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Abstract

In the present paper the non-endoreversible Curzon-Ahlborn, Stirling and Ericsson
cycles as models of thermal engines are discussed from the viewpoint of finite time
thermodynamics. That is, it is propose the existence of a finite time of heat transfer for
isothermal processes, but the cycles are analyzed assuming they are not endoreversi‐
ble cycles, through a factor that represents the internal ireversibilities of them, so that
the proposed heat engine models have efficiency closer to real engines. Some results
of previous papers are used, and from the get expressions for the power output func‐
tion and ecological function a methodology to obtain a linear approximation of effi‐
ciency including adequate parameters are shown, similar to those obtained in that
previous paper used. Variable changes are made right, like those used previously.

Keywords: finite time thermodynamics, power output, ecological function, efficiency

1. Introduction

A valuable tool for validating and improving knowledge of nature is using models. A scientific
model is an abstract, conceptual, graphic, or visual representation of phenomena, systems, or
processes to analyze, describe, explain, simulate, explore, control, and predict these phenom‐
ena or processes. A model allows determining a final result from appropriate data. The creation
of models is essential for all scientific activity. Moreover, a given physics theory is a model for
studying the behavior of a complete system. The model is applied in all areas of physics,
reducing the observed behavior to more basic fundamental facts, and helps to explain and
predict the behavior of physical systems under different circumstances.

In classical equilibrium thermodynamics, the simplest model of an engine that converts heat
into work is the Carnot cycle. The behavior of a heat engine working between two heat
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reservoirs, modeled as this cycle, is expressed by the relation between the efficiency η and the
ratio of temperatures of the heat reservoirs, TC / TH , with 0<TC / TH <1, the Carnot efficiency
ηC =1−TC / TH . The temperatures of reservoirs, cold and hot, respectively, are TC  and TH  (equal
to those of heat engine), and ηC  is a physical limit for any heat engine.

A more realistic cycle than the Carnot cycle is a modified cycle taking into account the processes
time of heat transfer between the system and its surroundings, in which the working temper‐
atures are different of those its reservoirs [1], obtaining the efficiency ηCAN =1− TC / TH , first
found in references [2] and [3], and known as Curzon–Ahlborn–Novikov–Chambadal
efficiency. At present, the duration of heat transfer processes is important. Based on this model,
at the end of the last century, a theory was developed as an extension of classical equilibrium
thermodynamics, the finite time thermodynamics, in which the duration of the exchange
processes heat becomes important.

Two operating regimens of a heat engine with the same type of parameters have been
established: maximum power output regimen as in [1] and maximum effective power regimen,
taking into account the entropy production through a function called ecological function,
which represents the relationship between power output P  and entropy production σ
advanced in [4]. It is worth noting that there are other operating regimens such as maximum
cycle efficiency or minimum entropy production. Thus, power output has been maximized in
[1,5-7] among others, entropy production has been minimized in [8-10] among others, and the
so-called ecological function has been maximized in [4, 11-13] among others. Also, cycles
including internal irreversibilities in various aspects of operation of thermal engines have been
analyzed in [14-19] and others, and the regions of existence of the objective functions listed
above have been analyzed by a limited number of publications, in [9,20,21] and others. Notice
that in almost all the above references, the time of the adiabatic processes in the so-called
Curzon–Ahlborn cycle is assumed irrelevant because this time is considered very small
compared with the total time of cycle. Nevertheless, a meticulous examination on the behavior
of real engines leads to take into account the time of these adiabatic processes because these
processes are only an approach to real processes in which there is no heat transfer.

An alternative to analyze the Curzon–Ahlborn cycle, taking into account some effects that are
nonideal to the adiabatic processes through the time of these processes, is the model proposed
in [5] and in [7]. It allows to find the efficiency of a cycle as a function of the compression ratio,
rC =Vmax / Vmin. When rC →∞, Vmax > >Vmin, the Curzon–Ahlborn–Novikov–Chambadal effi‐
ciency is recovered. The non-endoreversible Curzon and Ahlborn cycle can be analyzed by
means of the so-called non-endoreversibility parameter IS , defined first in [14] and later in [15]
and in [16], which can be used to analyze diverse particularities of cycles. Furthermore, this
parameter leads to equality instead of Clausius inequality [14].

In the present paper, the performance of a non-endoreversible heat engine modeled as a
Curzon–Ahlborn cycle is analyzed. The procedure in [5] is combined with the procedure in
[16], arriving to linear approaches of the efficiency as a function of a parameter that contains
the compression ratio in both regimens maximum power output and maximum ecological
function. From the limit values of the non-endoreversibility parameter and the compression
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ratio, the known expressions of the efficiency found in the literature of finite-time thermody‐
namics are recovered. Also, an analysis of the Stirling and Ericsson cycles is made, when the
existence of a finite time for the heat transfer for isothermal processes is assumed, and
assuming they are not endoreversible cycles, through the non-endoreversibility parameter that
represents internal irreversibilities of them. Some results in [22] are used, and from the
expressions obtained for the power output function and ecological function, the methodology
to obtain a linear approximation of efficiency including an adequate parameter is shown,
similar to those used in case of the Curzon–Ahlborn cycle. Variable changes are made right,
like those used in [5] and in [23,24]. In order to make the present paper self-contained, a review
of results for instantaneous adiabatic case is presented. All quantities have been taken in the
International System of Measurement.

2. Linear approximation of efficiency: endoreversible Curzon–Ahlborn
cycle

In a previous published chapter by InTech [25], we devoted to analyze the Curzon and Ahlborn
cycle under the following conditions: without internal irreversibilities and non instantaneous
adiabats. We have shown some results in case of the Newton heat transfer law (Newton cooling
law) and the Dulong and Petit heat transfer law, namely, heat transfer law like dQ / dt∝ (ΔT )k ,
k =5 / 4. Hence, we begin with a summary of the cited chapter.

2.1. Known results and basic assumptions

Since the pioneer paper [1], the so-called finite time thermodynamics has been development.
They proposed a model of thermal engine shown in Figure 1, which has the mentioned
Curzon–Ahlborn–Novikov–Chambadal efficiency, as a function of the cold reservoir temper‐
ature TC  and the hot reservoir temperature TH , as follows:

1 / ,CAN C HT Th = - (1)

In this cycle, QH / T HW =QC / TCW  is fulfilled. The entropy production during the exchange of
heat between the system and its reservoirs is only taken into account. The working tempera‐
tures of substance are T HW  and TCW , being TC <TCW <T HW <TH . In contrast, the Carnot
efficiency is obtained when the temperatures of reservoirs are the same as the temperatures of
the engine, which means T HW =TH  and TC =TCW  in Figure 1, namely,

1 1C CW
C

H CH

T T
T T

h = - = - (2)

Linear Approximation of Efficiency for Similar Non-Endoreversible Cycles to the Carnot Cycle
http://dx.doi.org/10.5772/61011

83



Equation (1) has been obtained at maximum power output regimen and recovered later by
some procedures [5,10,26,27] among others. Moreover, in [4] was advanced an optimization
criterion of merit for the Curzon and Ahlborn cycle, taking into account the entropy produc‐
tion, the ecological criterion, by maximization of the ecological function,

,CE P T s= - (3)

where P is the power output, TC  is the temperature of cold reservoir, and σ is the total entropy
production. The efficiency of Curzon and Ahlborn cycle now can be written as

( )21 / 2.Eh e e= - + (4)

By contrast, following the procedure in [5], the form of the ecological function and its efficiency
was found using the Newton heat transfer law and ideal gas as working substance in [12] and
using the Dulong–Petit heat transfer law for ideal gas as working substance in [28]. Hence, as
the upper limit of the efficiency of any heat engine is the Carnot efficiency, the temperatures
of the reservoir equal those of the heat engine. Thus, the definition of efficiency of an engine
working in cycles leads to the Carnot efficiency, fulfilling

1 .H C CW

H HW

Q Q T
Q T
-

£ - (5)

With ε ≡TC / TH , the following equations can be written: Carnot efficiency, ηC ≡1−ε ; Curzon–

Ahlborn–Novikov–Chambadal efficiency: ηCAN =1− ε ; and ecological efficiency:

ηE =1− (ε 2 + ε) / 2. Any efficiency can be written as

Figure 1. Curzon and Ahlborn cycle in the entropy S vs temperature T plane.
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1 ( ).zh e= - (6)

Thus, the problem of finding the efficiency of a heat engine modeled as a Curzon–Ahlborn
cycle, maximizing power output or maximizing ecological function, becomes the problem of
finding a function z = z(ε). Substituting z = z (ε) in Equation (6), one has

( )h h e= (7)

Similar results are obtained with a nonlinear heat transfer, like the Dulong and Petit heat
transfer. Assuming the same thermal conductance α in two isothermal processes of the
Curzon–Ahlborn cycle, the heat exchanged between the engine and its reservoirs could be in
general as

( ) ( )and , 1.k kH H
H HM C CW

dQ dQT T T T k
dt dt

a a= - = - ³ (8)

By contrast, assuming the heat flows QH  and QC , given by Newton’s heat transfer law, the case
k =1 in Equation (8), the power output becomes

( )
1

1

1 1 ln
,H

z
u uz

T z z
P

e

a l

- -

é ù- +ë û=
+

(9)

where R is the general constant of gases. The parameter γ ≡CP / CV  has been used, and also the
variables u =T HW / TH  and z =TCW / T HW  from which we obtain P = P(u, z). The adiabatic
processes are noninstantaneous. In fact, the total time of cycle is

1 2 3 4 ,TOTt t t t t= + + + (10)

being the times for the isothermal processes,

( ) ( )
2 4

1 31 3ln and ln ,V VHW CW
V V

H HW CW C

RT RTt t
T T T Ta a

= =
- - (11)

and the times for the adiabatic processes have been assumed to be

3 4

2 12 1 4 2ln and ln ,V V
V Vt f t f= = (12)
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with

( ) ( )1 2and .HW CW

H HW CWw C

RT RTf f
T T T Ta a

º º
- - (13)

The maximization conditions ∂P / ∂u =0 and ∂P / ∂ z =0 lead to obtain (or, permit obtain)

( )( ) ( )( )2and 1 ln 1 ,
2

zu z z z z
z
e e l l e+

= - + = - - (14)

where λ represents the external parameter λ = (γ −1)ln(V3 / V1) − 1, meaning that

( )( )max max , ,P P u z z= (15)

that is Pmax is a projection on the (z, P) plane. It is also found that at the maximum power
condition, z is given by a power series in λ, namely,

( ) ( ) ( )2 2 2
2 31 1

2 41 1 1 / 2 ln ( )Pz Oe e l e e e e l lé ù= + - + - - - +ê úë û
(16)

Upon susbtituting Equation (16) in Equation (6) and because the terms in Equation (16) are
positive, an upper bound for the efficiency is obtained when λ =0, i.e., when the compression
ratio rC =V3 / V1 goes to infinity, it results in the following:

( )max 1 0 .P CANzh l h= - = = (17)

The equivalent of Equation (16) for the ecological function with this procedure was obtained
in [12] by substituting Equation (9) in Equation (3), and the entropy production, σ =ΔS / tTOT .
Using Equation (8) in the case k =1, and the total time tTOT  given by Equations (10)–(13), the
ecological function becomes

( )( )
1 1

1

1 2 1 ln
.

z
u zu

z z
E T

e

e l
a

- -

+ - +
=

+
(18)

Upon maximizing the function E = E (u, z) (ε is defined positive and λ is defined semi-positive,
being external parameters), ∂E / ∂u =0 and ∂E / ∂ z =0, for the first one u =u(z) is as in case of
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maximizing power output, and for the second one, the following relation between the variables
z and u is obtained:

( ) ( ) ( )( ) ( )( )( )2 1 ln 1 2 1 2 1 ln 1 .z z z z zu z z u zl l e e e e l eé ù+ - + - - - = + - + -ë û (19)

The equation that z obeys at the maximum of the ecological function is obtained as follows:

( ) ( ) ( ) ( )( )2 1 ln 1 2 1 2 1 ln .z z z z z zl l e e e l eé ù+ - + - - = + - +ë û (20)

We find, upon taking the implicit successive derivatives of Equation (20) with respect to λ, the
following one-power series in λ :

( ) ( ){ ( ) ( )

( )( ) ( )}
2

1
2 2161 1 2 1

2 4 2 2 2

2 2 31
2

1 3 1 21 1 3 1 ln
2

1 3 4

Ez

O

e e

e
e e e l e e

e e e e

e e e l l

+

æ ö+é ù= + + + - + - + ´ç ÷ç ÷ë û + +è ø

+ - + +

(21)

Furthermore, using Equation (21), we can write the efficiency as a power series in λ,

( )1 , .Ezh e lº -E (22)

When λ =0, the corresponding ecological efficiency with instantaneous adiabats is,

( ) ( )21
21 , 0 1 ,EO EOzh e l e e= - = = - + (23)

which is the maximum possible one for this operating regimen. From Equations (16) and (21)
a linear approximation for the efficiency η in terms of compression ratio can be derived,
rC =V3 / V1, and of the ratio TC / TH . It can be verified that rC →∞ and λ →0 lead to the Curzon–
Ahlborn–Novikov–Chambadal efficiency, now written as ηCAN ≡ηP(λ =0)=ηPO . From Equation
(16), the linear approximation can be obtained:

( ) ( )2
1
21 1 ,PLh l e e l= - - - (24)

and the corresponding linear approximation of ecological efficiency is as follows:

Linear Approximation of Efficiency for Similar Non-Endoreversible Cycles to the Carnot Cycle
http://dx.doi.org/10.5772/61011

87



( ) ( ) ( ) ( )2 21 1 1
2 4 21 1 3 .

EL
h l e e e e e lé ù= - + - + - +ê úë û

(25)

As it is known in real compressors, the percent of volume in the total displacement of a piston
into a cylinder is called the dead space ratio, and it is defined as
c =(volume of dead space) / (volume of displacement) [29]. In the Curzon–Ahlborn cycle, rC

appears as the reciprocal of c. It is found that 3% ≤ c ≤10% ; hence, 100 / 3≥ rC ≥100 / 10 or
33> rC ≥10. Supposing power plants working as a Curzon–Ahlborn cycle, a linear approxima‐
tion of efficiency, Equations (24) and (25), values of efficiency appear around the experimental
values. As an example, Table 1 shows a comparison between real values and linear approxi‐
mation values, γ =1.67, and the closeness of the linear approximation, in case of some modern
power plants.

Nuclear power plant TC (K ) TH (K ) ηobs ηEL  , 10≤ rC <33

Doel 4 (Belgium), 283 566 0.35000 0.37944–0.38224

Almaraz II (Spain) 290 600 0.34500 0.39234–0.39539

Sizewell B (UK) 288 581 0.36300 0.38277–0.38563

Cofrentes (Spain) 289 562 0.34000 0.36844–0.37103

Heysham (UK) 288 727 0.40000 0.46036–0.46506

Table 1. Comparison of experimental efficiencies with linear ecological approximation

2.2. Nonlinear heat transfer law

The ecological efficiency has been calculated using Dulong and Petit’s heat transfer law in [30],
maximizing ecological function for instantaneous adiabats. When the time for all the processes
of the Curzon and Ahlborn cycle is taken into account, efficiencies in both regimens, maximum
power output and maximum ecological function, can be obtained, following the procedure
employed. Suppose an ideal gas as a working substance in a cylinder with a piston that
exchanges heat with the reservoirs, and using a heat transfer law of the form

( ) ,
k

f i

dQ T T
dt

a= - (26)

where k >1, α is the thermal conductance assumed the same for both reservoirs, dQ / dt  is the
rate of heat Q exchange, and T i and T f  are the temperatures for the heat exchange process.
From the first law of thermodynamics and under mechanical equilibrium condition, i.e.,
p = pext , because the working substance is an ideal gas, U =U (T ), one obtains
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( )or .
k

i
f i

RTdQ dV dVp T T
dt dt V dt

a= - = (27)

Equation (27) implies that the times along the isothermal processes in Figure 1 are, respectively,

( ) ( )
32

1 3
1 4

ln and lnHW CW
k k

H HW CW C

RT RT VVt t
V VT T T Ta a

= =
- -

(28)

The corresponding heat exchanged QH  and QC  become, respectively,

2 4

1 3

ln and ln ,H HW C CW
V VQ RT Q RT
V V

= = (29)

where R is the universal gas constant and V1, V2, V3, V4,  are the corresponding volumes for
the states 1, 2, 3, and 4 in Figure 1 also. The times of the adiabatic processes are assumed as

( ) ( ) ( ) ( )2 4ln , and ln
1 1

HW HW CW CW
k k

CW HWH HW CW C

RT T RT Tt t
T TT T T Ta g a g

-
= =

- - - -
(30)

where γ ≡CP / CV  has been used. With these results, the form for the power output is

( )( )
( ) ( )

1
1

1

1 1 ln
,

k k

k

z
u zu

T z z
P

e

a l

- -

- +
=

+ (31)

with the same used parameters. By means of ∂P / ∂u =0 and ∂P / ∂ z =0, one obtains

2
1

2
1

,
k

k

zu
z z

e+

+

+
=

+
(32)

and the resulting expression for the implicit function z = z (λ, ε), for a given k,

( ) ( ) ( )( ) ( )( )( ) ( )
( )( ) ( )

22 2
1 1 1

2 2
1 12

1 1 ln 1 1 ln

1 1 ln 0.

k
k k k

k
k k

z z z z z zk z z z z z

z z z z z z z

e l l e l

l e e

+ + +

+ +

é ù- - - + + + - + +ê úë û
é ù- - + + + - =ê úë û

(33)
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With reasonable approximations, only for the exponents in Equation (33), the following can
be obtained:

( ) ( )( ) ( )( ) ( )( ) ( )( )1 1 1 1 1 ln 1 0.k zk z z z z z z zl e e l e l+ + - - - + - - - + - = (34)

Equation (34) allows to the explicit expression for the function z = z (ε, k ) when λ =0,

( ) ( )( ) ( ) ( )2 2 21 1 1 1 4
, .

2OP

k k k
z k

k
e e e

e
- - ± - - +

= (35)

Taking now k =5 / 4 in Equation (35), one obtains the following value for the physically
acceptable and approximated solution of Equation (33), namely,

21 98 1 .
10OPDPz e e e- + + +

= (36)

The numerical results for ηOPDP =1− zOPDP  are compared with ηCAN  and the observed efficiency,
ηobs, which are in good agreement with the reported values. Now, assuming that z obtained
from Equation (34) can be expressed as a power series in the parameter λ, the expression for
the efficiency at maximum power output regimen is as follows:

( ) ( ) ( ) ( )2 3
1 21 , 1 1 .PDP PDP OPDPz z B B Oh l e e l e l lé ù= - = - + + +ë û (37)

One can find Bj, j =1, 2, ....etc.,  through successive derivatives respect to λ. The first one is

( )( )
( )1

16 1
( )

5 4 40
OPDP OPDP

OPDP OPDP

z z
B

z z
e

e
e

- -
=

- -
(38)

Now, the ecological function for Curzon and Ahlborn engine takes the form

( ) ( )( )
1

(1 ) ( )

1 ln 1 2
, .

k k

k
H

z
u zu

T z z
E u z

e

a l e

- -

+ + -
=

+ (39)

We find the function z(ε) from the maximization of function E (u, z) and the efficiency for
k =5 / 4. Upon setting ∂E / ∂u =0 and ∂E / ∂ z =0, one obtains from the first condition that
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2
1

2
1

,
k

k

zu
z z

e+

+

+
=

+
(40)

and from the second one,

( ) ( )( )( )
( )( )( )

( )
( ) ( )

1 2 2 1 ln 1
0.

1 ln 1 2 1

k

k k

z z z zu u
z z zu kuz z zu z u

e l l e

l e e e

+ - - + - -
- =

+ + - - - - + -
(41)

Substituting now Equation (40) for u in Equation (41), one obtains the following expression:

( )( ) ( ) ( )( )

( )( ) ( )( )

3
1

3 32
1 1 1

2 2 1 ln 1 2

1 ln 1 2 .

k
k

k k
k k k

z z z z z z

z z z z k z z z

e l e l

e e l e

+
+

+ +
+ + +

+ - - + + + - =

= - - + + + -
(42)

The analytical solution of Equation (42) is not feasible when the exponents of z are not integers,
which is the present case, k =5 / 4. The numerical solution of Equation (42) shows that anyone
solution falls into the region bounded by solutions for λ =0 and λ =1 [28]. It can be appreciated
that within the values of 0≤ε ≤1, which are the only physically relevant, the curve represented
by Equation (42) can be fitted with a parabolic curve. The simplest approximation that allows
for a parabolic fit for 0≤λ ≤1 modifying the exponents leads to the approximate analytical
expression for z(ε, λ) as

( ) ( )( )( ) ( )( ) ( ) ( )( )2 2 1 ln 1 2 1 ln 1 2 0.z z z z z z z z kl e l e l e e e- + + + - - - + + - - - + = (43)

For the case λ =0, that is instantaneous adiabats, and with k =5 / 4, Equation (43) becomes

21 649 646 1 .
36OEDPz e e e- + + +

= (44)

Any other root has no physical meaning because efficiencies must always be positive. Ade‐
quate comparison between fitted numerical values of ηMEDP  in [30] and ηOEDP =1− zOEDP  is in
[28] and later in [25]. Assuming z given by Equation (43) as a power series in the parameter
λ, efficiency can be found as follows:

( ) ( ) ( ) ( )2 3
1 21 , 1 1 .EDP EDP OEDPz z b b Oh l e e l e l lé ù= - = - + + +ë û (45)
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At last taking, z0 = zEDP(ε, λ =0)= zOEDP(ε), and from Equation (43), coefficients are found by
successively taking the derivative respect to λ and evaluating at λ =0. The first one leads to the
linear approximation for ecological efficiency since Equation (45), as follows:

( )
2 2

0 0 0
1 1 1

0 0 4 4

2 2 6 2 4
( ) ,

9
z z zb

z z
e e e

e
e

- + - + +
=

- - +
(46)

3. The non-endoreversible Curzon and Ahlborn cycle

By contrast, in finite time, thermodynamics is usually considered an endoreversible Curzon–
Ahlborn cycle, but in nature, there is no endoreversible engine. Thus, some authors have
analyzed the non-endoreversible Curzon and Ahlborn cycle. Particularly in [16] has been
analyzed the effect of thermal resistances, heat leakage, and internal irreversibility by a non-
endoreversibility parameter, advanced in [14],

,C
S

H

SI
S

D
º
D

(47)

where ΔSC  is the change of entropy during the exchange of heat from the engine to cold
reservoir, and ΔSH  is the change of entropy during the exchange of heat from the hot reservoir
to engine. The non-endoreversible Curzon–Ahlborn cycle is shown in Figure 2. The efficiency
at maximum power output for instantaneous adiabats is

1 , 1.m S SI Ih e= - > (48)

Figure 2. Curzon and Ahlborn cycle in the S-T plane. QI  is a generated internally heat.
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Following the procedure in [16], have been found expressions to measure possible reductions
of undesired effects in heat engines operation [17], and has been pointed out that IS is not
dependent of ε and rewrote Equation (48) as

11 , , 0 1.m I
S

I I
I

eh = - º < < (49)

Moreover, in [31] has been applied variational calculus showing that the saving function in
[17] and modified ecological criteria are equivalent. In this section, internal irreversibilities are
taken into account to obtain Equation (4), replacing (ε 2 + ε) / 2I  instead (ε 2 + ε) / 2 in case of a
non-endoreversible Curzon and Ahlborn cycle. The procedure in [5] is combined with the
cyclic model in [16] to obtain the form of power output function and of ecological function.

3.1. Curzon and Ahlborn cycle with instantaneous adiabats

Suppose a thermal engine working like a Curzon and Ahlborn cycle, in which an internal heat
by internal processes of working fluid appears, assuming ideal gas as working fluid. The
Clausius inequality with the parameter of non-endoreversibility becomes

0.CH
S

HW CW

QQI
T T

- = (50)

The changes of entropy are ΔSC  and ΔSH  during the heat exchange between the engine and its
reservoirs. From Equation (50), QC =(TCW / T HW )ISQH , and clearly IS ≥1. Thus, the heat ex‐
changes between the thermal engine and its reservoirs are

2 2

1 1
ln and ln .V VCW

H HW C S HWV V
HW

TQ RT Q I RT
T

= = (51)

The volumes in the states of change of process in the cycle are V1, V2, V3, V4, and the total made
work by the engine can be written as

( ) 2

1
1 ln ,CW

HW

T V
I HW S T VW RT I= - (52)

Assume the exchange of heat as Equation (8) with k =1 and an internal generated heat QI . For
reversible adiabatic processes, T V γ−1 =constant , with γ =CP / CV , so that V2 / V1 =V3 / V4 is
obtained. For instantaneous adiabatic processes, the total time is
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2

1

1 ln ,VHW S CW
TOT V

H HW CW C HW

RT I Tt
T T T T Ta
é ù

= + ×ê ú
- -ë û

(53)

with the changes ZI = ISTCW / T HW  and u =T HW / TH , the power output is

( )( ) 1
1

1 11 .S I

I S

I Z
I I u Z u IP T Z ea

-

- -
= - + (54)

Also, the variation of entropy in the cycle can be written as

( ) 3

1
ln ,VCH H

I I V
H C C

QQ TS R Z
T T T

eD = - + = - - (55)

and Equation (18) is modified as

( )( ) 1
1

1 11 2 .S I

I S

I Z
I I u Z u IE T Z ea e

-

- -
= - + + (56)

Now, the following is obtained from the conditions ∂P / ∂u =0 and ∂P / ∂ZI =0 :

( ) 1
(1 ) ,I S S I Su Z I I Z Ie

-
é ù= + +ë û (57)

and a physically possible solution for ZI is found, which leads to the efficiency

1 ,CANI I
eh = - (58)

when the change IS =1 / I  proposed in [17] is used. Similar results can be obtained for the
ecological function. Thus, from Equation (56) for the same variables u and ZI , function u =u(z)
is obtained as Equation (57), and the physically possible solution of ZI  leads to ecological
efficiency as in [23],

2

21 ,EI I
e eh += - (59)

For the suitable values of parameter I =1 / IS , found in [17] as 0.8≤ I ≤0.9 0, Table 2 shows the
values of the ecological efficiency, Equation (59), compared with the experimental values of
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the efficiency, ηobs. The intervals of values of the efficiency are improved in the sense that they
are nearer to the reported experimental values in literature.

Power Plant T2 (K ) T1 (K ) ηobs ηEI

Doel 4 (Belgium), 1985 283 566 0.35000 0.31535 to 0.3545

Almaraz II, Spain 290 600 0.34500 0.3306 to 0.36889

Sizewell B, UK 288 581 0.36300 0.3198 to 0.35821

Cofrentes, Spain 289 562 0.34000 0.30238 to 0.34228

Heysham, UK 288 727 0.40000 0.41206 to 0.44568

Table 2. Comparison of experimental efficiencies with efficiencies from Equation (25)

3.2. Curzon–Ahlborn cycle with noninstantaneous adiabats

In order to include the compression ratio in the analysis of Curzon and Ahlborn cycle, it is
necessary to suppose finite time for the adiabatic processes. Hence, as it is known, with ideal
gas as working fluid and using the Newton heat transfer law, the following can be written:

,dQ dVp
dt dt

= (60)

and because p = RT / V , Equation (60) is now

( )ln .dQ RT dV dRT V
dt V dt dt

= = (61)

Then again, internal energy U  depends only on the initial and final states, so the adiabatic
expansion in the cycle can be written as

1 .H HW

HW

T TdV
V dt RT

a
-

= (62)

The integration of Equation (62) leads to the time of the adiabatic expansion in the cycle,

( )3

2

1
2 ln ( ) ,V

HW H HWVt RT T Ta
-

é ù= -ë û (63)

and taking into account the form that acquires the yielded heat QC  based on the absorbed heat
QH , Equation (51), the time of the adiabatic processes can be assumed as
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( ) ( ) ( )3 1

4 4

1 1
ln ( )ln ,CW

HW

V T V
ad HW H HW HW S CW CV T Vt RT T T RT I T Ta a

- -é ùé ù é ù= - + × -ë û ë ûë û (64)

and the total time of the non-endoreversible cycle is as follows:

3

1

1( ) ln ,s CW

H HW CW C HW

I T VHW
TOT T T T T T V

RTt ad
a - -

é ù= + ×ë û (65)

So that a new expression for power output in the cycle using the changes of variables in
Equation (54) and Equation (56) is found, namely,

( )( )
1

1
11 1 ln ln ,I S

I S

Z I
I H I I S u Z u IP T Z Z Il ea l l

-

- -
é ù= - + - × +ë û (66)

with λ ≡1 / ((γ −1)lnrC), and the compression ratio is rC ≡V3 / V1. The entropy production with
the same changes of variables is found, and the new expression for ecological function is

( )( )
1

1
11 2 1 ln ln .S I

I S

I Z
I H I I S u Z u IE T Z Z Il ea e l

-

- -
é ù= - + + - × +ë û (67)

In order to maximize power output, Equation (66), the conditions ∂PIλ / ∂u =0 and ∂PIλ / ∂ZI =0

are necessary. Also, in order to maximize ecological function, Equation (67), the conditions
∂EIλ / ∂u =0 and ∂EIλ / ∂ZI =0 are necessary. Hence, one can find the form of ZI  for each
maximized features function. In case of maximizing power output, the following is obtained:

2 2 2 2ln ln ln ln 0,I I I I S S I I S I S S I S SZ Z Z Z I I Z Z I Z I I Z I Il l le l l e l e le le+ - + - - + - - + = (68)

and in case of maximizing ecological function, the following is obtained:

( ) ( ) ( )( )2 22 1 ln 1 2 2 ln 1 1 ln ln .I S I S I I S I SZ I Z I Z Z I Z Il l l e e l e l l l e- + - + + + = + - - + (69)

When λ =0 and IS =1 the corresponding expressions shown in [5] and in [12] for maximum
power output and maximum ecological function are recovered. Moreover, expressions of the
Curzon–Ahlborn–Novikov–Chambadal efficiency and the ecological efficiency found in [1]
and [4] are recovered. Non instantaneous adiabats imply λ ≠0, and ZI  can be expanded in a
power series of λ. The simplest expansion is the linear approach, so if ZI  is written for each
case of objective function, one can obtain, respectively,

0 1 0 1and .PI EIZ a a Z b bl l= + + = + +L L (70)
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Parameters ai and bi can be calculated as in [5] and in [12]. They are small and greater than zero.
They go to zero as i →∞ ; thus, it is possible to ensure the convergence of series. Linear
approximation only requires finding a0 and a1 (or b0 and b1), which are, in case of maximum
power output, as follows:

( )1
0 1 2and 1 ,S Sa I a Ie e= = - (71)

and in case of maximum ecological function,

( ) ( ) ( )2 21 1 1
0 12 4 2and 1 2 .S S Sb I b I Ie e e e e e= + = + + - + (72)

The linear approximation of efficiency, at maximum power output and at maximum ecological
function, can now be derived from Equation (71) or Equation (72), respectively, as

1 or 1 .CANL PI EL EIZ Zh h= - = - (73)

It is important to note that compression ratio has no arbitrary values, as discussed in Section
2.1. Thus, for rC =10 and the extreme values of the range of values for I, I =1 / IS , found in [17]
for real engines with a gas as working fluid, namely, I =0.8 and I =0.9, the efficiency is obtained
as a function of the parameter ε.

4. Stirling and Ericsson cycles

As it is known, the thermal engines can be endothermic or exothermic. Among the first engines,
the best known are Otto and Diesel, and among the second two engines, very interesting and
similar to the theoretical Carnot engine are Stirling and Ericsson engines [32,33]. In particular,
a Stirling engine is a closed-cycle regenerative engine initially used for various applications,
and until the middle of last century, they were manufactured on a large scale. However, the
development of internal combustion engines from the mid-nineteenth century and the
improvement in the refining of fossil fuels influenced the abandonment of the Stirling and
Ericsson engines in the race for industrialization, gradually since the early twentieth century.
Reference [34] is an interesting paper devoted to Stirling engine.

In the classical equilibrium thermodynamics, Stirling and Ericsson cycles have an efficiency
that goes to the Carnot efficiency, as it is shown in some textbooks. These three cycles have the
common characteristics, including two isothermal processes. The objection to the classical
point of view is that reservoirs coupled to the engine modeled by any of these cycles do not
have the same temperature as the working fluid because this working fluid is not in direct
thermal contact with the reservoir. Thus, an alternative study of these cycles is using finite
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time thermodynamics. Thus, since the end of the previous century, and on recent times, the
characteristics of Stirling and Ericsson engines have resulted in renewed interest in the study
and design of such engines, and in the analysis of its theoretical idealized cycle, as it is shown
in many papers, [22,35-37] among others. Nevertheless, the discussion on these engines and
its theoretical model has not been exhausted.

In this section, an analysis of the Stirling and Ericsson cycles from the viewpoint of finite time
thermodynamics is made. The existence of finite time for heat transfer in isothermal processes
is proposed, but the cycles are analyzed assuming they are not endoreversible cycles, through
the factor that represents their internal irreversibilities [14], so that the proposed heat engine
model is closer to a real engine. Some results in reference [22] are used, and a methodology to
obtain a linear approximation of efficiency, including adequate parameters, is shown. Variable
changes are made right, like those used in [5] and in [23,25]. This section is a summary of
obtained results in [38].

4.1. Stirling cycle

Now, as it is known, Stirling cycle consists of two isochoric processes and two isothermal
processes. At finite time, the difference between the temperatures of reservoirs and the
corresponding operating temperatures is considered, as shown in Figure 3. To construct
expressions for power output and ecological function for this cycle, some initial assumptions
are necessary. First, the heat transfer is supposed as Newton’s cooling law for two bodies in
thermal contact with temperatures T i and T f , T i >T f , with a rapidity of heat change dQ / dt ,
and a constant thermal conductance α, which for convenience is assumed to be equal in all
cases of heat transfer as follows:

( ).i f
dQ T T
dt

a= - (74)

On the other hand, it is assumed that the internal processes of the system cause irreversibilities
that can be represented by the factor IS  previously presented, so from the second law of
thermodynamics, the following can be written:

.CW
C S H

HW

TQ I Q
T

= (75)

Power output is defined as

.H C

TOT

Q QP
t
-

= (76)
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With ideal gas as working substance for an isothermal process, the equation of state leads to

( ).i
i f

RT dV T T
V dt

a= - (77)

An assumption for the cycle is that heating and cooling at constant volume is performed as

,V
dT r constant
dt

= = (78)

where it is not difficult to show that it meets

1 2 .V VQ Q= (79)

By contrast, from the equilibrium conditions, it can be assumed

,V V V
dU dQ dTC r C
dt dt dt

= = = (80)

and the heating and cooling, respectively, from the first law of thermodynamics are

( ) ( )1 41 2 23and ,V V HW CW V V CW HWQ C T T U Q C T T U= - = D = - = D (81)

and the time for each isochoric processes is given as

Figure 3. Idealized Stirling cycle at the V–p (volume vs pressure) plane.
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( )1 .V HW CW
V

t T T
r

= - (82)

The time for the isothermal processes can be found from Equation (77) as

( ) ( )
2 1

1 21 2ln and ln .V VHW CW
V V

H HW CW C

RT RTt t
T T T Ta a

= = -
- - (83)

The negative sign in t2 is just because there is no negative time, the total time of cycle is

( ) ( ) ( )2 1

1 2

2ln ln .V VHW CW
TOT HW CWV V

VH HW CW C

RT RTt T T
rT T T Ta a

= - + -
- - (84)

Since its definition and taking into account Equation (76), the power output of cycle is written
as

1 2

.
2

CW

HW

T
H S HT

SI
V

Q I Q
P

t t t

-
=

+ +
(85)

Now, with the change of variables used in the previous section in Equations (54) and (56), and
taking into account the ratio of temperatures of the heat reservoirs, used in Equations (1) and
(2), with the parameter λ = (γ −1) ln(V2 / V1) −1 that includes the compression ratio of cycle, in
this case V2 / V1 = rC , the power output of Stirling cycle takes the form

( )
( )21

1

1
.

S I H

I S V S V

H I
SI I Z T

S Iu Z u I C I r

T Z
P

I Za
e

a

l- -

-
=

+ + -
(86)

The optimization conditions (∂PSI / ∂u)ZI =const =0 and (∂PSI / ∂ZI )u=const =0 permit find the

function ZI =ZI (ε, IS , λ). From the first one, u =u(ZI , IS ) is obtained as

( )
( )

,
1

I S S

I S

Z I I
u

Z I

e+
=

+
(87)

and from the second one, a solution physically adequate ZIP  can be obtained by
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( ) ( )
( ) ( )

( ) ( )( )
( )( )

2

2

1 2 2

1

1 2
.

1

S V V S H S I S

I S I

I S V V S H I S S I

I I S

I r C I T I Z I

Z I Z

Z I r C I T Z I I Z

Z Z I

a l e

e

a l e

e

+ + - +
=

- - + -

+ + - -
=

- -

(88)

Thus, that the efficiency at maximum power output can be written as

( )1 , , .SIP IP SZ Ih e l= - (89)

For known values of parameters CV , α, and TH , in the limit λ →0, namely, V2 / V1 →∞, the
efficiency of non-endoreversible Stirling cycle, ηSIP, goes to the efficiency for the non-endore‐
versible Curzon and Ahlborn cycle, as can be seen from Equation (86),

1 .SIP m I
eh h® = - (90)

The analysis for ecological function is similar to power output, and also leads to similar results.
The shape of function u =u(ZI , IS , ε) is the same as in Equation (87), but the form of
ZI =ZI (ε, IS , λ) changes. Because heating and cooling in both isochoric and isobaric processes
are considered constant, and taking into account Equations (75) and (78), the change of entropy
can be taken only for isothermal processes. Then, the change of entropy for the non-endore‐
versible cycle considered is

,C CWH H H
S

H C H HW C

Q TQ Q QS I
T T T T T

D = - + = - + (91)

which leads to the ecological function as

2

1
1 2 1 2 ln ,VCW C HW CW CH

SI S S V
TOT HW H tot HW H

T T RT T TQE I I
t T T t T T

æ ö æ ö
= - + = - +ç ÷ ç ÷ç ÷ ç ÷

è ø è ø
(92)

Where tTOT  is as Equation (84). With the same parameters definite in the previous section,
ecological function can be written now as

( )
( )21

1

1 2
.

S I H

I S V S V

H I
SI I Z T

S Iu Z u I C I r

T Z
E

I Za
e

a e

l- -

- +
=

+ + -
(93)
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As in the case of power output, in order to find the efficiency at maximum ecological function,
there are two conditions, namely, (∂ESI / ∂u)ZI =const =0 and (∂ESI / ∂ZI )u=const =0. These conditions

lead to obtaining the parameter u as in Equation (87) and also ZIE =ZIE (ε, IS , λ) as an adequate
solution for the second condition by the relation,

( ) ( )( )
( )( )

( ) ( )
( ) ( )

2

2

1 2

1 2

1 2 2

1 2 2

I S V V S H I S S I

I I S

S V V S H S I S

I I S

Z I r C I T Z I I Z

Z Z I

I r C I T I Z I

Z Z I

al e

e e

al e

e e

+ + - -
=

- + -

+ + - +
=

- + - -

(94)

The efficiency for the Stirling cycle at maximum ecological function can be written now as

( )1 , , ,SIE IE SZ Ih e l= - (95)

and λ →0 implies ηSIE  goes to the efficiency for the non-endoreversible Curzon–Ahlborn cycle,

2

21 .SIE EI I
e eh h +® = - (96)

The existence of a finite heat transfer in the isothermal processes is affected with the assump‐
tion of a non-endoreversible cycle with ideal gas as working substance. Power output and
ecological function have also an issue that shows direct dependence on the temperature of the
working substance. Expressions obtained with the changes of variables have the virtue of
leading directly to the shape of the efficiency through ZI  function. Thus, in classical equilibrium
thermodynamics, the Stirling cycle has its efficiency like the Carnot cycle efficiency; in finite
time thermodynamics, this cycle has an efficiency in their limit cases as the Curzon–Ahlborn
cycle efficiency.

4.2. Ericsson cycle

The Ericsson cycle consisting of two isobaric processes and two isothermal processes is shown
in Figure 4. Now, it follows a similar procedure as in the Stirling cycle case. Thus, the hypoth‐
esis on constant heating and cooling, now at constant pressure, is expressed as

constant.p
dT r
dt

= = (97)

It is true that
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1 2 .p pQ Q= (98)

The equilibrium condition now is

,p p p
dU dT dV dVC p r C p
dt dt dt dt

= - = - (99)

and the time for a constant pressure process is given as

( )1 .CW

HW

THW
p T

p

Tt
r

= - (100)

The time for the isothermal processes can also be obtained from Equation (77) and can be
written as

( ) ( )
2 4

1 31 2ln , ln ,V VHW CW
V V

H HW CW C

RT RTt t
T T T Ta a

= = -
- - (101)

and the total time of cycle is now

2 4

1 3

2ln ln ( ),
( ) ( )

V VHW CW
TOT HW CWV V

H HW CW C p

RT RTt T T
T T T T ra a

= - + -
- - (102)

so the power output of cycle from its definition and taking into account Equation (76) remains

1 2

.
2

CW

HW

T
H S HT

p

Q I Q
P

t t t

-
=

+ +
(103)

With the change of variables used in the previous section, now the expression for the power
output of the non-endoreversible Ericsson cycle is

( )
( )21

1

1
,

I H

I S V S p

H I
EI Z T

S Iu Z u I C I r

T Z
P

I Za
e

a

l- -

-
=

+ + -
(104)

which is essentially found for the Stirling cycle, with factor rp instead of rv. For extreme
conditions, (∂PEI / ∂u)u=const =0 and (∂PEI / ∂u)ZI =const =0 are obtained again using Equation (87),

allowing us to find a physically acceptable solution ZIP =ZIP(ε, IS , λ) by
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( ) ( )
( ) ( )

( ) ( )( )
( )( )

2

2

1 2 2

1

1 2

1

S p V S H S I S

I S I

I S p V S H I S S I

I I S

I r C I T I Z I

Z I Z

Z I r C I T Z I I Z

Z Z I

a l e

e

a l e

e

+ + - +
=

- - + -

+ + - -
=

- -

(105)

Thus, at maximum power output regimen, the efficiency of non-endoreversible Ericsson cycle
is

( )1 , , .EIP IP SZ Ih e l= - (106)

The analysis for the case of ecological function is similar to the case of power output and also
leads to similar results. The shape of the function u =u(ZI , IS , ε) is the same as in Equation
(87), but the form of ZI =ZI (ε, IS , λ) changes. Thus, because heating and cooling in isobaric
processes are considered constant, the change of entropy can be taken only for the isothermal
processes. Hence, for the non-endoreversible Ericsson cycle considered, we have

,C CWH H H
S

H C H HW C

Q TQ Q QS I
T T T T T

D = - + = - + (107)

from which the ecological function for the Ericsson cycle can be written as

( )
( )21

1

1 2
,

I H

I S V S p

H I
EI Z T

S Iu Z u I C I r

T Z
E

I Za
e

a e

l- -

- +
=

+ + -
(108)

where the parameter rp takes the adequate value depending on the cycle analyzed. As in the
case of power output, there are two conditions for maximum ecological function, namely,

Figure 4. Idealized Ericsson cycle at the V − p (volume vs pressure) plane.
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(∂EEI / ∂u)zI =const =0 and (∂EEI / ∂ZI )u=const =0. These conditions lead to obtain parameter u as in

Equation (87) and also ZEI =ZEI (ε, IS , λ) by

( ) ( )( )
( )( )

( ) ( )
( ) ( )

2

2

1 2

1 2

1 2 2

1 2 2

I S p V S H I S S I

I I S

S p V S H S I S

I I S

Z I r C I T Z I I Z

Z Z I

I r C I T I Z I

Z Z I

al e

e e

al e

e e

+ + - -
=

- + -

+ + - +
=

- + - -

(109)

The efficiency for Ericsson cycle at maximum ecological function can be written now as

( )1 , , .EIE IE SZ Ih e l= - (110)

5. Concluding remarks

The developed methodology leads directly to appropriate expressions of the objective
functions simplifying the optimization process. This methodology shows the consequences of
assuming non-endoreversible cyle in the process of isothermal heat transfer through the factor
IS =1 / I , which represents the internal irreversibilities of cycle, so that the proposed heat engine
model is closer to a real engine. By contrast, as the known Carnot theorem provided a level of
operation of heat engines, the Curzon and Ahlborn cycle provides levels of operation of such
engines closer to reality. In this sense, the same manner within the context of classical equili‐
brium thermodynamics shows that in any cycle formed by two isothermal processes and any
other pair of the same processes (isobaric, isochoric, and adiabatic), efficiency tends to Carnot
cycle efficiency. In the context of finite time thermodynamics, any cycle as previously men‐
tioned has an efficiency, which tends to Curzon and Ahlborn cycle efficiency. The above
statements are independent if the cycle is considered endoreversible or non-endoreversible.
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