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Abstract

This chapter covers the advances in establishment and optimization of brassinoste‐
roids (BRs) in the alleviation of abiotic stresses such as water, salinity, temperature,
and heavy metals in plant system, especially roots. Plant roots regulate their develop‐
mental and physiological processes in response to various internal and external stim‐
uli. Studies are in progress to improve plant root adaptations to stress factors. BRs are
a group of steroidal hormones that play important roles in a wide range of develop‐
mental phenomena, and recently they became an alleviation agent for stress tolerance
in plants. This review is expected to provide a resource for researchers interested in
abiotic stress alleviation with BRs.

Keywords: Water stress, salt stress, temperature stress, heavy metal stress

1. Introduction

Abiotic  stress  responses  in  plants  occur  at  various  organ levels  among which  the  root-
specific  processes  are  of  particular  importance.  Under  normal  growth  condition,  root
absorbs water and nutrients from the soil and supplies them throughout the plant body,
thereby playing pivotal roles in maintaining cellular homeostasis. However, this balanced
system is altered during the stress period when roots are forced to adopt several structur‐
al and functional modifications. Examples of these modifications include molecular, cellular,
and phenotypic changes such as alteration of metabolism and membrane characteristics,
hardening of cell wall, and reduction of root length [1, 2]. The root system has the crucial
role of extracting nutrients and water through a complex interplay with soil biogeochemi‐
cal properties and of maintaining these functions under a wide range of stress scenarios to
ensure plant survival and reproduction [3].

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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and reproduction in any medium, provided the original work is properly cited.



Water stress is characterized by a reduction of water content and leaf water potential, closure
of stomata, and decreased growth. Severe water stress may result in the arrest of photosyn‐
thesis, disturbance of metabolism, and finally the death of plant [4]. This water loss causes a
loss of turgor pressure that may be accompanied by a decrease in cell volume depending on
the hardness of the cell wall [5]. The cells of the root must activate processes to limit water loss
and mitigate its harmful effects.

Salinity also affects plant growth, activity of major cytosolic enzymes by disturbing intracel‐
lular potassium homeostasis, causing oxidative stress and programmed cell death, reducing
nutrient uptake, genetic and epigenetic effects, metabolic toxicity, inhibition of photosynthesis,
decreasing CO2 assimilation, and reducing root respiration [6, 7, 8, 9]. Salt stress affects the
root in all developmental zones. Cell division decreases in the meristematic zone and cell
expansion attenuates in the elongation zone, resulting in reduced overall growth [10]. Cells
also expand radially in the elongation zone [11], and root hair outgrowth suppresses in the
differentiation zone [12]. Salt stress additionally results in agravitropic growth [13] as well as
reduced lateral root number under high-salt conditions and enhanced lateral root number
under moderate-salt conditions [14, 15]. Salt stress developes from excessive concentrations
of salt, especially sodium chloride (NaCl) in soil. Root is the primary organ of exposure and
hence responds rapidly [16]. Salt stress is known to increase Na+/K+ ratio in the root that leads
to cell dehydration and ion imbalance [17, 18, 19].

High temperature increases the permeability of plasma membrane [20], and also reduces water
availability [21]. Moreover, low temperature (chilling and frost stress) is also a major limiting
factor for productivity of plant indigenous to tropical and subtropical climates [22]. Chilling
stress has a direct impact on the photosynthetic apparatus, essentially by disrupting the
thylakoid electron transport, carbon reduction cycle, and stomatal control of CO2 supply,
together with an increased accumulation of sugars, peroxidation of lipids, and disturbance of
water balance [23].

Heavy metal contamination in soil could result in inhibition of plant growth and yield
reduction and even poses a great threat to human health via food chain [24]. Among heavy
metals, Cadmium (Cd) in particular causes increasingly international concern [25]. Cd-
contaminated soil results in considerable accumulation of Cd in edible parts of crops, and then
it enters the food chain through the translocation and accumulation by plants [26, 27]. Another
metal, chromium (Cr III or VI), is not required by plants for their normal plant metabolic
activities. On the contrary, excess of Cr (III or VI) in agricultural soils causes oxidative stress
for many crops. Reactive oxygen species (ROS), like hydrogen peroxide (H2O2), hydroxyl
radical (OH⋅), and superoxide radical (O2

−) generated under Cr-stress, are highly reactive and
cause oxidative damages to DNA, RNA, proteins, and pigments [28, 29]. Nickel (Ni) is one of
the most abundant heavy metal contaminants of the environment due to its release from
mining and smelting practices. It is classified as an essential element for plant growth [30].
However, at higher concentrations, nickel is an important environmental pollutant. Ni2+ ions
bind to proteins and lipids such as specific subsequences of histones [31] and induce oxidative
damage. Copper (Cu) is also an essential micronutrient for most biological organisms. It is a
cofactor for a large array of proteins involved in diverse physiological processes, such as
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photosynthesis, electron transport chain, respiration, cell wall metabolism, and hormone
signaling [32, 33]. Cu has emerged as a major environmental pollutant in the past few decades
because of its excessive use in manufacturing and agricultural industries [34]. Zinc (Zn) is one
of the other essential microelement, the second most abundant transition metal, and plays roles
in many metabolic reactions in plants [35, 36]. However, high concentrations of Zn are toxic,
induce structural disorders, and cause functional impairment in plants. At organism level, Zn
stress reduces rooting capacity, stunted growth, chlorosis, and at cellular level alters mitotic
activity [37, 38].

The key to find out abiotic stress tolerance resides in understanding the plant’s capacity to
accelerate/maintain or repress growth. Most plant hormones play a role in development and
have been implicated in abiotic stress responses. One of these hormones, BRs, are a group of
steroidal hormones that play significant roles in a wide range of developmental phenomena
including cell division and cell elongation in stems and roots, photo-morphogenesis, repro‐
ductive development, leaf senescence, and also in stress responses [39]. Mitchell et al. [40]
discovered BRs which were later extracted from the pollen of Brassica napus by Grove et al. [41].
To date, more than 70 BR-related phytosteroids have been identified in plants [42].

BRs increase adaptation to various abiotic stresses such as light [43, 44], low or high temper‐
ature [45], drought [46, 47, 48], salt stress [9], and heavy metal stress [49, 50]. BRs may be
applied/supplied to plants at different stages of their life cycle such as meiosis stage [51],
anthesis stage [52], and root application [9, 53].

In this chapter, the potential role of BRs in alleviating the adverse effects of water, salt, low/
high temperature stresses, and heavy metals on plants, especially roots, were discussed.

2. Water stress

Water shortage is predicted as one of the most important environmental problem for the
21st century that limits crop production [54]. Although drought stress inhibites the plant–
water  relations,  exogenous  application  of  BRs  maintaines  tissue–water  status  [55]  by
stimulating the proton pumping [56], activating nucleic acid and protein synthesis [57] and
regulation of genes expressions [58]. It has been shown that 24-epibrassinolide (24-epiBL)-
treated Arabidopsis  and B.  napus  seedlings had a  higher  survival  rate  when subjected to
drought  [59],  and  in  another  study  BR-treated  sorghum  (Sorghum  vulgare)  showed  in‐
creased germination and seedling growth under osmotic stress [60].

Root nodulation is a fundamental developmental event in leguminous crops, and is sensitive
to water shortage [61, 62, 63]. As endogenous hormones play an important role in the orga‐
nogenesis and initial growth of nodules in roots, attempts have been made to increase root
nodulation by growth regulator treatments [64, 65]. The potential of BRs in the improvement
of root nodulation and yield have been reported in groundnut [66]. Upreti and Murti [67] also
studied the effects of two BRs, epibrassinolide (EBL) and homobrassinolide (HBL), on root
nodulation and yield in Phaseolus vulgaris L. cv. Arka Suvidha under water stress. They
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concluded that water stress negatively influenced nodulated root, but BRs increased tolerance
to water stress and EBL was relatively more effective than HBL.

Several researchers have found that increased proline levels can protect plants from water
stress. BR treatment increased the contents of proline and protein under water stress [68].
Zhang et al. [69] also indicated that BR treatment promoted the accumulation of osmoprotec‐
tants, such as soluble sugars and proline. It may be due to the fact that BRs activated the
enzymes of proline biosynthesis, which caused an additive effect on the proline content [70].

Drought stress causes increment in H2O2 due to decrease in antioxidative enzyme activities
[71]. Plants have improved various defense mechanisms to respond and adapt to water stress
[72]. Vardhini et al. [73] studied with sorghum seedlings grown under PEG-imposed water
stress and investigated the effects of HBL and 24-epiBL on the activities of four oxidizing
enzymes: superoxide dismutase (SOD), glutathione reductase (GR), IAA oxidase, and poly‐
phenol oxidase (PPO). They found that supplementation of both the BRs resulted in enhanced
SOD and GR but lowered IAA oxidase and PPO. Li and Feng [68] also reported that treatment
of brassinolide significantly increased peroxidase (POD), catalase (CAT), and ascorbate
peroxidase (APX) activities of seedlings under normal water and mild water stress. Therefore,
increment in enzyme activities provided tolerance of Xanthoceras sorbifolia seedlings to drought
stress. It has been found that BRs can induce the expression of some antioxidant genes and
enhance the activities of antioxidant enzymes such as SOD, POD, CAT, and APX [74, 75].

3. Salt stress

Salinity stress is one of the most serious abiotic stress factors. It causes morphological,
biochemical, cytogenetic, and molecular changes in plants [9, 76, 77, 78]. Root lengths, shoot
lengths, and root numbers decrease in plants exposed to salt stress [7]. Moreover, salinity also
induces oxidative stress in plants due to production ROS [79, 80]. These ROS are produced in
the cell and interacted with a number of vital cellular molecules and metabolites, thereby
leading to a number of destructive processes causing cellular damage [81].

BRs reduce impacts of salt stress on ROS, gene expression, mitotic index, nutrient uptake, and
growth [9, 82, 83–88]. There are lots of studies to analyse alleviation of salt stress by using BRs.
In these studies, different parameters have been investigated to understand the mechanism of
BRs on salt stress (Table 1).

References [9] [84] [85] [86] [87] [88]

Effects on

gene expression
--- --- --- ---

Increased

Cu/Zn-SOD,

APX, CAT,

GR and OsBRI

expressions

---
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but reduced

Fe-SOD and

Mn-SOD,

OsDWF4 and

SalT

Effects on protein

content
Increased --- Increased --- Increased ---

Effects on enzyme

activities

Increased SOD and

CAT activities

Increased

CAT, GR,

POX and SOD

activities

Increased POX and

SOD activities

Increased SOD and

POD activities

Showed

varying

results

depending

on 24-epiBL

concentration

for SOD,

APX, CAT,

GR

Increased

CAT, POX

and SOD

activities

Effects on growth

and/or cell division
Increased Increased Increased Increased Increased Increased

Methods of salt and

BRs applications

Seeds were grown

under both 150–250

mM salt

concentrations and

0.5 and 1 µM HBR at

48 h and 72 h.

Plants

received 100

mM NaCl as

well as 0.01

µM of HBL

during 18

days after

sowing

25, 50, 100, and 150

mM NaCl were

applied and then

sprayed twice with

0.05 ppm brassinolide

during 25 days. At 45

days from sowing, the

plants were collected

Seedlings were exposed

to 90 mM NaCl with 0,

0.025, 0.05, 0.10, and

0.20 mg dm–3 24-epiBL

for 10 days

Seeds were

soaked for 8 h

in different

concentration

s of 24-epiBL

(10–11, 10-9 and

10–7 M). After

24-epiBL

application,

The seeds

were sown in

autoclaved

sand

moistened

with different

concentration

s of NaCl (0,

75, 100, 125

mM) during

12 days

The 15-day-

old plants

were exposed

to 100 mM

NaCl and

they were

subsequently

treated by

exogenous 24-

epiBL (10–8

M). The

plants were

harvested

after 30 days

of growth

Plant Species Hordeum vulgare L.
Vigna

radiata L.
Vigna sinensis L. Solanum melongena L.

Oryza sativa L.

var. Pusa

Basmati-1 cv.

indica

Cucumis

sativus L.

Table 1. Effects of BRs on plants subjected to salt stress Dashes indicate that there are no results in study.
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4. Temperature stress

4.1. High temperature

In general, a transient elevation in temperature (usually 10–15oC above environment) causes
heat shock or heat stress [89]. High-temperature effects can be seen at the biochemical and
molecular level in plant organs (especially leaves). Heat stress induces decrease in duration of
developmental phases, leading to fewer organs, smaller organs, reduce light perception over
the shortened life cycle, and finally play an important role in losing the product [90, 91, 92].

High-temperature stress often induces the overproduction of ROS [93] which can cause
membrane lipid peroxidation, protein denaturation, and nucleic acid damage [94, 95]. Many
studies have demonstrated that ROS scavenging mechanisms play an important role in
protecting plants from high-temperature stress [96, 97]. BRs applications decrease ROS levels
and increase antioxidant enzyme activities to provide thermotolerance to elevated tempera‐
tures [98].

4.2. Low temperature

Chilling and frost stresses affect growth, development, survival, and crop productivity in
plants [99, 100, 101]. However, BRs treatments enhance seedling tolerance to chilling stress
[101] and increase the height, root length, root biomass, and total biomass of rice under low-
temperature conditions [102, 103]. In another study, Krishna [104] reported the same results
in maize. They postulated that treatments with BRs promoted growth recovery of maize
seedlings following chilling treatment (0–3°C).

Chilling stress increases the proline, betaine, soluble protein, soluble sugar contents of plants
[79, 105]. Studies showed that BRs treatment enhanced proline content and therefore increased
plant chilling resistance and cell membrane stability [99, 100, 106, 107].

Chilling stress could trigger the production of antioxidant enzymes in plants to prevent the
chilling injury [108]. In the previous investigations, it was reported that treatment with BRs
further increased the activities of antioxidant enzymes under chilling stress as well [99, 100,
107, 109]. The enhanced activities of the antioxidative enzymes as a result of BRs applications
may occur with increasing de novo synthesis or activation of the enzymes, which is mediated
through transcription and/or translation of specific genes to gain tolerance [57].

5. Heavy metal stresses

5.1. Cd stress

Cd toxicity has emerged as one of the major agricultural problems in many soils around the
world [110]. It has been shown to interfere with the uptake, transport, and utilization of
essential nutrients and water, change enzyme activities, cause symptoms (chlorosis, necrosis),
decrease in fresh and dry mass of root and shoot and also their lengths [110, 111, 112].
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There are lots of studies to investigate the effects of BRs on Cd stress in plant species [110, 113,
114]. In these studies, results showed that BRs change different parameters such as germina‐
tion, plant dry biomass, protein content, and antioxidant enzyme activities (Table 2). It is
proposed that the changes induced by BRs are mediated through the repression and/or de-
repression of specific genes [58]. Microarray experiments evaluating gene expression changes
in Arabidopsis roots and shoots under Cd stress were performed [115]. Moreover, studies
showed that gene expression in response to Cd mimics a BR increase, and Cd exposure most
probably induces an activation of the BR signaling pathway in Arabidopsis [116].

5.2. Cr stress

Cr (III or VI) is not required by plants for their normal plant metabolic activities [117]. The
entry of Cr into a plant system occurs through roots via using the specialized uptake systems
of essential metal ions required for normal plant metabolism [118]. On the contrary, excess of
Cr (III or VI) in agricultural soils causes oxidative stress to many crops. Reduced seed germi‐
nation, disturbed nutrient balance, wilting, and plasmolysis in root cells and thus effects on
root growth of plants have been documented in plants under Cr stress [118, 119].

Choudhary et al. [120] reported that EBL treatment improved seedlings growth under Cr (VI)
stress. Ability of EBL to increase seedling growth under this metal stress could be attributed
to the capacity of BRs to regulate cell elongation and divisional activities, by enhancing the
activity of cell wall loosening enzymes (xyloglucan transferase/hydrolase, XTH) [121]. Studies
also indicated that increment in antioxidant activities as a result of BRs application (Table 2)
provide plant tolerance to grow under Cr stress.

5.3. Ni stress

The heavy metals that affect (either positively or negatively) plants include Fe, Cu, Zn, Mn,
Co, Ni, Pb, Cd, and Cr, but out of them, nickel has recently been defined as an essential
micronutrient, because of its involvement in urease activity in legumes [122]. Excess Ni causes
different problems. These symptoms include the inhibition in root elongation, photosynthesis
and respiration, and interveinal chlorosis [123]. Moreover, the toxic concentration of Ni also
inhibits enzyme activities and protein metabolism [124]. This metal also accelerates the
activities of antioxidative enzymes [125, 126].

BRs effect on Ni stress in plants has been studied to understand the relationship between BRs
and this stress (Table 2). One of these studies was carried out by Yusuf et al. [49]. They showed
that seed germination and seedling growth were significantly reduced by Ni treatment, but
HBL treatment enhanced germination percentage as well as shoot and root lengths in Ni-
stressed seedlings. BRs confer tolerance against heavy metals either by reducing their uptake
or by stimulating the antioxidative enzymes in B. juncea [127, 128]. The exogenous application
of BRs in nickel-stressed R. sativus L., and Triticum aestivum L. plants enhanced the pool of
antioxidant enzyme activity, thus alleviating the toxic effects of this stress [129].
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5.4. Cu stress

Among the pollutants of agricultural soils, Cu has become increasingly hazardous due to its
involvement in fungicides, fertilizers, and pesticides [130]. In addition, Cu present in excess
has been known to decrease root biomass and alter plant metabolism [131, 132]. Sharma and
Bhardwaj [127] demonstrated decrease in growth parameters of Brassica juncea grown under
Cu stress. The reduction in growth parameters due to the Cu stress occurred as a result of
decreasing mitotic activity and cell elongation [133, 134]. Moreover, Chen et al. [130] suggested
a different opinion. They concluded that Cu-induced inhibition in root growth of rice seedlings
was due to the stiffening of the cell wall. Moreover, excess of Cu ion leads to the generation of
harmful ROS via the formation of free radicals [135].

Effects of exogenous application of BRs were studied on Raphanus sativus seedlings under Cu
stress. It was found that 24-epiBL promoted the shoot and root growth by overcoming the Cu
toxicity [136]. The growth-promoting effects of BRs on seedlings under Cu stress may be linked
to the general ability of BRs to promote cell elongation and cell cycle progression [137, 138] as
well as the stimulation of genes encoding xyloglucanses and expansins [139]. BRs applications
also increase antioxidant enzyme activities [140, 141]. Increasing all parameters as a result of
BRs application improves plant tolerance against Cu stress, and finally plant development
(Table 2).

5.5. Zn stress

Zn is an essential microelement, the second most abundant transition metal after iron (Fe), and
has a role in many metabolic reactions in plants [35, 36]. However, high concentrations of Zn
are toxic, induce structural disorders, and cause functional problems in plants. At organism
level, Zn stress causes reduced rooting capacity, growth, and at cellular level alters mitotic
activity [37, 38]. It induces oxidative stress by promoting ROS production as a result of indirect
consequence of Zn toxicity [142].

Application of BRs on plants alleviates Zn stress via increasing protein content and antioxidant
enzyme activities (Table 2). Çağ et al. [143] reported that EBL application effectively enhanced
the protein content in Brassica oleraceae cotyledons. Sharma et al. [144] also reported that pre-
sowing treatments of HBL lowered the uptake of metal and enhanced the activities of antiox‐
idative enzymes and protein concentration of B. juncea seedlings under Zn stress. Moreover,
Ramakrishna and Rao [145] also reported that the application of 24-epiBL significantly
alleviated the Zn-induced oxidative stress.

References [114] [146] [30] [147] [141] [145]

Effects on gene

expression
--- --- --- --- --- ---

Effects on protein

content
--- Increased

Decreased protein

content
---

Showed

varying

results

---
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Effects on enzyme

activities

Increased CAT, POX

and SOD activities

Decreased

CAT level

Decreased SOD but

increased POD

activities

Increased SOD, CAT

and POX activities

Showed

varying

results

Increased

Effects on growth

and/or cell division
Alleviated Improved Improved Improved Increased Increased

Methods of metal

and BRs

applications

Soil amended with

50 µM Cd and

foliage sprayed with

10-8 M HBL at 20

days after sowing.

The plants were

sampled at 30 days

after sowing

Seeds were

treated with

eEBL (10-9 M)

and 1.2 mM

Cr(VI)

(K2CrO4)

solution at 7

days

Seeds were soaked for

8 h in different

concentrations of 24-

epiBL (0, 10-7, 10-9 and

10-11 M). Then, seeds

were grown under

different (0, 0.5, 1.0,

1.5, and 2.0 mM) Ni

concentrations

Seeds were grown in

different levels of Cu2+

(50 or 100 mg kg-1 of

soil.

At 15 and 20 days stage,

10-5 mM HBL was

applied. At 45 days,

plants were collected

Seeds were

grown under

both 30 µM

– 40 µM Cu

and 2 µM

HBR at 48 h

and 72 h

EBR (0.5, 1,

and 2 µM)

and 5 mM of

Zn were

applied to

seeds. Seven

day old

seedlings

were collected

Plant Species Triticum aestivum L.
Raphanus

sativus L.

B. juncea

L.
Vigna radiata L.

Helianthus

annuus L.

Raphanus

sativus L.

Cd Stress Cr Stress Ni Stress Cu Stress Zn Stress

Table 2. Effects of BRs on plants subjected to Cd, Cr, Ni, Cu and Zn stresses. Dashes indicate that there are no results
in study

6. Conclusion

Roots are very important plant organs whose architecture is determined by endogenous and
environmental conditions to adjust water and nutrient uptake from soil [148, 149]. BRs, one of
the plant hormones, have both positive and negative effects on root growth related to hormone
concentrations [150]. Experimental condition is one of the most important factors for analysing
BRs effects on root development. The procedures using BRs to alleviate abiotic systems
generally are easy, time saving, and one of the most reliable systems [53]. Therefore, BRs open
up new approaches for plant tolerance against hazardous environmental conditions [151].
Morphological, biochemical, and molecular analyses have been performed to analyse the
effects of BRs. However, detailed analyses should be performed to investigate the relationship
between abiotic stresses and BRs, especially gene expression studies will provide knowledge
about interaction at molecular level in plants [152]. We tried to cite as many papers as possible.
Yet we apologize to authors whose works are gone unmentioned in this chapter.
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