We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

Chapter 3

Rapid Prototyping of Embedded Video Processing
Systems in FPGA Devices

Andrej Trost and Andrej Zemva

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/61136

Abstract

Design of video processing circuits requires a variety of tools and knowledge, and it is
difficult to find the right combination of tools for an efficient design process, specifically
when considering open tools for evaluation or educational purpose. This chapter presents
an overview of video processing requirements, programmable devices used for embed-
ded video processing and the components of a video processing chain. We propose a
novel design flow for generating customizable intellectual property (IP) cores used in
streaming video processing applications. This design flow is based on domain-specific
modules in Python language. Examples of generated cores are presented.

Keywords: Video processing, prototyping, FPGA, Python, IP core

1. Introduction

Embedded sensor data processing is an important concept of future ubiquitous computing
technology. Processing of data from video camera requires either a powerful and energy-
consuming general purpose processor or an application-specific integrated circuit (ASIC),
which is better suited for embedded applications. Field-programmable gate array (FPGA)
technology enables rapid development and hardware prototyping of video processing ASICs.
The FPGA devices are commonly found in smart camera architectures [1].

The technology is available, but it is not widely adopted due to the complex design process
and the cost of specialized tools. A digital system design flow starts with hierarchy of circuit
components containing register transfer level (RTL) description of the digital circuit in one of
the hardware description languages VHDL or Verilog. The RTL circuit model is used for logic
synthesis as well as simulation of the design. The synthesized design runs through imple-

I NT E C H © 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
open science | open minds and reproduction in any medium, provided the original work is properly cited.

66 Cutting Edge Research in Technologies

mentation phase (mapping to the FPGA structures, place, and route, optimization), finally
producing bitstream that is downloaded to the device. Compiling of the FPGA design and
circuit debugging can be very time-consuming processes and large amount of logic cells and
flip-flops in modern FPGAs call for an efficient design flow.

There are several solutions to speed up the circuit component development compared to the
traditional RTL approach. Domain-specific environments, for example LabVIEW or System
Generator for Digital Signal Processing in Matlab/Simulink, can be used to compose signal
processing algorithm and produce RTL code. The other approaches are raising the abstraction
level by using high-level software languages (C, SystemC, HandelC) and performing high-
level circuit synthesis from software description [2]. The high-level tools are either in the
research domain or in the commercial tools (for example, Vivado High Level Synthesis from
Xilinx) and are targeting a variety of applications. There is still a lot of work for a circuit
designer to adapt the synthesized IP components to the specific stream video processing
architecture and application [3]. We also consider that open design environment is important
for educational purpose and for wide adoption of the programmable technology [4].

In this chapter, we propose to use a high-level programming language Python to produce
generators of video processing components. The Python language is efficient for algorithm
development and visualization and provides modules for description of concurrent digital
systems with automatic conversion to RTL. The Python scripts can be used to produce generic
image processing intellectual property (IP) components that are customizable beyond the
scope of the RTL languages. We introduce the design methodology and present the prelimi-
nary results.

In the next section, we present data processing and storage requirements in embedded video
systems and examples of video processing chain. We show that even low end programmable
devices from two major FPGA vendors, Xilinx and Altera, have enough resources and speed
for real-time implementation of video processing chain.

In further sections, we give an overview of hardware description packages in Python and our
IP generator module. The IP generator classes are used to automate several tasks and data
transformations in the streaming hardware component development process. We show the
usage of IP generator module on design examples.

2. Embedded video processing

Embedded video processing devices are part of smart cameras used in computer vision
systems. Table 1 summarizes data processing and storage requirements for various video
sources.

The minimal requirements for digital video processing systems are defined by standard
definition PAL or NTSC video signals. Digital video stream from standard definition camera
in ITU-R BT.656 format [5] is a sequence of 8-bit or 10-bit data words transmitted at 27 MB/s.

Rapid Prototyping of Embedded Video Processing Systems in FPGA Devices 67
http://dx.doi.org/10.5772/61136

The video frame resolution for PAL camera is 720 by 576 pixels and one image frame occupies

405 kB of memory.

Video signal PALTV WVGA HD camera
parameter

resolution [H x V] 720 x 576 752 x 480 2048 x 2048
refresh [fps] 25 63 178

data rate [MB/s] 27 27 760

frame memory [MB] 0.4 0.3 4

Table 1. Parameters of video signals

The next two columns present requirements for two commercial computer vision cameras:
high-speed, low-resolution, and high-definition (HD) camera from Optomotive. The first has
Wide Video Graphics Array (WVGA) sensor that has equal data rate and similar resolution to
PAL camera but substantially higher refresh rate. The digitized PAL video stream contains
long synchronization sequences due to the legacy TV transmission signal timing. On the other
hand, the computer vision camera consumes most of the 27 MB/s bandwidth for data trans-
mission and thus achieves refresh rates up to 63 frames per second (fps).

Characteristics of the HD camera from Table 1 show substantially higher resolution and
roughly 10 times more memory storage per image frame. The sensor peak data rate of 760 MB/
s enables image refresh rates of up to 178 fps.

The data rate of a digital video stream and the required amount of operations per image pixel
are beyond the capacity of an embedded microprocessor. The video processing operations
should be implemented in application-specific hardware. The blocks of the video processing
chain operate concurrently in hardware and transformation operations inside each block can
be parallelized.

2.1. Video processing chain

Video and image processing algorithms contain a sequence of data transformation operations.
When the same sequence is applied to all image data, we can describe the algorithm as video
processing chain. The processing chain clearly describes dataflow and can be used as template
structure for hardware implementation. Structure of the data and the transformation opera-
tions depend on the video processing application [6].

Two examples of video processing chain are presented in Figure 1: (a) edge detection chain
and (b) feature extraction chain for human detection. The edge detection transformations
produce images that emphasize edges and transitions. The presented processing chain begins
with contrast enhancement. The output pixel values are computed from the input pixels using
contract stretching equation or lookup table. Next operations are gradient filters that produce

68 Cutting Edge Research in Technologies

local horizontal (Gx) and vertical (Gy) gradient data. The gradient data stream is aligned,
combined in a single stream, and sent to gradient magnitude computation block.

a) Gradient Gx
pixel Contrast (window) —l Magnitude pixel
stream — | (point) (point) [stream
Gradient Gy
(window)
b)
pixel Divide image Gradients Histogram Normalization HOG
stream — | (block) (window) (global) (window) [descriptors

Figure 1. Examples of video processing chains

The feature extraction chain in Figure 1b transforms image pixel data to a set of descriptors
used for classification and recognition in computer vision systems. The presented processing
chain is based on histogram of oriented gradients (HOG) [7]. The image is first divided into
blocks and gradients of the block pixels are computed. Histograms of gradient magnitude for
spatial orientations are calculated next and block normalization is performed. The resulting
data are image descriptors that can be used in the classification of algorithm to detect human
locations.

We divide the video stream processing operations into four categories: point operations,
sliding window operations, image block operations, and global operations:

Point operations take one image pixel at a time and produce output values based on the
current input pixel value. Examples of point operations are contract enhancement, image
binarization (thresholding), and color conversion. These operations are relatively straight-
forward for hardware implementation using pipelined arithmetic operations or lookup
table approach.

Sliding window operations or local operations use a local neighborhood of pixels to produce
the output. Examples of the sliding window operations are convolution-based operations
for image filtering or calculating image gradients. The hardware implementation requires
first-in first-out (FIFO) buffers to generate the neighborhood of pixels and pipelined
arithmetic operations.

The image block operations first divide the image frame into smaller blocks and then apply
operation to the whole block of pixels. For example, HOG feature extraction divides the
image into 64 x 128 pixel blocks. The hardware implementation of block operations on the
video stream requires image buffers and blocks memory control logic. The implementation
can exploit block-level parallelism in order to achieve the required throughput.

Global operations require double buffering of the whole frame or block data, since there is
no defined locality and any input pixel can be used to calculate the output. Example of global

Rapid Prototyping of Embedded Video Processing Systems in FPGA Devices
http://dx.doi.org/10.5772/61136

operations is histogram calculation. These operations are most difficult to implement in the
custom hardware at a reasonable cost and are typically implemented as a combination of
software control and hardware accelerator.

Considering implementation of the video processing chain in hardware, we begin with initial
digital system partitioning according to the dataflow and video transformation operations.
The operations present hierarchical circuit blocks that can be reused for different applications.

3. Video processing in FPGA devices

The FPGA technology is used as a programmable alternative to ASICs. The FPGA devices can
exploit high degree of data processing parallelism that is necessary for real-time video
processing. The programmability of FPGA devices has many benefits in video processing
applications due to the constant evolution of new algorithms and standards. This technology
is well suited for smart cameras, where the image sampling and application-specific prepro-
cessing are performed before data transmission to the host [8].

A drawback of FPGA devices is relatively high cost compared to massive produced ASICs and
relatively complicated design flow compared to microprocessors. The programmable tech-
nology grows from simple logic replacement devices introduced in the late 1980s to powerful
contemporary generic computation devices with plenty of interfaces, memory, and data
processing resources. Even the smallest and low-cost devices today include static memory
blocks and hardware support for fast arithmetic operations. In order to leverage usage of FPGA
in embedded image processing applications, we consider low end devices and propose a novel
design flow.

Table 2 presents characteristics of low end FPGA devices from two major manufacturers: Xilinx
and Altera. A range of available resources in terms of logic cells, data flip-flops, embedded
memory blocks, and hardware multiplier blocks are presented for FPGA families Cyclone IV
and Max 10 from Altera and Spartan-6 and Artix from Xilinx.

FPGA family Altera Altera Xilinx Xilinx
resource Cyclone IV Max 10 Spartan 6 Artix
logic cells [K] 6-149 2-50 3.8-147 16 -215
flip-flops [k] 6-149 2-50 4.8-184 20 —269
memory [kB] 33 - 486 13 -204 27 - 603 112 - 1642
multipliers 15 - 266 16 - 144 8-180 45 - 740

Table 2. Low end FPGA devices from Altera and Xilinx

FPGAs are best suited for signal processing algorithms based on arbitrary precision integer or
fixed point operations. The low end families have the smallest amount of data processing

69

70 Cutting Edge Research in Technologies

resources operating at a relatively low clock frequency (typically tens or few hundreds of MHz)
due to programmability overhead. But even the smallest FPGA devices from the current
families have enough resources and speed to implement real-time video image acquisition and
some image processing functionality. Devices with more resources benefit from more paral-
lelism that is important for HD or high frame rate video processing.

Emerging type of programmable integrated circuits are systems-on-chip (SoC), a combination
of application-grade microprocessor and FPGA fabric. Both Altera and Xilinx provide SoC
devices, Cyclone V and Zynq, which include dual core ARM Cortex-A9 processor. The smaller
devices compete in terms of cost with the separate FPGA and microprocessor or microcon-
troller solution and benefit in tight coupling between processor and FPGA. These devices are
suitable for embedded image processing applications that are partially implemented in
hardware (HW) and in software (SW) and transfer data through microprocessor peripheral
interfaces.

The design tools for programmable devices support component-based hierarchical design in
order to manage development and verification of complex digital systems. The reusable blocks,
called IP components, can be obtained from library of IP cores (Xilinx) or Megafunctions
(Altera) or described using hardware description languages. Basic operations and components
using specific FPGA structures are available for free, but a lot of IP cores can be obtained only
after purchase.

While using IP cores for digital system shortens the design cycle, there is still a huge gap
between the algorithm development and the circuit development. In the video processing
algorithm development process, we consider new combinations of operations and different
data partitioning to get an optimum processing result. New operators are probably not
available as IP cores and need to be designed from scratch. The algorithm developer can also
consider the cost of the hardware implementation of the operations in the design process. The
algorithms are developed with tools and environments that offer strong mathematical and
visualization support in order to get quick proof of concept. The tools are either commercial
Matlab or LabVIEW or based on computer languages C/C++ (OpenCV) or Python.

3.1. Verification on development boards

For video processing hardware development, we can use either a computer vision smart
camera with programmable device or a programmable video development board. In order to
introduce design of embedded video processing in university laboratory practice, we devel-
oped video interface modules that can be used with low-cost commercial FPGA development
boards. This solution is more affordable and the interface modules can be reused when the
FPGA vendors offer new development boards based on new families of FPGA devices.

The video input interface module contains video decoder TVP5150A connected to PAL camera
module, as presented in Figure 2. A small FPGA is used for the decoder setup, basic data
preprocessing, and output video stream configuration. The video decoder TVP5150A converts

analog video to the video stream in TU-R BT656 format. The FPGA device Xilinx XC3550A
performs stream decomposition and color space conversion and generates data stream. The

Rapid Prototyping of Embedded Video Processing Systems in FPGA Devices
http://dx.doi.org/10.5772/61136

board has a 40-pin parallel video stream connector and a 12-pin serial PMOD for connection
to low-cost Xilinx Digilent boards.

i L PAL camera

Parallel video stream

Figure 2. Photo of video interface board

The Digilent FPGA development boards for Xilinx FPGAs contain a computer graphics VGA
or HDMI connector that can be used as a visual output for the image processing application.
If there is no video output on the board, we can always add a simple extension module with
the computer graphics or standard video output.

4. Hardware description in Python

The open-source Python community offers several packages covering digital circuits design.
We tested three packages that use Python as a hardware description language [9].

Chips [10] is an HDL Python library that provides a language for designing hardware devices.
Chips package introduces a stand-alone synthesizable language built on top of the Python
allowing designers to work at a higher level of abstraction. The language provides methods
for concurrent elements synchronization and data stream processing. The tool generates
synthesizable RTL code using state machines or optimized soft-core processor automatically.
The described device can be natively simulated in Python.

Migen [11] is another Python-based tool for building complex digital hardware. The toolbox
introduces inside Python a new language FHDL for describing fully synchronous circuits. The
language addresses limitations of standard hardware description languages: support for
composite types and procedurally generated logic. The FHDL circuit description is on a higher
abstraction level compared to the RTL languages and can be automatically converted to
synthesizable Verilog. The simulation is supported through conversion and linked to external
tools.

MyHDL [12] is an open-source package for using Python as a hardware description and
verification language. The code can be converted to VHDL or Verilog automatically. The

71

72 Cutting Edge Research in Technologies

introduced language MyHDL does not specifically target synchronous or stream processing
circuits and is intended for the description of synchronous or asynchronous logic blocks. The
converted code is readable, since it retains all the signal and component names and even block
comments. The MyHDL supports native Python simulations and unit tests and can produce
outputs in value change dump (VCD) format for graphical inspection. The package MyHDL
provides basic RTL modeling concepts:

* Hardware-oriented data types: 1-bit bool and arbitrary length vectors intbv, modbv

Support for synthesizable subset of arithmetic and logic expressions

Combinational functions containing concurrent signal assignments

Synchronous sequential functions with clock edge and optional reset

Finite state machine abstraction

* Structural modeling.

Table 3 summarizes the basic features of the Python HDL tools. We found the tool MyHDL as
the best choice for the development of reusable components due to nice modeling, conversion,
simulation, and continuous support by the open-source community.

Package Circuit model Verification Output Current version

Chips stream model, custom Python testbench VHDL 0.1.2 (2011)
syntax

Migen fragment model, External tools Verilog x (2012)

custom syntax

MyHDL event driven, Python = Python testbench and VHDL and Verilog 0.9 (2013)
syntax VCD

Table 3. Python HDL Tool packages

4.1. MyHDL video graphics example

We will first present an example of a VGA graphics controller designed for ZynqSoC device.
The controller is used to produce computer-generated video stream for hardware verification
of the video processing chain on the FPGA development board. The controller presented in
Figure 3 consists of device library components: Zynq PS, AXI interconnect, BRAM controller,
Block memory, and custom components designed in MyHDL. The video stream generator
components are VGA synchronization (VGAsync), video direct memory access (DMA),
coordinate rotation, character memory, and color transformation.

We present the MyHDL code and hardware modeling constructs on a simplified example of
the VGA synchronization generator:

Rapid Prototyping of Embedded Video Processing Systems in FPGA Devices

http://dx.doi.org/10.5772/61136

DDR
Zynq | -~ FIXED_IO
PS |Ax BRAM |
sl blk
I L ctrl mem
r hsync
vaa | L] vsync
sync
Y | DMA —Rotate=/CROM= Color
- = - R GB

Video processing chain

Figure 3. Video processing rapid prototyping components in ZynqSoC

frommyhdl import *
HP=1040; VP=666

def VGAsync(clk, hsync, vsync):
Signal (intbv (0) [11:
Signal (intbv (0) [10:

h =
v =
@always (clk.posedge)
def timing() :

if h < HP-1:

h.next = h
el se:

h.next = 0
if v < vp-1:

v.next = v
el se:

v.next = 0

Qalways_comb
def synchro():
hsync.next =
vsync.next =
return timing,
clk = Signal (bool (0))
hsync = Signal (bool (0))
Signal (bool (0))
if _ name_ == '_ main__ ':
toVHDL (VGAsync,

synchro

vsync =

libraries and initialization code

top level function and ports
1) # internal signals

1)

sequential function

combinational function

1 if h>=856 and h<976 else 0
1 if v>=637 and v<643 else 0

port signal declaration

conversion to VHDL

clk, hsync, wvsync)

The MyHDL hardware model contains declaration of signal objects (Signal) and functions

describing combinational or synchronous sequential logic using Python decorators (@always).

Integer values can be used for single bit signals (bool) as well as for bit vectors (intbv) which

greatly simplifies the code compared to

strict VHDL typing rules. The MyHDL hardware

description requires less code compared to automatically generated or even handwritten

VHDL or Verilog description. We can write a test bench using MyHDL objects and verify the

operation of the design in Python. The verification is performed by printing the consecutive

73

74 Cutting Edge Research in Technologies

signal values or dumping all the data to a timing waveform file. Python scripts can be written
for automatic verification and unit testing.

The RTL circuit description requires careful design of the circuit parts with specified clock
cycle behavior, such as interfaces. Figure 4 presents simplified algorithmic state diagram of
the region movement DMA component. The state machine leaves initial IDLE state when a
pixel read request (rdreq) or write request (wrreq) is received. The read request is asserted for
each image line, and during video blanking period the controller returns to IDLE state. When
the controller receives write request and is not reading the memory;, it starts data movement
by first getting the data from one bus (state GET) and then writing the data to frame memory
(state PUT). The internal counter dxy is used to repeat these cycles and move 64 data pixels.
The data movement cycle can be interrupted by read request and continued when the rdreq
is de-asserted.

¥
READING

{ wrreq >—(writing <1)
|

N0 writing >

no PUT
 rdreg -

Figure 4. Video Direct Memory Access (DMA) controller state diagram

The RTL implementation of the DMA requires the designer to specify all the control and status
signals of the data busses involved in the communication. For example, the MyHDL descrip-
tion of IDLE and GET is stated as follows:

if st==tst.IDLE: # busl write request
if stb_iswe_i:
writing.next=1

stb2_o.next=1; we2_o.next=0; # start reading cycle on bus2

Rapid Prototyping of Embedded Video Processing Systems in FPGA Devices
http://dx.doi.org/10.5772/61136

st.next=tst.GET

elif st==tst.GET:

stb2_o.next=1; we2_o.next=0 # continue reading on bus2

if ack2_ i: # if read acknowledge
stb2_o.next=0 # stop reading bus2 and
stb3_o.next=1; we3_o.next=1 # start writing cycle on bus3

dat3_o.next=data;
adr3_o.next = concat (adrH, adrL)
st.next=tst.PUT

The presented circuit description is time consuming and error-prone process and can be
avoided by using higher level of abstraction for the specific domain.

5. IP component generator in Python

An IP component generator written in Python language can be used to raise the MyHDL
hardware description level of abstraction and target video stream processing I[P components.
The proposed design flow is presented in Figure 5. We created a collection of Python classes
in IPgen module used for object-oriented hardware description. The IP designer creates the IP
generator script file composed of IPgen objects and methods. When the script is executed,
transformations generate IP description file with RTL circuit description in MyHDL. This
Python file can be used for functional IP verification with test bench and automatic conversion

to HDL code.
f Iil’gr-j]fia&)r\ ““““““ IPgen module

Generate ouput

Python <

RTL IP IP Verification

Conversion

\

|

System
integration

l

Implementation HW verification

FPGA
vendor
tools

Figure 5. Python based IP generator design flow

75

76 Cutting Edge Research in Technologies

The resulting HDL code presents RTL description of one IP in the video processing chain. The
FPGA vendor tools are then used to package IP, integrate IP in the video processing hardware
system, and perform circuitimplementation. The implemented circuit is downloaded to FPGA
for hardware verification on video development board.

5.1. IP generator module

First, we present semantics of object-oriented hardware description in our IP generator
module. We define the IP component as a tuple where IPname stores top level function name,
IPinit defines initialization code, and IPinterface defines interface type. The IP component
contains a set of functions and a set of signals.

Statements are a collection of MyHDL statement code and identifiers. The identifiers are used
in code transformation process. The set of signals is defined with name, type, and scope for
each signal. The signal type is one of the MyHDL provided types. The scope defines the
position of the signal declaration:

* External signals are part of initialization code.
* Port signals are on port description of the top level function.

* Internal signals are declared inside top level function.

A function transformation converts function to a set of generated functions and signals:

genemte(}") — {(nameo,}" Sgo),. . .,(namek,]-;k,Sgk)}

80”7

The generated functions are objects of the basic combinational or sequential MyHDL functions
and can be converted to MyHDL code using getcode() method. The generated signal objects
have declare() method that outputs appropriate signal declarations. The algorithm for produc-
ing MyHDL IP description is presented in pseudocode:

init_code = IPinit # get initialization code

(iname, if, sig) = IPif.generate|() # generate interface logic

F.append (if)

for fun in F:

(fname, ff, fsig) = fun.generate()

lname += fname;
sig += fsig;
code += ff.getcode()

for sig in S:
if sig.stype==port:
port_code += sig.name;
psig_decl += sig.declare()
el se:
sig_decl += sig.declare|()

and append to functions list

for each function generate
list of function names
list of function names
list of signals

and function code

for each signal generate

list of port names and
port declarations

internal signal declarations

Rapid Prototyping of Embedded Video Processing Systems in FPGA Devices
http://dx.doi.org/10.5772/61136

print init_code # print out initialization code
print "def" + name + port_code # top level function and ports
print sig_decl # signal declarations

print code # function code

print "return" + lname # top level return

print psig_decl # port signal declarations

print conversion function # and conversion to VHDL/Verilog

The structure of our stream video processing domain module is presented in UML diagram
in Figure 6. Python classes are provided for description of the IP component that is an object
of type IPgen. The object IPgen is a collection of signal and function objects defining the IP
hardware structure. A name property is used for MyHDL top level function as well as for
output file name for MyHDL circuit description. The interface property provides various
automatically generated IP component interfaces for streaming video components.

The IPgen signals are external or internal signals described in integer (si) or binary (sb) signal
objects. The classes provide declaration method that is used to generate MyHDL signal
declarations. The IPgen class function() is basic class for description of the IP behavior. The
code() method is used to add MyHDL statements into statement code list (C[]). The function
code is translated into a set of MyHDL combinational and sequential functions using get-
code() method. All classes derived from the function() should provide the generate() method that
returns a triple containing list of MyHDL function names, list of basic functions objects, and
list of signals.

IPgen
- IPname
- IPinit
fanch N - IPinterface |Q ,
_"I‘.g?n'gn > | 1]1-8l —signal
- params . '.:[]* - name
-C[] 1 *sig*() - scope
+code() +init() - initval
+generate() +declare()
j L +output()
asm seq *
- state[] +generate()
+tran() +getcode() ‘
+generate() comb Si sb
+generate() N - bits +declare()
+getcode() O +declare()
dflow statement -
- -5
- ide 5 _id
+next
+generate() *getcode()

Figure 6. UML diagram of Python IP generator module

The presented generic MyHDL IP generator module can be extended by domain-specific
classes describing interface and functions objects. We developed extensions for streaming
video processing applications that are presented in the design examples.

77

78 Cutting Edge Research in Technologies

5.2. IP generator design examples

We present IP description of square root operation on integer data that is commonly found in
image processing transformations. The code is based on modified Dijkstra’s square root
algorithm [13]. The square root in plain Python code is calculated in a loop:

def sqgr (number, bits):
mask = 1 << (bits-2)

r =0
I =1
rem = number

whil e (mask>0):

if ((r+mask)<=rem):
rem —-= r+mask
r += 2*mask
r >>=1

mask>>= 2
return r

The loop has a constant number of iterations that can be calculated from the input number bit
size, for example, 8-bit numbers require 4 loop iterations. The square root of an 8-bit input data
can be calculated as a sequence of operations presented in Figure 7a. The combinational
functions of the corresponding MyHDL circuit description are given in Figure 7b.

The circuit description can be generated with a script using IP generator classes. We first define
IPgen object and declare arrays of vector signals in dataflow diagram:

bits = 8

w = (bits-2)/2 + 1

ip = IPgen("sqgr", IFpoint) #set the IP name and interface type
ip.siga('r', w, bits)

ip.siga('m', w, bits)

ip.siga('rem', w, bits)

A member function siga() is used for declaration of multiple signal instances; for example, a
function call siga('r', 4, 8) produces the following MyHDL declaration:

r0, rl, r2, r3 = (Signal (intbv(0)[8:]) for i in range(0,4))

The initialization logic is described as:

log = comb ("init_logic")
log.code ("rem0.next = data")
log.code ("rO.next = 0")

log.code ("m0 .next 1 << {0}".format (bits-2))
The code for dataflow object is generated in a for-loop:

p = dflow("p",DFcomb)
for i inrange (0, w):

Rapid Prototyping of Embedded Video Processing Systems in FPGA Devices
http://dx.doi.org/10.5772/61136

Figure 7. a) 8-bit integer square root dataflow, b) MyHDL combinational square root description

p.code ("if (r{0}+m{0}) <=
if (i == w-1):
p.code (" dout.next =
el se:
p.code (" rem{l}.next
p.code (" r{l}.next =
p.code("else:")
if (i == w-1):
p.code (" dout.next =
el se
p.code (" rem{l}.next
p.code (" r{l}.next =
p.code("m{1l}.next =
p.next ()

m{0} >> 2".format (i,

b)

Galways comb
def init logic():

rem0.next = data
rO0.next = 0
mO.next = 1 << 6
@always comb
def p logic():
if (r0+m0) <= remO:
reml .next = rem0-(r0+m0)
rl.next = (xr0 + 2*m0) >> 1
else:
reml.next = rem0
rl.next = r0 >> 1
ml.next = m0 >> 2
if (rl+ml) <= reml:
rem2.next = reml-(rl+4ml)
r2.next = (rl + 2*ml) >> 1
else:
remZ.next = reml
rZz.next = rl >> 1
mZ.next = ml >> 2
if (r24+m2) <= rem2:
rem3.next = remZ- (r2+m2)
r3.next = (r2 + 2*m2) >> 1
else:
rem3.next = rem2
r3znext = r2 35 1
m3.next = m2 >> 2
if (r3+m3) <= rem3:
dout.next = (r3 + 2*m3) >> 1
else:
dout.next = r3 >> 1

rem{0}:".format (i))

(r{0} + 2*m{0}) >>
= rem{0}-(r{0}+m{0})".format (i,

(r{0} + 2*m{0}) >> 1".format (i,

r{0} >> 1".format (1))

i+1))
i+1))
i+1))

= rem{0}".format (i,
r{0} >> 1".format (i,

1".format (1))

i+1))
i+1))

79

80 Cutting Edge Research in Technologies

In the dataflow loop description, we call a method next() to mark computation stages denoted
with a dashed line in Figure 7a. The stages are used in the automatic generator of RTL
combinational or sequential dataflow descriptions. The dataflow object accepts parameter that
defines the dataflow synthesis mode with the following values:

* DFcomb for combinational logic implementation (for example in Figure 7b)
* DFreg for combinational description with a register in the last stage

* DFpipe for sequential description with registers in all stages.

The RTL IP component description in MyHDL is generated by
ip.output (log, p)

By changing the parameter in the dataflow object, the user can quickly produce different
versions of the circuit and choose the version that satisfies timing and area constraints. The
output description includes generated interface control logic for the video stream IP.

The IP core interfaces in digital systems are either generic function-specific interfaces or
standard bus interfaces. The standard bus interfaces are based on proprietary processor bus
architectures (Avalon, AXI, PLB) or open architectures for digital systems (Wishbone). We
consider using a simplified version of WISHBONE [14] interface specifically tailored for video
data stream transmission. The video stream interface should provide variable size pixel data
bus, clock, and data strobe signal used to mark active data transmission cycle. The proposed
video bus timing waveform for the interface type IFpoint is presented in Figure 8.

stb 4/__
ssa [[[]Xp0 ey Y]

Figure 8. Video data stream bus timing waveform

The interface signals and control logic are automatically generated. The control logic is used
to count pipeline cycles, produce output strobe for valid output data, and provide additional
cycles to finish the pipeline computation of the data from the input burst. The generated
interface code for four-stage pipeline of 8-bit square root circuit is

Interface internal signal declarations

pipe = Signal (bool (0)) # enable additional cycles
cycEnd = Signal (bool (0)) # end output cycle

cycnt = Signal (intbv (0) [8:]) # cycle counter

Rapid Prototyping of Embedded Video Processing Systems in FPGA Devices
http://dx.doi.org/10.5772/61136

Interface control logic

stbo.next = 0; pipe.next = 0; cycEnd.next = 0
if stb and cyc: # count pipeline cycles
if cycnt == 3:

I
[

stbo.next

I
=

cyco.next
el se:

cycnt.next = cycnt + 1
elif (not stb) and (not cyc): # additional pipe cycles
if cycnt> 0:

cycnt.next = cycnt - 1
pipe.next = 1
if pipe:
stbo.next =1
if cycnt ==
cycEnd.next =1
if cycEnd ==

cyco.next = 0

The initial Python description of the square root calculation is 35 lines of code and is auto-
matically transformed to 72 lines of MyHDL and 126 lines of VHDL or Verilog code.

The next example is a sliding window operation for image filtering. The filtering is performed
by a discrete convolution of the input data with filter coefficients C, C,,...,C,. Horizontal

convolution equation in Z domain:

P,,=C,P+CPz"'+C,Pz?+--+C Pz"

out

The convolution can be decomposed into multiply—add operators and delay elements (z). The
convolution core is generated with one combinational and one sequential function:

3
c=[1, 2, 1]

= comb ("filt_log")
reg = seq("filt_reg")

log

reg.code ("if en:");
for i inrange (0, n):

log.code ("r{0}.next = s{0} + {2}*data".format (i,i+1,c[i]))
if (i < n-1):

reg.code (" s{l}.next = r{0}".format (i,i+1))

For implementation of the filter in stream processing IP component, we have to add interface
logic and consider boundary conditions in computation of the output values. Pixels outside
image boundary should have zero value in convolution computation. To insert this data into
convolution circuit core, we add an algorithmic state machine (ASM) driving data multiplexer
and input FIFO buffer. The dataflow structure of the stream processing filter is presented in
Figure 9.

81

82 Cutting Edge Research in Technologies

FIFO
din —

tag —
—I_ASM o c1 Q2

r0 D(n) sl ri D(n)

52 r2 = dout

Figure 9. Dataflow diagram for convolution filter with 3 coefficients

The image boundary pixels are marked with additional tag signal on the input. When the first
line pixel is received, the ASM switches input multiplexer to zero value and starts computation
cycles. The FIFO is used to hold incoming pixels before they are used in convolution compu-
tation. Similar sequence is performed for the last line pixel. State diagram and the correspond-
ing IP generator code of the ASM is presented in Figure 10.

[

SO —' a:asm("st", llSDll)
a.default ("en.next=0; read.next=0")
: S2
rdy & tag=first a.tran("sg", """, "rdy and tag==FIRST",
rdy "data.next=0; en.next=1", "S1")
data<=0;en<=1 a.tran("sl", "read.next=1", "w, "n_ wgom)
| data <= fifodata: a.tran("s2", "", "rdy", "data.next=fifodata;
read<=1 51 en<=1; read<=1 en.next=1; read.next=1", "")
I a.tran("s2", "", "rdy and tag==LAST","","S3")
a.tran("Ss3", "data.next=0; en.next=1", "",
tag=last wn o mggmy

data<=0; en<=1 | g3

Figure 10. Algorithmic state machine for the convolution controller

The ASM states and state transitions are described with tran() method using five parame-
ters: current state, state logic, transition condition, transition logic, and next state. For
example, in state SO the transition condition is FIFO ready signal (rdy) and tag that marks
the first pixel in a line. If the condition is satisfied, the data signal for the convolution core
is set to 0 and one convolution cycle is enabled (en). The default value of control signals
en and FIFO read is 0 and the signals are activated only in specified state or transition
logic. The ASM description is automatically converted to MyHDL sequential function and
state machine signal declarations.

The FIFO buffer description and interface logic is generated by setting sliding window
interface in IPgen object. The generated MyHDL code for convolution filter with three
coefficients contains 115 lines and is transformed to 160 lines of VHDL or Verilog. Vertical
convolution is computed by replacing the delay registers D(n) in the convolution core with

Rapid Prototyping of Embedded Video Processing Systems in FPGA Devices
http://dx.doi.org/10.5772/61136

circular buffers for one image line. The ASM logic should be changed to detect first and last
image line and replace the boundary lines with zero values.

6. Conclusion

We presented unified embedded video processing circuit design flow in the Python language
that speeds up the design cycle and automates error-prone domain conversion process. Python
scripting language is a good choice for testing domain-specific algorithm and data transfor-
mations using open-source packages. We selected the package MyHDL for RTL hardware
description and automatic conversion to readable VHDL or Verilog code. The advantage of
MyHDL in comparison to traditional hardware description languages is the ability to use all
the scripting power of the language for unit testing or simulation verification and to raise the
level description abstraction in the same environment. The drawbacks of MyHDL code are
limited support of some advanced HDL features from standard language packages and
complex error reporting. We overcome this limitation by using MyHDL as intermediate
language and use the proposed IPgen module for the streaming IP component hardware
description.

The IPgen module has generic object structures used for generating MyHDL components with
combinational and sequential functions and domain-specific streaming functions. Code
transformations in the output MyHDL generation process are used to determine the produced
circuit timing behavior and add video processing interfaces, components, and signals. We
presented examples of square root calculation and convolution filter designs. For the future
work, we will extend the IPgen classes to include more interface options and provide resource
mapping transformations.

Author details

Andrej Trost” and Andrej Zemva
*Address all correspondence to: andrej.trost@fe.uni-lj.si

Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia

References

[1] A.W. Malik, B. Thoernberg, and P. Kumar. Comparison of Three Smart Camera Ar-
chitectures for Real-Time Machine Vision System. Int | Adv Robot Syst. 2013;10(402):
1-12. DOI: 10.5772/57135

83

84 Cutting Edge Research in Technologies

(2]

[4]

[5]

[6]

8]

9]

[11]

[12]

[13]

J. Cong, B. Liu, S. Neuendorffer,]J. Noguera, K. Vissers, and Z. Zhang. High-Level
Synthesis for FPGAs: From Prototyping to Deployment. IEEE Transactions on Comput-
er-Aided Design of Integrated Circuits and Systems. 2011;30(4):473-491.

J. Serot, F. Berry, and S. Ahmed. Implementing Stream-Processing Applications on
FPGAs : A DSL-Based Approach. In: Field Programmable Logic and Applications, FPL;
2011; Chania, Crete, Greece. pp. 130-137.

A. Trost and A. Zemva. Teaching Design of Video Processing Circuits. International
Journal of Electrical Engineering Education. 2012;49(2):170-178. DOI: 10.7227/IJEEE.
49.2.7

International Telecommunication Union. Recommendation ITU-R BT.656-5 [Inter-
net]. 2007. Available from: http://www.itu.int/ [Accessed: February 2015].

D.G. Bailey. Design for Embedded Image Processing on FPGAs. John Wiley & Sons (Asia)
Pte Ltd, Singapore; 2011. 416 p

N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. In:
Histograms of Oriented Gradients for Human Detection; 2005; IEEE Computer Society
Washington. pp. 886-893. DOI: 10.1109/CVPR.2005.177

J. Sérot, F. Berry, and C. Bourrasset. High-Level Dataflow Programming for Real-
Time Image Processing on Smart Cameras. Journal of Real-Time Image Processing.
2014;:1-13. DOI: 10.1007/s11554-014-0462-6

A. Trost. Design of a Graphical Controller with Reusable Components. In: B. Zajc
and A. Trost, editors. Proceedings of the 22nd international Electrotechnical and Computer
Science Conference ERK 2013; September 2013; Portoroz, Slovenia. p. 31-34.

J. Dawson. Chips—Hardware Design in Python [Internet]. 2011. Available from:
http://dawsonjon.github.io/chips/ [Accessed: February 2015].

S. Bourdeauducq. Migen Manual [Internet]. March 2014. Available from: http://m-
labs.hk/migen.pdf [Accessed: February 2015].

J.I. Villar,]. Juan, M.]. Bellido, J. Viejo, D. Guerrero, and J. Decaluwe. Python as a
Hardware Description Language: A Case Study. In: VII Southern Conference on Pro-
grammable Logic (SPL); 2011; Cordoba. pp. 117-122.

M.T. Tommiska. Area-Efficient Implementation of a Fast Square Root Algorithm. In:
Proceedings of Third IEEE International Caracas Conference on Devices, Circuits and Sys-
tems; 2000; Caracas. pp. S18/1-518/4.

OpenCores. WISHBONE System-on-Chip (SoC) Interconnection Architecture for
Portable IP Cores [Internet]. 2002. Available from: http://cdn.opencores.org/down-
loads/wbspec_b3.pdf [Accessed: February 2015].

