ﬁﬁ&%%@ﬁé ff 5% Wlli'g)e thIéﬁ?"‘)jﬁtlﬁT&ng the

CNC7of 1% _and ration time was 1 minute. These results show tha water
CS filmg Jesspermeabde therehy reducingthe swelling.capahiliyisignticantiypiriSenas]. The
maximibkehavicatezs rprniteon AR yeshiowethea ssirdyi halridespd highavitheditetpresé ANE F@NC, as
i aking the CS films less permeable, thereby reducing the swelling capability significantly
present%g %?6?1 gSSi%"?%e]?mammum water retention (MWR) showed a similar response with the presence of CNC,
as presented in Table 2.

Weight (g)
0.16

0.14

0.12

sos /

0:06 / /.=.
oo | S,
0.02 Z

0

Wdry W1lmin W2min W3min W4min

e Pure CS == CS + CNC (0.5%) CS + CNC (1.0%) et CS + CNC (2.0%)

é 3 Swelling capability for CS + CNC nanocomposites
Figure 3. Swelling capability for CS + CNC nanocomposites

Table 2 Values of MWR for CS + CNC nanocomposites

Varlatlo)e,m tlpl G

Formulation ipn-intime

Formulation W30min——W120min W24k
Pure CS "' ™gg 72 19886 ' [ 2018P49 W24h
Pure CS C?:;SI\\IC 189.72 237,68 299 67 ] 98'%6.64 187.49
CS + CNC (0.5%) 237.68 222.67 226.64

’ C?1+USI\)IC 346.52 277.79 258.18
CS + CNC (1.0%) =L 27779 258.18
CS + CNC (2.0%) 234.68 236.70 214.65

Table 2. Values of MWR for CS + CNC nanocomposites

For pure CS films, the MWR was 187% of its own weight in water, while CS + CNC (0.5%) films
obtained values of 226%, CS + CNC (1.0%) values of 258% and CS + CNC (2.0%) values of 214%,
as can be seen in Figure 4. In these cases, the low concentrations of CNC improve the water
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retention properties of films in comparison with results of other authors [15, 35] which showed
a remarkable reduction in the physical properties of CS + CNC films, using concentrations
from 5% up to 60%. This phenomenon can be explained by the affinity of CNC to the water,
due their hydrophilic nature (and O-H linkages). Another reason is the plasticizing effect of
CNC at low concentrations of CS matrix, contributing to the unstructuring effect in CS chains
allowing the passage of water inside the polymer. This effect makes the film more flexible,
facilitating the entry of water into the polymer chains. A similar effect was reported when
adding different concentrations of glycerol (from 2% to 6%), used as a plasticizer in starch films
w1t% CS cover@‘%nEa\t/t n at tll;l hest CS concehntratlon t e presnce of g&yﬁerol 1ncreased this

S coverin Concentratlon the presence o cero 1ncreas arameter, with

pargmeteroR EhavalbesEom, c&ﬁr/aﬁgol%% 9&&%@5}%@%&@@# CS(35.7% to 74.8%) [21].
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Fig. 4 Values (%) of maximum water retention for pure CS and CS + CNC films

Figure 4. Values (%) of maximum water retention for pure CS and CS + CNC films

3.4 Mechanical properties
4.4. Mechanical properties

The values obtained from formulations with CNC suggest that these modified the mechanical properties
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formation of aggregates and CS—-CNC complexes due to the agglomeration of nanoparticles in one single
place, generating stresses around them and becoming a potential weak point in the film. It could be
deduced that CNC acted as a plasticizer of the matrix, making it less rigid. However, CS + CNC
formulations showed values lower than those obtained for pure CS. However, these values were less
variable than pure CS values and a further detail was observed: CNC aggregation didn’t contribute to the
deformation or rupture of films.

Another possible cause of the observed decrease in YM could be the low concentrations of CNC employed
in this study (0.5%, 1.0% and 2.0%) in comparison with other studies that used concentrations above 5%,
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The graphs showed an inflexion point in effort—strain curves. This phenomenon was present
in some films of CS + CNC (1.0%) and CS + CNC (2.0%).

Some explanations for the decrease of Young’s Modulus in the films with CNC suggest the
cause as the formation of aggregates and CS-CNC complexes due to the agglomeration of
nanoparticles in one single place, generating stresses around them and becoming a potential
weak pointin the film. It could be deduced that CNC acted as a plasticizer of the matrix, making
it less rigid. However, CS + CNC formulations showed values lower than those obtained for
pure CS. However, these values were less variable than pure CS values and a further detail
was observed: CNC aggregation didn’t contribute to the deformation or rupture of films.

Another possible cause of the observed decrease in YM could be the low concentrations of
CNC employed in this study (0.5%, 1.0% and 2.0%) in comparison with other studies that used
concentrations above 5%, 10% until 60% [15, 35] that saw improvements in YM of 78% to 150%
and 230% to 320% respectively. The decrease in YM must be understood as a loss of stiffness,
making a more flexible material, but with low strain values (1-2%). This last can be improved
if plasticizers (i.e. glycerol) are included in the formulations. The values obtained are similar
with CS films with chitin concentrations of 2.7% to 37.5%, having values from 1,622 + 377 MPa
to 2,318 £619 MPa respectively [11]. Based on these values, a potential use of these films could
be in healing and wound recovery, as well as scar prevention.
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Fig. 5 Young’s Modulus values of pure CS and CS + CNC films
Figure 5. Young’s Modulus values of pure CS and CS + CNC films
3.5 IR Spectroscopy of CS + CNC films

4.5.IR @P&&tﬁé’s‘t‘éﬁmﬁlggr@,sfé% S;IN gSﬁ}lth%Sspectrum showed bands at 3,360 and 3,265 cm™! typical of O-
H and N-H bonds respectively. The band at 2,870 cm- corresponds to C-H bonds and the signal at 1,650

As can 0@731 seennipnFisseneif, tfen T pw lﬁgscg@ «Elh@f 113120 d Eﬁg%ﬁcsﬁw&dnﬁaﬁ@spgta?gg%%nd 3,265
ands C nd to,residua
e ty i Eﬁsﬁ@ﬁﬁ?ﬁ"%&nﬂ esBRevel T e Rand sf A by ot esmORgs to C-H

bonds amedhedigiiatii, 650 cm™ is commonly seen w1th type I amides and C=O bonds linked

to acet %&lﬁﬁ{ﬁ%cgﬁ ?%9 eﬁ?{ ’?fc?fncs Cil}lgsﬁcgﬁds t A’a%’fﬁ&% lﬁ&éﬁﬁi@@m‘?j‘f% 51}185 of 1,420

eir spectrums ompare w1t a pure spectrum, as shown in ve to
similarity between cellulose and chitosan in terms of their chemical structure. For that reason, the bands
for both polysaccharides are the same, except for the presence of an amine group with chitosan [15].
Another cause is the low concentration of CNC, which could be undetected by FTIR. A similar
phenomenon has been observed in chitin, chitosan and glycerol nanocomposites [38].
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and 1,375 cm™ correspond to residual CH;N-acetyl glucosamine and —CH, groups respective-
ly. Finally, bands of 1,060 and 1,030 cm™ confirm the presence of C—O bonds.

Regarding nanocomposites, formulations of CS + CNC of 0.5%, 1.0% and 2.0% didn’t show
variations in their spectrums when compared with a pure CS spectrum, as shown in Figure
7. This 1&%&@1@nik&o%§1@r¥%h€$w&%m§ebﬂ©Sfio 8nd ehitasa, Hutetms etidheitchemical
struct“ureﬁ1 eﬂﬂgr? f < ﬁiﬂ@s&ﬁ@g @%ﬁg@“@{g@ t for the
r1t tween ose C 1 san mt o) ir chemical structu Q. on,
presence% . iﬁ ﬁ%ﬁ%ﬁg&ﬁ%ﬁi@% S a' of CNC,
SI. n Ce ulose an n 1 TS 1r_chemica t rea
which coﬁfgﬁ% gyﬁ ! in chitin,
chitosan &ﬁﬁg%f 2 bﬁgl served LR g{@?féﬁ?f‘dﬁ ﬁroclo% Ho%om]}[)g&lt? ec eél by FTIR. A s1rn11ar

phenomenon has been observe in chitin, chitosan and glycerol nanocomposites [38].
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3.6 Biological Testing
Biological results showed 100% biocompatibility for all formulations in 16 rats. After 30 days, the
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specimens had not shown an adverse reaction, septicemia or death in the presence of CNC. At the point
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4.6. Biological testing

Biological results showed 100% biocompatibility for all formulations in 16 rats. After 30 days,
the I%?Scc)tlg%gﬁi had not shown an adverse reaction, septicemia or death in the presence of CNC.

3.6 stin
At the point the glgafts were retired, no negative influence was observed over the surface of

BIURERCFsHRs CHanequolias Bes Gapatifen ces! spagiatianibrosis Ard/arwetien £F dead
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fHetherdptpicalsigp O i liins diseuseds Shestighby s theolororyes da pudsclaPolisiue th dplf@%ﬁ@eé
Hiyf’é}é’{%f}é%‘ffSﬁ%’ﬁif‘f&SﬁB&%b’eﬂH@é%ﬁ%t of the specimen during the 30-day period. A further

possible cause could be that the graft was notfixed with sutures or staples in the biological test, in order to
prevent a different reaction or influence over the grafts.

Fig. 8 Surgical stage of retiring the portions of CS + CNC (0.5 %) (circled in blue), to evaluate biocompatibility and
biodegradability in the specimen.

Figure 8. Surgical stage of retiring the portions of CS + CNC (0.5 %) (circled in blue), to evaluate biocompatibility and
Hihddsiodebiddbiligspetitestwere partial but positive for all formulations, as presented in Table 3. In pure
CS, the values reached between 6.21% and 8.55% in parallel. One sample had 100% biodegradability and
Thetteiodegprdabilityry alvightwiese thariatlabuieighsitivigrdstinglihkoprrtdatiostsnes frasendddsdia
Tadhler 3lohsepurer€8) thdivale @y eedtieegrife tieegesditéd andF&bsd O graralleloOblesd inpldehtie
TRl iederrorlak it ASHHE A ATES 68 hNCHRISH e therwost avisheizain, i dhotsits
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iR had 8)loyy bisesraqgbilivyivalue (820 Fon Ce (IS AL reldhe lesarasher s o PO T
+ CNC (0.5%) had the most weight gain in their films in comparison with other formulations
(-13.63%, -12.64% and -55.83% respectively). Just one sample of this group had a low biode-
gradability value (7.82%). For CS+CNC (1.0%) the values reached 0.71% to 21.02%. The highest
values of biodegradability were shown by CS + CNC (2.0%) being 19.59% to 60.37% respec-
tively) with just one specimen that gained weight.
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Fig. 9 Presence of loose connective tissue and blood vessels (circled in blue) formed over the portion of CS + CNC (1.0%)

Figure 9. Presence of loose connective tissue and blood vessels (circled in blue) formed over the portion of CS + CNC

(1.0%)
Biodegradability values (%)
Pure CS CS+CNC (0.5%) CS+CNC (1.0%) CS+CNC (2.0%)
Table3-Bi Ang;adabi l’q; wvalues £9§( SN ﬂaﬂe@eﬁpesi*""
Specimen 1 -12.89 -13.48 8.33 19.59
Biodegradability values (%)
Specimen 2 8.55 -12.64 0.7} 60.37
PureCS | CSHCNC (0.5%) | cs+cNC (1.0%) | cs+CNC (2.0%)
Specimen 3 spediited 12.89 | 7-8213.48 8.3321.02 19.59 -4.92
Specimen 4 Specif2h 2 8.55 -55.832.64 0.71 5.52 60.37 40.52
Specimen 3 100.00 7.82 21.02 -4.92
Table 3. Biodegradabil tysgg(lz}#%nf r S+ EIZ\IIC napocompogites 552 40.52
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porous films were elaborated. The porosity rate and the size of pores directly affect the biodegradability of
films, because they allow the easy passage of water, blood, cells and other fluids. From their condition,
these films could be useful for tissue scaffolding as can be seen in Figures 10 and 11 (SEM images). A
typical pattern of degradation of chitosan shown as hexagonal borders was observed in all formulations, at
different stages. The formation of fascia in different stages was evident.



The presence of loose connective tissue and fascia were evident for all formulations, as well as the
formation of small blood vessels surrounding the graft. Based on the principle of time of biodegradability
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Figure 10. a. Presence of loose connective Hfiggradaties i %%\T(F'&%%%Ms@?’lmx and Fig. b. Hexagonal pattern of
chitosan degradation in CS + CNC (0.5%) at 500x.
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A pattern of biodegradation of CS films is supported by the fact that the biodegradation rate
of CS has a linear relationship with the Degree of Deacetylation (DD). When the DD value
(from 0 to 100) is closer to 100, the material shows a slow rate of biodegradation [39]. Other
aspects to consider are that CS is degraded by proteases (mainly lysozymes) that attack N-
acetyl glucosamine linkages making the process faster, but these linkages have less presence
in CS chains when DD values are higher. Also, in this state, lysozyme activity is low and the
biodegradation rate is slow. Furthermore, CS is a semi crystalline polymer. In amorphous
zones, lysozyme activity is intense and when the positive charges increase, the interactions
between cells with CS are better, thereby improving biocompatibility [39].

CS scaffolds with a low Degree of Acetylation (DA) and low molecular weight have a higher
rate of biodegradation. Indeed, CS scaffolds with a low DA present lower biodegradation
times, smaller pores, better mechanical properties, moderate water absorption and more
intense cell activity than CS scaffolds with a higher DA [40]. A pore size of between 60 and 90
microns is suitable to allow lysozymes inside the structure and to act in polymer chains.

The CS type used in this research has a DD between 75-85% and a medium molecular weight
related to low biodegradation values. In CS+ CNC films, the CNC had an unstructuring effect,
creating spaces between CS chains, thereby allowing water (and lysozymes) access into the
scaffold structure, and showing larger values of biodegradation when CNC concentration was
higher.
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A pattern of biodegradation of CS films is supported by the fact that the biodegradation rate of CS has a
lifibarattiathomship mishitheDggrae dfidelifendtitorofRBl)s\Wh &StheanD] dslischigbiy @lep@d@)en ctuser to
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Yeozyme activity. is low, and iﬁ biodegradation rate is slow. Furthermore, CS is a semi crystalline
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polymer. Ih amorphous zones, Tysozyme activity is intense and when the positive charges increase, the

interactions between cells with CS are better, thereby improving biocompatibility [39].

C§. %@ﬁfgi@lfslow Degree of Acetylation (DA) and low molecular weight have a higher rate of
biodegradation. Indeed, CS scaffolds with a low DA present lower biodegradation times, smaller pores,
better mechanical properties, moderate water absorption and more intense cell activity than CS scaffolds
withlhbighditing (@) TN @ara piaves ptwsiaa bp nopedi esj droae asin g dblei tocajbatvi litsoof sreweitiside the
strughvdevantbtocaghita gpotyvechairigally, the main factor was the unstructuring effects over the

chitosan chains. In biological tests, CNC show positive results for biocompatibility and
The&é&ggfamlii@}{his research has a DD between 75-85% and a medium molecular weight related to

low biodegradation 'values. In CS + CNC films, the CNC had an unstructuring effect, creating spaces
between CS chains, thereby allowing water (and lysozymes) access into the scaffold structure, and
showing larger values of biodegradation when CNC concentration was higher.

The attachment, morphology and proliferation of cells on CS scaffolds is highly dependent on the type of
cell lines, the source and characteristics of CS, the methods of CS scaffold preparation, and the
characteristics of the chitosan scaffolds. In addition, chitosan with a low molecular weight and low DA has
excellent potential as a scaffolding material for a variety of tissue regeneration systems [40].
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* CS+ CNC nanocomposites showed physical, mechanical and biological properties suitable
for biomedical use in recovering / wound healing, tissue scaffolding and scar prevention.

* There is a direct relationship between higher concentrations of CNC and higher values of
biodegradability.

* The formation of the CS-CNC macroion complex in this study could have potential for
controlled drug release taking into account other presentations of product (microspheres,
nanopowders or nanoparticles).
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