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Abstract

The mosquito Aedes aegypti (Diptera: Culicidae) is the primary vector of dengue in Mexi‐
co and lately virus Chikungunya, although Aedes albopictus is widely distributed; its role
in both diseases’ transmission has not been confirmed. The control of mosquitoes in Mex‐
ico includes source reduction consisting in the elimination of containers that are favorable
sites for oviposition and development of the aquatic stage. The use of insecticides is to
control larvae and adulticides as outdoor ultra-low volume applications and indoor re‐
sidual spray and more recently impregnated materials. The health department regulates
the use of insecticides, and such regulations are revised and adapted over time. Since
1999, the vector control regulations gave preference to the use of pyrethroids, a perme‐
thrin-based formulation to control adult forms. This insecticide was used as the only
adulticide in Mexico for more than 10 years. The consequences of this actions have
evolved in a widespread and strong resistance to other insecticides, mainly pyrethroids.
We include in this revision evidence of resistance reported in Ae. aegypti in Mexico.
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1. Introduction

Aedes aegypti is the primary urban vector of the viruses causing dengue, Chikungunya, and
yellow fever [1–4]. The females are primarily endophagic (feeds indoors) and endophilic
(lives  indoors)  day-biting  vectors  that  feed  preferentially  on  humans  [5–7].  They  take
multiple blood meals before producing an egg batch [8,9], creating the potential for a single
infectious female to transmit the virus to more than one person. The females lay their eggs
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in containers found in the peridomestic environment, and that is where the immature larvae
and pupae develop [10,11].  Ae. aegypti  is ubiquitous in populated areas of Mexico up to
~1,500 m above sea level [12]. Aedes albopictus, which is the primary vector of dengue and
Chikungunya  viruses,  is  ubiquitous  in  rural  settings  [13–15].  This  human  biter  was
introduced into Texas in the 1980s and has spread widely in northern and central Mexi‐
co, and the far southern part of the country [16–18].

Urban environments have favored the presence and abundance of Ae. aegypti  in 30 of 32
states of Mexico (with exception of Tlaxcala and the Federal District) [19–21], and conse‐
quently, they have caused the endemic transmission of dengue and more recently, in 2014,
of Chikungunya [22].

2. Study area

Mexico is in the southern part of North America, between 14° 32 and 32° 43 North and 86° 42
and 118° 27 West. The country is divided administratively into 31 states and one federal district
(Mexico City). Mexico has a land area of 1,964,375 km². It is surrounded by the Gulf of Mexico
and Caribbean Sea to the east, the United States of America to the north, the Pacific Ocean to
the south and west, and Belize and Guatemala to the southeast. The main features of the
physiography of Mexico are Northern and Southern Plateau. Two mountain chains, the Sierra
Madre Oriental on the east and The Sierra Madre Occidental on the west, leave plains along
the shores of the Gulf of Mexico and the Pacific Ocean. The Sierra Madre Oriental obstructs
the circulation of air from the Gulf of Mexico toward Northern and Central Mexico. This
characteristic on physiography allows a variety of climates, and the altitude performs a
dominant effect on temperature. The prevalent climate conditions are dry to arid in the
country. The North territory (47.7%) presents arid and semiarid conditions (23.5%), subhumid
with 7 months of long dry season prevailing in Central Mexico, 16.3% presents dry tropical
mainly the shores, 12.4% of the territory located in Southern Mexico presents humid tropical
climate, and in both mountain chains small areas with humid temperate climate are found [23].

3. The situation of dengue and Chikungunya fever in Mexico

A recent study estimated that up to 390 million dengue virus (DENV) infections, including
close to 100 million cases of dengue disease manifestations, occur annually across the world
[24]. Ae. aegypti and DENV were widely distributed in the Americas in the early 1900s, but a
campaign against yellow fever initiated in 1947 and continued to the early 1970s resulted in
both the mosquito and its associated viruses being eliminated from most of Central and South
America and from Mexico [25]. Success then bred failure as resources were diverted to other
health problems. From the 1980s, Ae. aegypti has reemerged in the Americas, facilitated by
uncontrolled urbanization providing ample opportunities for mosquito breeding and popu‐
lation growth [1,25]. The mosquito now has regained the full extent of its range from a century
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ago. This reemergence of the vector combined with global trafficking of DENV in infected
humans through increased air travel have led to the Americas becoming hyperendemic, with
cocirculation of all four DENV serotypes in many areas [26,27]. In Mexico, dengue reemerged
with a DENV-1 outbreak in 1979 followed by outbreaks of the other serotypes in the next two
decades [25,28,29]. In 2009, a major dengue epidemic with nearly 250,000 reported clinical cases
occurred in Mexico (55,363 confirmed) and this epidemic has continued through 2010 with
~58,000 clinical cases (22,352 confirmed) , 2011 with ~68,000 cases (15,578 confirmed) , 2012
with ~165,000 cases (84,612 confirmed) , 2013 with ~232,000 cases (62,330 confirmed) , 2014
with 125,000 cases (32,100 confirmed), and 2015 (up to September 25, 2015 ~125,000 clinical
cases with 13,454 confirmed) [30].

The autochthonous transmission of Chikungunya in the Region of the Americas was first
detected on December 2013. By July 2014, an imported case was reported in Mexico, two more
imported cases appeared on September 5. By the end of 2014, a total of 131 autochthonous
confirmed cases were reported as well as a total of 13 imported cases; and ~7,500 confirmed
cases by October 2, 2015 [30].

4. Vector control in Mexico

Since 1950, operational vector control programs in Mexico have used a series of insecticides to
control Ae. aegypti [31]. The organochlorine insecticide DDT was used extensively for indoor
house spraying from 1950 to 1960 and was used in some locations as recently as 1998. In recent
decades, the chemical control of mosquito larvae has relied on the use of organophosphate
insecticides with temephos as the active ingredient. The adulticide malathion was used for
ultra-low volume (ULV) space spraying from 1981 to 1989. An oil-based formulation of
chlorpyrifos was registered for use in some locations in Mexico to control the adult stage of
the mosquito from 1996 to 1999. The organophosphates as adulticides were replaced by
pyrethroids according to the Norma Official Mexicana NOM-032-SSA2-2002 [32]. The pyreth‐
roid permethrin was applied as a sole adulticide in Mexico for more than a decade.

On June 1, 2011, a new policy was published in NOM-032-SSA2-2010 [33] that established the
characteristics of the insecticides to be used for vector control in Mexico. The selection of the
insecticides should be based on vector resistance, effectiveness, and safety related to exposure.
The list of insecticides has since been updated each year [34]. A new policy published on April
16, 2015 (NOM-032-SSA2-2014) [35], maintained the same requirements practically as the
regulation published in 2011.

5. Insecticide resistance in Ae. aegypti — A threat to its control

The extensive use of DDT to control Ae. aegypti in Mexico and other parts of the Americas
during the 1950s and 1960s resulted in the development of resistance [36]. This action was
unfortunate because both DDT and pyrethroids target voltage-gated sodium channels in the
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insect nerve sheath where structure-related interactions occur in specific regions of the sodium
channels that prolong their opening and produce paralysis. Indeed, the similar mode of action
probably produced cross-resistance to pyrethroids in DDT-resistant Ae. aegypti [37–41].

Pyrethroid resistance is clearly increasing despite the initial optimism over their rapid action
and novelty [42]. Evidence of resistance to permethrin insecticide used in Mexico for more than
10 years in Ae. aegypti populations in Mexico due to enzymatic mechanisms such as α- aand
β-esterases was reported in Baja California North and South [43], in Quintana Roo, south f
Mexico [31], and some states of northeast Mexico [44]. More recently, Aponte et al. [45] found
increased levels of esterases and glutathione S-transferase related with resistance to DDT,
permethrin, and deltamethrin in Ae. aegypti populations from the state of Guerrero located on
the west coast of Mexico.

The presence of a kdr mutation V1016I in the voltage-gated sodium channel gene is also
associated with resistance to pyrethroids. This mutation was originally found in a permethrin
resistant strain from Isla Mujeres, off the coast of Cancun [46,47]. High frequencies of this
resistance allele were subsequently found in collections of Ae. aegypti from 78 sites in Mexico
with some of the highest frequencies detected in collections from Veracruz state [48,49].

Flores et al. [50] reported an extensive monitoring of the frequency of kdr Ile1,016 in Ae.
aegypti populations from Merida, Yucatan, south of Mexico, as part of the “Casa Segura”
project. Ae. aegypti collections were characterized by both molecular kdr and biochemical
resistance to pyrethroid insecticides such as permethrin and deltamethrin. Ile1,016 allele
frequencies varied among collection sites ranging from 0.14 to 0.98. Within Merida City, fifteen
collection sites had medium to high homozygote frequencies. The lowest Ile/Ile homozygote
frequencies corresponded to small towns nearby Merida City.

A second mutation F1534C on the IIIS6 domain of the same gene was also detected in Ae.
aegypti populations from Guerrero state located on the west coast of Mexico [45] and the
Yucatan Peninsula [51] conferring resistance to pyrethroids.

The practice of utilizing a single insecticide until the appearance of resistance has become a
standard practice that quickly reduces the number of insecticides available for vector control.
Rotations, mosaics, and mixtures have instead been proposed as strategies for insecticide
resistance management [52–54]. Mathematical models have been applied for estimating how
these tools could be used in an optimal manner [55]. However, these models have been rarely
tested under field conditions, especially for insect vectors, due to the difficulties in determining
changes in frequencies of resistance genes in large samples of insects from resistant popula‐
tions [56].

In Mexico, there was a large-scale field trial with Anopheles albimanus that used rotations or
mosaics of insecticides substituting the simple use of DDT or of specific pyrethroids [56,57].
Changes in the frequency of resistance genes were monitored for 4 years [57]. The results were
promising and predicted that rotations or mosaics of insecticides are viable long-term strat‐
egies for the sustainable use of insecticides in disease control programs.

With that goal in mind [58], the resistance to eight pyrethroids in collections of Ae. aegypti from
the state of Veracruz located on the east coast of Mexico was examined, considering that this
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knowledge would facilitate the selection of viable alternative pyrethroids besides permethrin
for use in a rotation program for sustained control of Ae. aegypti at the local, regional, and
possibly statewide levels. The results obtained showed that the strains analyzed were resistant
to δ-phenothrin, deltamethrin, cypermethrin, α-cypermethrin, z-cypermethrin, λ-cyhalothrin,
bifenthrin, as well as permethrin and suggested that populations in the state of Veracruz have
been exposed to strong selection pressure, resulting from the continuous application of
permethrin for more than a decade. They also evaluated resistance to chlorpyrifos [59] in the
same strains, and overall, the populations in this study were less resistant to chlorpyrifos than
to pyrethroids, so the rotation of insecticides in the control activities is suggested to delay or
minimize the occurrence of high levels of resistance to chlorpyrifos among local populations
of Ae. aegypti.

Saavedra-Rodriguez et al. [60] examined changes in gene expression before, during and after
five generations of permethrin laboratory selection in five strains of Ae. aegypti collections from
the Yucatan Peninsula of Mexico. Changes in expression of 290 metabolic detoxification genes
were measured using the Aedes Detox microarray. Selection simultaneously increased the LC50,
KC50, and Ile1,016 frequency. Ten to eight genes were differentially transcribed after selection,
and it was an inverse relationship between the Ile1,016 frequency and the numbers of differ‐
entially transcribed genes. Some genes were differential transcribed among field strains, but
interestingly a few cytochrome P450 genes complex were overexpressed. The authors estab‐
lished that adaptation to permethrin in Ae. aegypti laboratory strain is conditioned presumably
by geographic origin and extant target site insensitivity in the para gene. The lack of uniformity
in the genes that responded to artificial selection as well as differences in the direction of their
responses challenges the assumption that one or a few genes control permethrin metabolic
resistance.

The selection pressure by the prolonged use of pyrethroids in Mexico had resulted in resistance
to all of this kind of chemicals recommended for vector control in Mexico. All studies have
shown the prevalence of cross-resistance caused by metabolic mechanisms and/or point
mutations. Saavedra et al. [51] demonstrated that even in the absence of barriers to gene flow,
local insecticide pressure, rather than the migration of mosquitoes with kdr-conferring
mutations, is the primary determinant of the local kdr profile for Ae. aegypti. Thus, the early
detection of insecticide resistance is highly relevant to establish a rotation program for
insecticide resistance management in Ae. aegypti in Mexico. In an attempt to establish the
importance of evaluating the strength of available techniques to assess the insecticide sus‐
ceptibility in Ae. aegypti, Lopez et al. (in press) conducted a study establishing the intensity of
insecticide resistance through the Resistance Intensity Rapid Diagnostic Test (I-RDT) [61]. The
RDT-I consists of exposing vector populations 1, 2, 5 and ten times the diagnostic dose
previously established at a diagnosis time. For this study, they used four populations of Ae.
aegypti from the state of Yucatan, south of Mexico, and three population from the state of Nuevo
Leon, northeastern Mexico. They were exposed to the diagnostic dose (DD) of permethrin,
bifenthrin, and d-(cis-trans)-phenothrin and enhanced DD at 2, 5, and 10 times. All populations
resulted resistant to the pyrethroids evaluated according to WHO recommendations for
assessing the significance of detected resistance (<90%) even when the DD was enhanced 5
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times. To correlate these results with pyrethroid molecular resistance mechanisms, DNA from
mosquitoes of each population were used to detect V1016I and F1534C mutations. The allelic
frequency of Ile1,016 varied from 0.43 to 0.90 in the populations studied. For the 1534 locus,
there was a predominance of homozygous mutant genotype in all populations with high
frequencies of the mutant allele (0.75–1), showing that the F1534C mutation was more common
than V1016I mutation. They also analyzed the co-occurrence of both V1016I and F1534C
mutations, and results showed that more than 50% of mosquitoes genotyped expressed both
mutations (double homozygous mutants).

6. Conclusions

The selection pressure exerted by insecticides for more than six decades on the populations of
Ae. aegypti in Mexico has generated widespread resistance to a variability of insecticides and
in the last 15 years to pyrethroids. It is essential that we consider actions to avoid strong
resistance between pyrethroids and alternative adulticides. Going forward, strategies must
include resistance monitoring, the development of advanced tools for detecting multiple
insecticide resistance, and practical tools for efficient vector control.
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