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Abstract

Brucella spp. are facultative intracellular parasitic pathogens that can survive and
multiply in professional and nonprofessional phagocytes. These pathogens are
responsible for brucellosis, which can cause abortion in domestic animals and
undulant fever in humans. Brucella spp. can survive in a variety of cells and their
virulence and chronic infections are thought to be due to their ability to evade the
killing mechanisms within host cells, one of which is the inhibition of phagosome-
lysosome fusion. Lipid raft-associated molecules, such as GPI-anchored proteins,
GM1 ganglioside, and cholesterol, are selectively integrated into Brucella-containing
macropinosomes following the internalization of Brucella into macrophages, contin‐
uously sustaining a dynamic state of the phagosomal membrane. Toll-like receptors
(TLRs) are important systems that detect microbial invasion via recognition of
microbial components that triggers signaling pathways to promote the expression of
genes and regulate innate immune responses. Recent several studies have revealed
the importance between TLRs-Brucella interactions to control Brucella infection. Here,
we reviewed selected aspects of lipid raft-associated molecules and TLRs-Brucella
interaction, which may help to understand the mechanism of Brucella pathogenesis.

Keywords: Brucella, phagocytes, lipid-rafts associated molecules, TLRs, intracellular sur‐
vival

1. Introduction

Brucellosis is a major zoonotic disease worldwide that causes a serious debilitating disorder
in humans known as undulant fever, and abortion and sterility in domestic animals.
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Brucella spp. are gram-negative and facultative intracellular bacteria that can survive and
replicate within professional and nonprofessional phagocytes [1, 2]. Six well-recognized
species of Brucella are known according to host preference: B. melitensis (sheep and goats), B.
abortus (cattle), B. suis (hogs), B. ovis (sheep), B. canis (dogs), and B. neotomae (wood rats) [3]. In
the past few years, Brucella has been recovered from several marine mammals, including
cetaceans and pinnipeds, that belong to two potential new species, B. pinnipedialis and B. ceti
[4]. Recently, a new species of Brucella, B. microti, was isolated from wild common voles
suffering from a systemic disease [5, 6]. B. melitensis, B. abortus, and B. suis strains cause abortion
and infertility in their natural hosts, goats and sheep, cattle and swine, respectively. Humans
can also acquire Brucellosis in a form of a severe, debilitating febrile illness as a result of contact
with infected animals or their products [7]. B. ovis is a natural pathogen of sheep where it
primarily causes epididymitis and infertility in rams [8].

B. canis infection causes abortion and infertility in dogs [9]. Although B. ovis and B. canis are
important in animals, human infection with B. canis is rare [10], and human infection with B.
ovis has not been reported. B. neotomae, which infects only desert wood rats, is not known to
be associated with clinical disease in any host species.

Brucella species, in contrast to other intracellular pathogens, do not produce exotoxins,
antiphagocytic capsules or thick cell walls, resistance forms, or fimbriae and do not show
antigenic variation [11]. The key aspect of the virulence of Brucella is thought to be due to their
ability to avoid the killing mechanisms within macrophages [12, 13].

The most common points of entry of Brucella are the respiratory, digestive, and genital tracts
of both animals and humans. Brucella enters the phagocytic cells in an unknown cellular site
and spreads throughout the body by the regional lymph nodes. Brucella shows high tropism
in macrophages, especially monocytes in the liver, spleen, mammary glands, and reproductive
tracts. Chronic brucellosis mainly leads to bacterial resistance to host immune response and
host debilitated health status [14].

A tenth of the total Brucella will survive to avoid phagocytosis and penetrate cell membrane
for intracellular growth; macrophages are the most important for a successful infection. During
the infection, Brucella can interfere with the macrophage function, particularly the inhibition
of IFN-γ [15] and TNF-α expression [16], and the reduction of antigen presentation and
subsequent T cell activation [17]. Brucella inside dendritic cells (DC) contributes to the chronic
infection and induced low levels of pro-inflammatory cytokines and increased MHC II
expression [18]. Placental trophoblasts produce erythritol during the last trimester and
increases carbon source for Brucella and this pathogen caused abortion or stillbirth of the
infected fetus by inducing placental damage [19] and targeting giant trophoblasts [20]. Brucella
has also been reported in other cell types and are studied with cell models and lines such as
human pulmonary epithelial cells, caprine uterine epithelial cells, human osteoblastic cell
lines, murine neurons, bovine and human polymorphonuclear, and many other cells lines.
Surprisingly, extracellular brucellae were observed on the 21st day post infection [21–26].

Phagocytosis is a critical step for a successful immune reaction against microbial pathogens
that provokes both degradation of pathogens and the subsequent presentation of pathogen
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peptide antigens. Ligation of various phagocytic receptors, including Fc gamma receptors and
complement receptor 3, activates a series of intracellular signal transductions that induce
dynamic and rapid rearrangement of the actin cytoskeleton essential for phagocytic uptake
[27]. Several host cells such as M cells, macrophages, and neutrophils ingest Brucella by zipper-
like phagocytosis [28]. In addition, Brucella invades macrophages through lipid raft microdo‐
mains [29]. Phagocytosis of Brucella in both epithelial cells and macrophages requires F-actin
polymerization [30, 31].

Toll-like receptors (TLRs) are the best characterized pattern recognition receptors (PRRs) of
host cells. Receptor-ligand interaction via TLRs leads to the production of antimicrobial
peptides and proinflammatory cytokines through NF-κB, mitogen-activated protein kinase
(MAPK), and other various signaling pathways [32]. As a result, TLR signaling is crucial to
develop host innate immune response, including recruitment of DCs and T effector cells,
upregulation of MHC I and II on antigen presenting cells (APCs), and extension of adaptive
immunity against infection. In Brucellosis, many studies have reported that TLRs play
important roles in controlling Brucella infection. When unopsonized B. melitensis, B. abortus,
and B. suis strains internalize into macrophages and epithelial cells, the Brucella-containing
vacuoles (BCVs) enter into an intracellular trafficking pathway that results in the development
of specialized membrane-bound compartments [33–38] known as replicative phagosomes or
brucellosomes [39]. Interactions between the O-chain of Brucella smooth LPS and the lipid rafts
on the surface of macrophages have been shown to be important for mediating entry into host
cells in a manner that leads to the development of replicative phagosome [40]. During the initial
stages of intracellular trafficking of the BCVs, these compartments suffer temporary interac‐
tions with lysosomes [41] which results in their acidification [34, 42] and initiate extensive
interaction with the endoplasmic reticulum [33]. Eventually, intracellular pH rises to a level
that allows intracellular replication of the Brucella. In epithelial cells, the BCVs during devel‐
opment of the replicative phagosome acquire properties resembling autophagosomes [37],
which does not appear to be the case in macrophages [33]. Studies employing the human
monocytic cell line THP-1 and B. abortus strains opsonized with hyperimmune IgG have also
shown that when the Brucella internalizes host macrophages in this manner, the resulting BCVs
also undergo temporary association with the lysosomal compartment and become acidified
but do not interact extensively with the ER [43]. This altered intracellular trafficking limits the
fusion of the BCVs with lysosomes, which minimizes the exposure of these bacteria to the
bactericidal proteins that reside in these intracellular compartments [43].

In this section, we will discuss the key roles of several receptors for Brucella including immune
response, signal transduction cascade, and phagocytic pathway for Brucella infection within
host cells.

2. The roles of lipid rafts on Brucella infection

Brucella proliferates within professional and nonprofessional phagocytic host cells including
macrophages, epitheloid HeLa cells, fibroblasts NIH3T3, Vero cells, MDBK cells, etc., and
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successfully bypasses the bactericidal effects of phagocytes [13]. The macrophage response to
infection has important consequences for both the survival of phagocytized bacteria and the
further development of host immunity. For many bacterial pathogens, adherence to the host
tissue is believed to be essential for virulence, and the microbial characteristics that promote
adherence to receptors on a host cell surface are considered to be attributes of virulence [44].
For intracellular pathogens, including Brucella, the nature of the interaction with the host cell
will have important consequences for pathogen survival, proliferation, and dissemination, as
well as the development of specific immunity [45]. Lipid rafts are specialized membrane
microdomains rich in cholesterol, glycosylphosphatidylinositol (GPI)-anchored proteins, and
GM1 gangliosides [46]. Evidence regarding the potential role of lipid rafts in host-pathogen
interactions has been continuously accumulated, and lipid rafts have been implicated as
portals of entry for intracellular pathogens [47]. Several studies have implicated the involve‐
ment of lipid rafts in the entry and endocytic pathway of B. abortus in host cells. These studies
indicated that lipid raft-associated molecules, such as GPI-anchored proteins, GM1 ganglio‐
side, and cholesterol, are selectively integrated into Brucella-containing macropinosomes
following the internalization of Brucella into macrophages, continuously sustaining a dynamic
state of the phagosomal membrane [48]. Moreover, the internalization route of Brucella into
phagocytic cells determines the intracellular fate of these bacteria, and this event is modulated
by lipid rafts [48].

2.1. Roles of lipid rafts-associated molecules in Brucella infection

Time-lapse videomicroscopy has been used to follow the internalization of B. abortus strains
by mouse bone marrow-derived macrophages [35]. After contact of macrophages with wild-
type B. abortus, the bacteria move around from the site of initial contact and swim on the
macrophage surface, which often lasts up to several minutes; ruffling of the generalized plasma
membrane occurs before the eventual enclosure in large vacuoles. In contrast, contact of the
virB4 mutant of B. abortus with the target macrophage results in a much smaller ruffling
restricted to the area near the bacteria and uptake is more rapid than for the wild-type strain.
If the bacteria are deposited onto macrophages by centrifugation, generalized actin polymer‐
ization around the site of bacterial binding was observed in the wild-type strain when stained
with phalloidin to detect actin filament formation by using fluorescence microscopy, which
can also be observed by phase-contrast microscopy and the virB4 mutant shows primarily
small regions of phalloidin staining at the sites of binding. Therefore, B. abortus appears to
promote events on the macrophage cell surface that are dependent on the presence of the VirB
system. In case of B. abortus, macropinocytosis occurs within minutes of attachment to bacteria
on the surface of the macrophage. During bacterial contact, effector molecule(s) are translo‐
cated by the VirB system to the target cell, which initiates the process that leads to formation
of the macropinosome [29, 35]. These macropinosomes are induced transiently and shrink
rapidly, with the majority of vacuoles appearing tightly apposed against the bacterial surface
within 20 minutes after their initial appearance. In addition, macropinosomes are probed with
other components associated with lipid raft-associated molecules, such as GM1 gangliosides
and cholesterol, by incubating B. abortus and biotin-labeled cholera toxin B subunit (CTB),
which binds GM1-gangliosides, simultaneously with macrophages. CTB localizes around the
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internalized wild-type strain with kinetics of association similar to those for aerolysin-labeled
GPI-anchored proteins. In contrast, colocalization of CTB with the virB4 mutant was much less
pronounced, suggesting that the formation of the VirB-dependent macropinosome includes a
sorting process that allows transient association of lipid raft-associated components with
macropinosomes containing B. abortus.

2.2. Roles of cellular prion protein in Brucella infection

In addition to membrane sorting for brucella infection, key roles have been made in describing
bacterial entry where it has been shown that these bacteria penetrate into the macrophage
through a particular structure found in eukaryotic cells, lipid rafts, or lipid microdomains [48].
In order to interact with lipid rafts, Brucella requires smooth LPS to avoid the bactericidal
arsenal of macrophages that strains with rough LPS (without an O-side chain) encounter [40].
Moreover, a report has proposed that Brucella interacts with the cellular prion protein of
macrophages (PrpC), a protein anchored by a GPI-link in lipid rafts. This interaction was found
to be mediated by the membrane expression of Brucella HSP60 [49].

2.3. Roles of clathrin in Brucella infection

Lipid raft-associated clathrin is essential for host-pathogen interactions in infectious processes.
The focus of a recent study was to elucidate the clathrin-mediated phagocytic mechanisms of
Brucella [50]. From that study, the clathrin dependency of Brucella infection in HeLa cells was
investigated with an infection assay and immunofluorescence microscopy. The redistribution
of clathrin in the membrane and phagosomes was detected through sucrose gradient fractions
of lipid rafts and the isolation of Brucella-containing vacuoles (BCVs), respectively (Fig. 1).
Clathrin and dynamin were concentrated into lipid rafts upon Brucella infection, and the entry
and intracellular survival of Brucella were abrogated by clathrin inhibition in HeLa cells.
Clathrin disruption decreased actin polymerization and the colocalization of BCVs with
clathrin and Rab5 but not LAMP-1. Consequently, our data verified that clathrin plays a
fundamental role in the entry and intracellular survival of Brucella via the interaction with lipid
rafts and actin rearrangement, which determines the early intracellular trafficking of Brucella
to its advantage.

3. General aspects of toll-like receptors

Toll-like receptors (TLRs) are single-pass type I transmembrane-spanning proteins with a
single intracellular Toll/interleukin-1 (IL-1) receptor (TIR) domain and multiple extracellular
leucine-rich repeats (LRRs) responsible for binding to ligands that recognize and are activated
by a small collection of microbe-derived molecules [51]. Through studies of targeted mutants
among 13 paralogous TLRs, 10 in humans and 12 in mice, the diverse mode of ligands
recognition of individual TLRs were determined, except for TLR8, TLR10 (only present in
humans), and TLR11–13 (only present in mice). TLR2 is activated by lipopeptides and other
gram-positive bacterial components in conjunction with either TLR1 or TLR6; TLR4 detects
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LPS, which requires accessory protein MD-2; TLR5 detects flagellin; TLR3 detects poly I:C, a
double-stranded RNA (dsRNA) analog; TLR9 detects unmethylated DNA and CpG-oligo‐
deoxynucleotides (CpG-DNA) proposed to be delivered by Granulin and high mobility group
(HMG) B proteins through an ability to bind simultaneously to both CpG-DNA and TLR9; and
TLR7 is activated by single-stranded RNA and its synthetic analogs such as resiquimod,
imiquimod, and loxoribine. All known TLR dimer structures display the same arrangement
with the two carboxy-terminal tails closely juxtaposed and the amino termini at opposite ends
but each varies in modes of ligand recognition [51–54]. This conformation may be required to
bring the intracellular TIR domains into close proximity to initiate signaling. TLR activation
can induce cell-intrinsic antimicrobial activity such as activation of TLR2 and TLR4 can recruit
NADPH oxidase assembly and mitochondria to bacteria-containing phagosome, which lead
to a burst of reactive oxygen and nitrogen species within this compartment [55–57]. Evidence
suggests that possibly through recruitment of vacuolar-ATPase subunits to the phagosomal
membrane, TLR signaling can cause a rapid acidification of the phagosome in which TLR
signaling has occurred [53, 54, 58, 59]. These activities increase the antimicrobial capacity of
the phagosome, although some bacteria have actually cooped these signals to regulate their
virulence programs. Expression and secretion of antimicrobial peptides (AMPs) such as β-
defensins and cathelicidin can also be induced by TLRs upon detection of microbial ligands,
which further supports the role of TLR-mediated detection in cell-intrinsic antimicrobial
activity [60–62]. However, pathogens have evolved a variety of strategies to avoid TLR
signaling such as altering their surface structures, interfering with TLR signaling pathways,
and inhibiting, escaping, or subverting phagocytosis [52]. Brucella spp. are recognized by TLR2,
TLR4, and TLR9, which identifies lipopolysaccharide (LPS), lipoproteins, and bacterial DNA,
respectively [63].

3.1. TLRs and Brucella infection

The involvement of TLR2 and TLR4 in recognizing Brucella was reported in several studies.
TLR2 was proposed to induce secretion of TNF-α, IL-6, IL-12, and IL-10 in peritoneal macro‐
phages stimulated by B. abortus lipoproteins, such as Omp16 and Omp19 [64], responsible for
pro-inflammatory response, but no role was observed in controlling the pathogen in vivo [63].
TLR4, in cooperation with TLR9, was demonstrated in B. melitensis resistance [65]. The
interaction of TLR4 with non-canonical Brucella LPS induces activation of NF-κB, and its
interaction with Brucella spp. lumazine synthase stimulates maturation of dendritic cells [66]
followed by increased expression of co-stimulatory molecules and major histocompatibility
class II, as well as the production of IL-6, TNF-α, and IL-12p70 [63].

Maturation of dendritic cells and production of IL-12 and TNF-α in macrophages and dentritic
cells are impaired [67], and levels of inflammatory chemokines RANTES (CCL5), MCP-1
(CCL2) and MIP-1α (CCL) are reduced in the absence of MyD88 protein during Brucella
infection [65]. MyD88 molecule is required for the development of IFN-γ producing T cells
and control of brucellosis [65], suggesting that induction of Th1 response during the infection
is regulated by a MyD88-dependent pathway [63]. Furthermore, this molecule is used by other
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inflammatory signaling pathways that include IL-1 and IL-18 [58]. However, IL-18 was
observed to have no role in controlling murine brucellosis [63].

Brucella appears to interfere in TLR signaling by producing inhibitory homologues of Toll/
interleukin-1 receptor (TIR) domain, such as B. abortus Btp1, which targets TLR2 signaling
down-modulating maturation of infected dendritic cells and secretion of pro-inflammatory
cytokines [18], and B. melitensis TcpB that interacts with MyD88 in vitro impeding TLR2 and
TLR4 activation pathway and secretion of pro-inflammatory cytokines [68].

3.2. Roles of individual TLRs in Brucella infection

3.2.1. TLR2

The role of TLR2 in Brucella infection remains controversial. Some studies suggest that TLR2
is not required to control Brucella infection in the mouse [67, 69, 70]. However, other studies
indicate that TLR2 is important for clearance of Brucella from the lung following aerosol
exposure [71], cytokine production such as TNFα and IL-12 [64, 65, 67, 72, 73], MHC-II
expression [74], and down regulation of the type I receptor for the Fc portion of IgG (FcγRI,
CD64) [15].

3.2.2. TLR4

The role of TLR4 in Brucella infection also remains disputed. Some studies suggest that TLR4
is required to control Brucella replication in the mouse [65, 69, 70], others reveal that TLR4 is
not involved [67, 75]. Lee et al. [76] reported that TLR4-associated Janus kinase 2 (JAK2)
activation in the early cellular signaling events plays an essential role in B. abortus-induced
phagocytosis by macrophages (Fig. 2), implying the significance of JAK2 in pathogenesis of
Brucella [65]. TLR2, TLR4, and MyD88 play diverse roles in Brucella antigen specific antibody
production and antibody class switching [71].

3.3. TLR6

TLR6 is an important component that triggers an innate immune response against B. abortus.
TLR6 is recruited to the macrophage phagosome and recognizes bacterial peptidoglycan and
lipoproteins [77]. TLR6 also plays a role in bacterial diacylated lipopeptides recognition such
as MALP2, but is not essential for cytokine production in response to triacylated lipopeptides.
TLR6, in cooperation with TLR2, recognizes Brucella and further activates NF-κB signaling in
vitro and is required for the efficient control of B. abortus infection in vivo [78].

3.4. TLR9

TLR9 plays a role in controlling B. abortus infection in mice [65, 67]. Furthermore, TLR9 partially
mediates the expression of IL-12 by dendritic cells in response to heat-killed B. abortus [79].
TLR9 plays a significant role in preventing B. ovis replication in vivo, but only MyD88 is
required for wild type levels of inflammation [80].
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Figure 1. The role of clathrin in the entry and intracellular survival of B. abortus in non-professional phagocytes. A and
B: HeLa cells were pretreated with 12.5 μM CPZ, a clathrin inhibitor, for 45 minutes prior to infection with B. abortus at
an MOI of 10 for the indicated times. C–E: HeLa cells were transiently transfected with control or clathrin siRNA,
whose optimal conditions were evaluated by Western blotting (C), and subsequently infected according to the proce‐
dure described above (D and E). Bacterial internalization and intracellular survival efficiency were determined by eval‐
uating the protection of internalized bacteria from gentamicin killing and calculating the log10 CFU, respectively. The
data represent the mean ± S.D. of triplicate trials from three independent experiments. Differences that were statistical‐
ly significant compared with untreated samples are indicated. *, p < 0.05; **, p < 0.01; ***, p < 0.001 [50].

Figure 2. Diagram illustrating the phagocytic signaling pathway initiated by TLR4-linked JAK2 activation during the
internalization of B. abortus into macrophage. The interaction of B. abortus with TLR4 induces the activation of Cdc42
GTPase and JAK2, and the subsequent activation of PI3K and MAPKs promotes actin polymerization. This event con‐
tributes to the phagocytosis of B. abortus by macrophage. Lines with arrows denote an activating reaction and dotted
lines denote uncertainty of the reaction [76].
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4. Conclusion

Throughout this chapter, we described the interaction between Brucella and lipid rafts-
associated molecules and TLRs, including interacting specific molecules (ligands), immune
response, signal cascade, and controlling strategies. This review may help to understand the
pathogenic and defense mechanisms of Brucellosis. Furthermore, the understanding of lipid
rafts-associated molecules and TLRs-mediated controlling of intracellular parasitic bacterial
infection would be helpful to eradicate these diseases.

Abbreviation

IFN-γ Interferon gamma

TNF-α Tumor necrosis factor alpha

DC Dendritic cell

MHC II Major histocompatibility complex

TLR Toll-like receptor

PRRs Pattern recognition receptors

NF-κB Nuclear factor kappa-light-chain-enhancer of activated B
cells

MAPK Mitogen-activated protein kinase

APCs Antigen-presenting cells

BCVs Brucella-containing vacuoles

LPS Lipopolysaccharide

IgG Immunoglobulin

ER Endoplasmic reticulum

GPI Glycosylphosphatidylinositol

GM1 Monosialotetrahexosylganglioside

CTB Cholera toxin B

PrpC Cellular prion protein

HSP60 Heat shock protein 60

LAMP-1 Lysosomal-associated membrane protein 1

IL Intracellular Toll/interleukin

TIR Intracellular Toll/interleukin receptor

LRRs Leucine-rich repeats
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HMG High mobility group

NADPH Nicotinamide adenine dinucleotide phosphate

AMPs Antimicrobial peptides

Omp Outer membrane protein

RANTES Regulated on activation, normal T cell expressed and
secreted

MCP-1 Monocyte chemotactic protein 1

MIP-1α Macrophage inflammatory protein 1 alpha

Th T helper

JAK2 Janus kinase 2

MALP-2 Macrophage-activating lipopeptide-2

Author details

Suk Kim*

Address all correspondence to: kimsuk@gnu.ac.kr

Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National
University, Jinju, Republic of Korea

References

[1] Detilleux PG, Deyoe BL, Cheville NF. Entry and intracellular localization of Brucella
spp. in Vero cells: Fluorescence and electron microscopy. Vet Pathol. 1990; 27:
317-328.

[2] Detilleux PG, Deyoe BL, Cheville NF. Penetration and intracellular growth of Brucella
abortus in nonphagocytic cells in vitro. Infect Immun. 1990; 58: 2320-2328.

[3] Ko J, Splitter GA. Molecular host-pathogen interaction in brucellosis: Current under‐
standing and future approaches to vaccine development for mice and humans. Clin
Microbiol Rev. 2003; 16: 65-78.

[4] Foster G, Osterman BS, Godfroid J, Jacques I, Cloeckaert A. Brucella ceti sp. nov. and
Brucella pinnipedialis sp. nov. for Brucella strains with cetaceans and seals as their pre‐
ferred hosts. Int J Syst Evol Microbiol. 2007; 57: 2688-2693.

Updates on Brucellosis54



[5] Hubalek Z, Scholz HC, Sedlacek I, Melzer F, Sanogo YO, Nesvadbova J. Brucellosis
of the common vole (Microtus arvalis). Vector Borne Zoonotic Dis. 2007; 7: 679-687.

[6] Scholz HC, Hubalek Z, Sedlacek I, Vergnaud G, Tomaso H, Al Dahouk S, Melzer F,
Kampfer P, Neubauer H, Cloeckaert A, Maquart M, Zygmunt MS, Whatmore AM,
Falsen E, Bahn P, Gollner C, Pfeffer M, Huber B, Busse HJ, Nockler K. Brucella microti
sp. nov., isolated from the common vole Microtus arvalis. Int J Syst Evol Microbiol.
2008; 58: 375-382.

[7] Pappas G, Papadimitriou P, Akritidis N, Christou L, Tsianos EV. The new global
map of human brucellosis. Lancet Infect Dis. 2006; 6: 91-99.

[8] Buckrell BC, McEwen SA, Johnson WH, Savage NC. Epididymitis Caused by Brucella
ovis in a Southern Ontario Sheep Flock. Can Vet J. 1985; 26: 293-296.

[9] Wanke MM. Canine brucellosis. Anim Reprod Sci. 2004; 82: 195-207.

[10] Corbel MJ. Brucellosis: An overview. Emerg Infect Dis. 1997; 3: 213-221.

[11] Finlay BB, Falkow S. Common themes in microbial pathogenicity revisited. Microbiol
Mol Biol Rev. 1997; 61: 136-169.

[12] Sangari FJ, Aguero J. Molecular basis of Brucella pathogenicity: An update. Microbio‐
logia. 1996; 12: 207-218.

[13] Ugalde RA. Intracellular lifestyle of Brucella spp. Common genes with other animal
pathogens, plant pathogens, and endosymbionts. Microbes Infect. 1999; 1: 1211-1219.

[14] Martirosyan A, Moreno E, Gorvel JP. An evolutionary strategy for a stealthy intracel‐
lular Brucella pathogen. Immunol Rev. 2011; 240: 211-234.

[15] Barrionuevo P, Delpino MV, Velasquez LN, Garcia Samartino C, Coria LM, Ibanez
AE, Rodriguez ME, Cassataro J, Giambartolomei GH. Brucella abortus inhibits IFN-
gamma-induced Fc gamma RI expression and Fc gamma RI-restricted phagocytosis
via toll-like receptor 2 on human monocytes/macrophages. Microbes Infect. 2011; 13:
239-250.

[16] Caron E, Gross A, Liautard JP, Dornand J. Brucella species release a specific, protease-
sensitive, inhibitor of TNF-alpha expression, active on human macrophage-like cells.
J Immunol. 1996; 156: 2885-2893.

[17] Forestier C, Deleuil F, Lapaque N, Moreno E, Gorvel JP. Brucella abortus lipopolysac‐
charide in murine peritoneal macrophages acts as a down-regulator of T cell activa‐
tion. J Immunol. 2000; 165: 5202-5210.

[18] Salcedo SP, Marchesini MI, Lelouard H, Fugier E, Jolly G, Balor S, Muller A, Lapaque
N, Demaria O, Alexopoulou L, Comerci DJ, Ugalde RA, Pierre P, Gorvel JP. Brucella
control of dendritic cell maturation is dependent on the TIR-containing protein Btp1.
PLoS Pathog. 2008; 4: e21.

The Interaction Between Brucella and the Host Cell in Phagocytosis
http://dx.doi.org/10.5772/61463

55



[19] Tobias L, Cordes DO, Schurig GG. Placental pathology of the pregnant mouse inocu‐
lated with Brucella abortus strain 2308. Vet Pathol. 1993; 30: 119-129.

[20] Kim S, Lee DS, Watanabe K, Furuoka H, Suzuki H, Watarai M. Interferon-gamma
promotes abortion due to Brucella infection in pregnant mice. BMC Microbiol. 2005;
5: 22.

[21] Ferrero MC, Fossati CA, Baldi PC. Smooth Brucella strains invade and replicate in hu‐
man lung epithelial cells without inducing cell death. Microbes Infect. 2009; 11:
476-483.

[22] Meador VP, Hagemoser WA, Deyoe BL. Histopathologic findings in Brucella abortus-
infected, pregnant goats. Am J Vet Res. 1988; 49: 274-280.

[23] Delpino MV, Fossati CA, Baldi PC. Proinflammatory response of human osteoblastic
cell lines and osteoblast-monocyte interaction upon infection with Brucella spp. Infect
Immun. 2009; 77: 984-995.

[24] Garcia Samartino C, Delpino MV, Pott Godoy C, Di Genaro MS, Pasquevich KA,
Zwerdling A, Barrionuevo P, Mathieu P, Cassataro J, Pitossi F, Giambartolomei GH.
Brucella abortus induces the secretion of proinflammatory mediators from glial cells
leading to astrocyte apoptosis. Am J Pathol. 2010; 176: 1323-1338.

[25] Iyankan L, Singh DK. The effect of Brucella abortus on hydrogen peroxide and nitric
oxide production by bovine polymorphonuclear cells. Vet Res Commun. 2002; 26:
93-102.

[26] Rolan HG, Xavier MN, Santos RL, Tsolis RM. Natural antibody contributes to host
defense against an attenuated Brucella abortus virB mutant. Infect Immun. 2009; 77:
3004-3013.

[27] Gruenheid S, Finlay BB. Microbial pathogenesis and cytoskeletal function. Nature.
2003; 422: 775-781.

[28] Ackermann MR, Cheville NF, Deyoe BL. Bovine ileal dome lymphoepithelial cells:
Endocytosis and transport of Brucella abortus strain 19. Vet Pathol. 1998; 25: 28-35.

[29] Watarai M, Makino S, Fujii Y, Okamoto K, Shirahata T. Modulation of Brucella-in‐
duced macropinocytosis by lipid rafts mediates intracellular replication. Cell Micro‐
biol. 2002; 4: 341-355.

[30] Guzman-Verri C, Chaves-Olarte E, von Eichel-Streiber C, Lopez-Goni I, Thelestam
M, Arvidson S, Gorvel JP, Moreno E. GTPases of the Rho subfamily are required for
Brucella abortus internalization in nonprofessional phagocytes: Direct activation of
Cdc42. J Biol Chem. 2001; 276: 44435-44443.

[31] Kusumawati A, Cazevieille C, Porte F, Bettache S, Liautard JP, Sri Widada J. Early
events and implication of F-actin and annexin I associated structures in the phagocyt‐

Updates on Brucellosis56



ic uptake of Brucella suis by the J-774A.1 murine cell line and human monocytes. Mi‐
crob Pathog. 2003; 28: 343-352.

[32] Kawai T, Akira S. TLR signaling. Cell Death Differ. 2006; 13: 816-825.

[33] Celli J, de Chastellier C, Franchini DM, Pizarro-Cerda J, Moreno E, Gorvel JP. Brucella
evades macrophage killing via VirB-dependent sustained interactions with the endo‐
plasmic reticulum. J Exp Med. 2003; 198: 545-556.

[34] Arenas GN, Staskevich AS, Aballay A, Mayorga LS. Intracellular trafficking of Bru‐
cella abortus in J774 macrophages. Infect Immun. 2000; 68: 4255-4263.

[35] Kim S, Watarai M, Makino S, Shirahata T. Membrane sorting during swimming in‐
ternalization of Brucella is required for phagosome trafficking decisions. Microb Path‐
og. 2002; 33: 225-237.

[36] Naroeni A, Jouy N, Ouahrani-Bettache S, Liautard JP, Porte F. Brucella suis-impaired
specific recognition of phagosomes by lysosomes due to phagosomal membrane
modifications. Infect Immun. 2001; 69: 486-493.

[37] Pizarro-Cerda J, Meresse S, Parton RG, van der Goot G, Sola-Landa A, Lopez-Goni I,
Moreno E, Gorvel JP. Brucella abortus transits through the autophagic pathway and
replicates in the endoplasmic reticulum of nonprofessional phagocytes. Infect Im‐
mun. 1998; 66: 5711-5724.

[38] Rittig MG, Alvarez-Martinez MT, Porte F, Liautard JP, Rouot B. Intracellular survival
of Brucella spp. in human monocytes involves conventional uptake but special phag‐
osomes. Infect Immun. 2001; 69: 3995-4006.

[39] Kohler S, Michaux-Charachon S, Porte F, Ramuz M, Liautard JP. What is the nature
of the replicative niche of a stealthy bug named Brucella? Trends Microbiol. 2003; 11:
215-219.

[40] F, Naroeni A, Ouahrani-Bettache S, Liautard JP. Role of the Brucella suis lipopolysac‐
charide O antigen in phagosomal genesis and in inhibition of phagosome-lysosome
fusion in murine macrophages. Infect Immun. 2003; 71: 1481-1490.

[41] Starr T, Ng TW, Wehrly TD, Knodler LA, Celli J. Brucella intracellular replication re‐
quires trafficking through the late endosomal/lysosomal compartment. Traffic 2008;
9: 678-694.

[42] Porte F, Liautard JP, Kohler S. Early acidification of phagosomes containing Brucella
suis is essential for intracellular survival in murine macrophages. Infect Immun. 1999;
67: 4041-4047.

[43] Bellaire BH, Roop RM, 2nd, Cardelli JA. Opsonized virulent Brucella abortus repli‐
cates within nonacidic, endoplasmic reticulum-negative, LAMP-1-positive phago‐
somes in human monocytes. Infect Immun. 2005; 73: 3702-3713.

The Interaction Between Brucella and the Host Cell in Phagocytosis
http://dx.doi.org/10.5772/61463

57



[44] Casadevall A, Pirofski L. Host-pathogen interactions: The attributes of virulence. J
Infec Dis. 2001;1884: 337-344.

[45] Jimenez de Bagues MP, Dudal S, Dornand J, Gross A. Cellular bioterrorism: How
Brucella corrupts macrophage physiology to promote invasion and proliferation. Clin
Immunol. 2005;114: 227-238.

[46] Brown DA, London E. Functions of lipid rafts in biological membranes. Annu Rev
Cell Dev Biol. 1998; 14: 111-136

[47] Gatfield J, Pieters J. Essential role for cholesterol in entry of mycobacteria into macro‐
phages. Science 2000; 288: 1647-1650.

[48] Naroeni A, Porte F. Role of cholesterol and the ganglioside GM(1) in entry and short-
term survival of Brucella suis in murine macrophages. Infect Immun. 2002; 70:
1640-1644.

[49] Watarai M, Kim S, Erdenebaatar J, Makino S, Horiuchi M, Shirahata T, Sakaguchi S,
Katamine S. Cellular prion protein promotes Brucella infection into macrophages. J
Exp Med. 2003; 198: 5-17.

[50] Lee JJ, Kim DG, Kim DH, Simborio HL, Min W, Lee HJ, Her M, Jung SC, Watarai M,
Kim S. Interplay between clathrin and Rab5 controls the early phagocytic trafficking
and intracellular survival of Brucella abortus within HeLa cells. J Biol Chem. 2013; 288:
28049-28057.

[51] Moresco EM, LaVine D, Beutler B. Toll-like receptors. Curr Biol. 2011; 21: 488-493.

[52] Arpaia N, Barton GM. The impact of Toll-like receptors on bacterial virulence strat‐
egies. Curr Opin Microbiol. 2013; 16: 17-22.

[53] Blander JM, Medzhitov R. Regulation of phagosome maturation by signals from toll-
like receptors. Science 2004; 304: 1014-1018.

[54] Blander JM, Medzhitov R. Toll-dependent selection of microbial antigens for presen‐
tation by dendritic cells. Nature. 2006; 440: 808-812.

[55] Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol.
2004; 4: 181-189.

[56] Underhill DM, Ozinsky A. Phagocytosis of microbes: Complexity in action. Annu
Rev Immunol. 2002; 20: 825-852.

[57] West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, Walsh
MC, Choi Y, Shadel GS, Ghosh S. TLR signalling augments macrophage bactericidal
activity through mitochondrial ROS. Nature. 2011; 472: 476-480.

[58] Arpaia N, Godec J, Lau L, Sivick KE, McLaughlin LM, Jones MB, Dracheva T, Peter‐
son SN, Monack DM, Barton GM. TLR signaling is required for Salmonella typhimuri‐
um virulence. Cell. 2011; 144: 675-688.

Updates on Brucellosis58



[59] Trombetta ES, Ebersold M, Garrett W, Pypaert M, Mellman I. Activation of lysoso‐
mal function during dendritic cell maturation. Science. 2003; 299: 1400-1403.

[60] Redfern RL, Reins RY, McDermott AM. Toll-like receptor activation modulates anti‐
microbial peptide expression by ocular surface cells. Exp Eye Res. 2011; 92: 209-220.

[61] Rodriguez-Martinez S, Cancino-Diaz ME, Cancino-Diaz JC. Expression of CRAMP
via PGN-TLR-2 and of alpha-defensin-3 via CpG-ODN-TLR-9 in corneal fibroblasts.
Br J Ophthalmol. 2006; 90: 378-382.

[62] Tauszig S, Jouanguy E, Hoffmann JA, Imler JL. Toll-related receptors and the control
of antimicrobial peptide expression in Drosophila. Proc Natl Acad Sci. 2000; 97:
10520-10525.

[63] Oliveira SC, de Oliveira FS, Macedo GC, de Almeida LA, Carvalho NB. The role of
innate immune receptors in the control of Brucella abortus infection: Toll-like recep‐
tors and beyond. Microbes Infect. 2008; 10: 1005-1009.

[64] Giambartolomei GH, Zwerdling A, Cassataro J, Bruno L, Fossati CA, Philipp MT.
Lipoproteins, not lipopolysaccharide, are the key mediators of the proinflammatory
response elicited by heat-killed Brucella abortus. J Immunol. 2004; 173: 4635-4642.

[65] Macedo GC, Magnani DM, Carvalho NB, Bruna-Romero O, Gazzinelli RT, Oliveira
SC. Central role of MyD88-dependent dendritic cell maturation and proinflammato‐
ry cytokine production to control Brucella abortus infection. J Immunol. 2008; 180:
1080-1087.

[66] Berguer PM, Mundinano J, Piazzon I, Goldbaum FA. A polymeric bacterial protein
activates dendritic cells via TLR4. J Immunol. 2006; 176: 2366-2372.

[67] Weiss DS, Takeda K, Akira S, Zychlinsky A, Moreno E. MyD88, but not toll-like re‐
ceptors 4 and 2, is required for efficient clearance of Brucella abortus. Infect Immun.
2005; 73: 5137-5143.

[68] Cirl C, Wieser A, Yadav M, Duerr S, Schubert S, Fischer H, Stappert D, Wantia N,
Rodriguez N, Wagner H, Svanborg C, Miethke T. Subversion of Toll-like receptor
signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-contain‐
ing proteins. Nat Med. 2008; 14: 399-406.

[69] Campos MA, Rosinha GM, Almeida IC, Salgueiro XS, Jarvis BW, Splitter GA, Qure‐
shi N, Bruna-Romero O, Gazzinelli RT, Oliveira SC. Role of Toll-like receptor 4 in in‐
duction of cell-mediated immunity and resistance to Brucella abortus infection in
mice. Infect Immun. 2004; 72: 176-186.

[70] Copin R, De Baetselier P, Carlier Y, Letesson JJ, Muraille E. MyD88-dependent acti‐
vation of B220-CD11b+LY-6C+ dendritic cells during Brucella melitensis infection. J
Immunol. 2007; 178: 5182-5191.

The Interaction Between Brucella and the Host Cell in Phagocytosis
http://dx.doi.org/10.5772/61463

59



[71] Pei J, Ding X, Fan Y, Rice-Ficht A, Ficht TA. Toll-like receptors are critical for clear‐
ance of Brucella and play different roles in development of adaptive immunity fol‐
lowing aerosol challenge in mice. Front Cell Infect Microbiol. 2012; 2: 115.

[72] Huang LY, Aliberti J, Leifer CA, Segal DM, Sher A, Golenbock DT, Golding B. Heat-
killed Brucella abortus induces TNF and IL-12p40 by distinct MyD88-dependent path‐
ways: TNF, unlike IL-12p40 secretion, is Toll-like receptor 2 dependent. J Immunol.
2003; 171: 1441-1446.

[73] Zwerdling A, Delpino MV, Barrionuevo P, Cassataro J, Pasquevich KA, Garcia Sa‐
martino C, Fossati CA, Giambartolomei GH. Brucella lipoproteins mimic dendritic
cell maturation induced by Brucella abortus. Microbes Infect. 2008; 10: 1346-1354.

[74] Barrionuevo P, Cassataro J, Delpino MV, Zwerdling A, Pasquevich KA, Garcia Sa‐
martino C, Wallach JC, Fossati CA, Giambartolomei GH. Brucella abortus inhibits ma‐
jor histocompatibility complex class II expression and antigen processing through
interleukin-6 secretion via Toll-like receptor 2. Infect Immun. 2008; 76: 250-262.

[75] Barquero-Calvo E, Chaves-Olarte E, Weiss DS, Guzman-Verri C, Chacon-Diaz C, Ru‐
cavado A, Moriyon I, Moreno E. Brucella abortus uses a stealthy strategy to avoid acti‐
vation of the innate immune system during the onset of infection. PLoS One 2007; 2:
e631.

[76] Lee JJ, Kim DH, Kim DG, Lee HJ, Min W, Rhee MH, Cho JY, Watarai M, Kim S. Toll-
like receptor 4-linked Janus kinase 2 signaling contributes to internalization of Brucel‐
la abortus by macrophages. Infect Immun. 2013; 81:2448-2458.

[77] Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, Schroeder
L, Aderem A. The repertoire for pattern recognition of pathogens by the innate im‐
mune system is defined by cooperation between toll-like receptors. Proc Natl Acad
Sci. 2000; 97:13766-13771.

[78] de Almeida LA, Macedo GC, Marinho FA, Gomes MT, Corsetti PP, Silva AM, Cassa‐
taro J, Giambartolomei GH, Oliveira SC. Toll-like receptor 6 plays an important role
in host innate resistance to Brucella abortus infection in mice. Infect Immun. 2013;
81:1654-1662.

[79] Huang LY, Ishii KJ, Akira S, Aliberti J, Golding B. Th1-like cytokine induction by
heat-killed Brucella abortus is dependent on triggering of TLR9. J Immunol. 2005; 175:
3964-3970.

[80] Vieira AL, Silva TM, Mol JP, Oliveira SC, Santos RL, Paixao TA. MyD88 and TLR9
are required for early control of Brucella ovis infection in mice. Res Vet Sci. 2013; 94:
399-405.

Updates on Brucellosis60


